1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <assert.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "crypto_aes.h"
#include "crypto_aesctr.h"
#include "crypto_entropy.h"
#include "crypto_verify_bytes.h"
#include "humansize.h"
#include "insecure_memzero.h"
#include "sha256.h"
#include "sysendian.h"
#include "warnp.h"
#include "crypto_scrypt.h"
#include "memlimit.h"
#include "scryptenc_cpuperf.h"
#include "scryptenc.h"
#define ENCBLOCK 65536
static int pickparams(size_t, double, double,
int *, uint32_t *, uint32_t *, int);
static int checkparams(size_t, double, double, int, uint32_t, uint32_t, int,
int);
#ifdef POSIXFAIL_ABSTRACT_DECLARATOR
static int scryptdec_file_load_header(FILE * infile, uint8_t header[static 96]);
#else
static int scryptdec_file_load_header(FILE *, uint8_t[static 96]);
#endif
struct scryptdec_file_cookie {
FILE * infile; /* This is not owned by this cookie. */
uint8_t header[96];
uint8_t dk[64];
};
static void
display_params(int logN, uint32_t r, uint32_t p, size_t memlimit,
double opps, double maxtime)
{
uint64_t N = (uint64_t)(1) << logN;
uint64_t mem_minimum = 128 * r * N;
double expected_seconds = opps > 0 ? (double)(4 * N * r * p) / opps : 0;
char * human_memlimit = humansize(memlimit);
char * human_mem_minimum = humansize(mem_minimum);
/* Parameters */
fprintf(stderr, "Parameters used: N = %" PRIu64 "; r = %" PRIu32
"; p = %" PRIu32 ";\n", N, r, p);
/* Memory */
fprintf(stderr, " Decrypting this file requires at least"
" %s of memory", human_mem_minimum);
if (memlimit > 0)
fprintf(stderr, " (%s available)", human_memlimit);
/* CPU time */
if (opps > 0)
fprintf(stderr, ",\n and will take approximately %.1f "
"seconds (limit: %.1f seconds)", expected_seconds, maxtime);
fprintf(stderr, ".\n");
/* Clean up */
free(human_memlimit);
free(human_mem_minimum);
}
static int
pickparams(size_t maxmem, double maxmemfrac, double maxtime,
int * logN, uint32_t * r, uint32_t * p, int verbose)
{
size_t memlimit;
double opps;
double opslimit;
double maxN, maxrp;
uint64_t checkN;
int rc;
/* Figure out how much memory to use. */
if (memtouse(maxmem, maxmemfrac, &memlimit))
return (SCRYPT_ELIMIT);
/* Figure out how fast the CPU is. */
if ((rc = scryptenc_cpuperf(&opps)) != SCRYPT_OK)
return (rc);
opslimit = opps * maxtime;
/* Allow a minimum of 2^15 salsa20/8 cores. */
if (opslimit < 32768)
opslimit = 32768;
/* Fix r = 8 for now. */
*r = 8;
/*
* The memory limit requires that 128Nr <= memlimit, while the CPU
* limit requires that 4Nrp <= opslimit. If opslimit < memlimit/32,
* opslimit imposes the stronger limit on N.
*/
#ifdef DEBUG
fprintf(stderr, "Requiring 128Nr <= %zu, 4Nrp <= %f\n",
memlimit, opslimit);
#endif
if (opslimit < (double)memlimit / 32) {
/* Set p = 1 and choose N based on the CPU limit. */
*p = 1;
maxN = opslimit / (*r * 4);
for (*logN = 1; *logN < 63; *logN += 1) {
checkN = (uint64_t)(1) << *logN;
/*
* Find the largest power of two <= maxN, which is
* also the least power of two > maxN/2.
*/
if ((double)checkN > maxN / 2)
break;
}
} else {
/* Set N based on the memory limit. */
maxN = (double)(memlimit / (*r * 128));
for (*logN = 1; *logN < 63; *logN += 1) {
checkN = (uint64_t)(1) << *logN;
if ((double)checkN > maxN / 2)
break;
}
/* Choose p based on the CPU limit. */
checkN = (uint64_t)(1) << *logN;
maxrp = (opslimit / 4) / (double)checkN;
if (maxrp > 0x3fffffff)
maxrp = 0x3fffffff;
*p = (uint32_t)(maxrp) / *r;
}
if (verbose)
display_params(*logN, *r, *p, memlimit, opps, maxtime);
/* Success! */
return (SCRYPT_OK);
}
static int
checkparams(size_t maxmem, double maxmemfrac, double maxtime,
int logN, uint32_t r, uint32_t p, int verbose, int force)
{
size_t memlimit;
double opps;
double opslimit;
uint64_t N;
int rc;
/* Sanity-check values. */
if ((logN < 1) || (logN > 63))
return (SCRYPT_EINVAL);
if ((uint64_t)(r) * (uint64_t)(p) >= 0x40000000)
return (SCRYPT_EINVAL);
if ((r == 0) || (p == 0))
return (SCRYPT_EINVAL);
/* Are we forcing decryption, regardless of resource limits? */
if (!force) {
/* Figure out the maximum amount of memory we can use. */
if (memtouse(maxmem, maxmemfrac, &memlimit))
return (SCRYPT_ELIMIT);
/* Figure out how fast the CPU is. */
if ((rc = scryptenc_cpuperf(&opps)) != SCRYPT_OK)
return (rc);
opslimit = opps * maxtime;
if (verbose)
display_params(logN, r, p, memlimit, opps, maxtime);
/* Check limits. */
N = (uint64_t)(1) << logN;
if (((memlimit / N) / r < 128) &&
(((opslimit / (double)N) / r) / p < 4))
return (SCRYPT_EBIGSLOW);
if ((memlimit / N) / r < 128)
return (SCRYPT_ETOOBIG);
if (((opslimit / (double)N) / r) / p < 4)
return (SCRYPT_ETOOSLOW);
} else {
/* We have no limit. */
memlimit = 0;
opps = 0;
if (verbose)
display_params(logN, r, p, memlimit, opps, maxtime);
}
/* Success! */
return (SCRYPT_OK);
}
/*
* NOTE: The caller is responsible for sanitizing ${dk}, including if this
* function fails.
*/
static int
scryptenc_setup(uint8_t header[96], uint8_t dk[64],
const uint8_t * passwd, size_t passwdlen,
struct scryptenc_params * P, int verbose, int force)
{
uint8_t salt[32];
uint8_t hbuf[32];
uint64_t N;
SHA256_CTX ctx;
uint8_t * key_hmac = &dk[32];
HMAC_SHA256_CTX hctx;
int rc;
/* Determine parameters. */
if (P->logN != 0) {
/* Check logN, r, p. */
if ((rc = checkparams(P->maxmem, P->maxmemfrac, P->maxtime,
P->logN, P->r, P->p, verbose, force)) != 0) {
/* Warn about resource limit, but suppress the error. */
if ((rc == SCRYPT_ETOOBIG) || (rc == SCRYPT_EBIGSLOW))
warn0("Warning: Explicit parameters"
" might exceed memory limit");
if ((rc == SCRYPT_ETOOSLOW) || (rc == SCRYPT_EBIGSLOW))
warn0("Warning: Explicit parameters"
" might exceed time limit");
if ((rc == SCRYPT_ETOOBIG) || (rc == SCRYPT_ETOOSLOW) ||
(rc == SCRYPT_EBIGSLOW))
rc = 0;
/* Provide a more meaningful error message. */
if (rc == SCRYPT_EINVAL)
rc = SCRYPT_EPARAM;
/* Bail if we haven't suppressed the error. */
if (rc != 0)
return (rc);
}
} else {
/* Pick values for N, r, p. */
if ((rc = pickparams(P->maxmem, P->maxmemfrac, P->maxtime,
&P->logN, &P->r, &P->p, verbose)) != 0)
return (rc);
}
/* Sanity check. */
assert((P->logN > 0) && (P->logN < 64));
/* Set N. */
N = (uint64_t)(1) << P->logN;
/* Get some salt. */
if (crypto_entropy_read(salt, 32))
return (SCRYPT_ESALT);
/* Generate the derived keys. */
if (crypto_scrypt(passwd, passwdlen, salt, 32, N, P->r, P->p, dk, 64))
return (SCRYPT_EKEY);
/* Construct the file header. */
memcpy(header, "scrypt", 6);
header[6] = 0;
header[7] = P->logN & 0xff;
be32enc(&header[8], P->r);
be32enc(&header[12], P->p);
memcpy(&header[16], salt, 32);
/* Add header checksum. */
SHA256_Init(&ctx);
SHA256_Update(&ctx, header, 48);
SHA256_Final(hbuf, &ctx);
memcpy(&header[48], hbuf, 16);
/* Add header signature (used for verifying password). */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, header, 64);
HMAC_SHA256_Final(hbuf, &hctx);
memcpy(&header[64], hbuf, 32);
/* Success! */
return (SCRYPT_OK);
}
/**
* scryptdec_file_printparams(infile):
* Print the encryption parameters (N, r, p) used for the encrypted ${infile}.
*/
int
scryptdec_file_printparams(FILE * infile)
{
uint8_t header[96];
int logN;
uint32_t r;
uint32_t p;
int rc;
/* Load the header. */
if ((rc = scryptdec_file_load_header(infile, header)) != 0)
goto err0;
/* Parse N, r, p. */
logN = header[7];
r = be32dec(&header[8]);
p = be32dec(&header[12]);
/* Print parameters. */
display_params(logN, r, p, 0, 0, 0);
/* Success! */
return (SCRYPT_OK);
err0:
/* Failure! */
return (rc);
}
/*
* NOTE: The caller is responsible for sanitizing ${dk}, including if this
* function fails.
*/
static int
scryptdec_setup(const uint8_t header[96], uint8_t dk[64],
const uint8_t * passwd, size_t passwdlen,
struct scryptenc_params * P, int verbose,
int force)
{
uint8_t salt[32];
uint8_t hbuf[32];
uint64_t N;
SHA256_CTX ctx;
uint8_t * key_hmac = &dk[32];
HMAC_SHA256_CTX hctx;
int rc;
/* Parse N, r, p, salt. */
P->logN = header[7];
P->r = be32dec(&header[8]);
P->p = be32dec(&header[12]);
memcpy(salt, &header[16], 32);
/* Verify header checksum. */
SHA256_Init(&ctx);
SHA256_Update(&ctx, header, 48);
SHA256_Final(hbuf, &ctx);
if (crypto_verify_bytes(&header[48], hbuf, 16))
return (SCRYPT_EINVAL);
/*
* Check whether the provided parameters are valid and whether the
* key derivation function can be computed within the allowed memory
* and CPU time, unless the user chose to disable this test.
*/
if ((rc = checkparams(P->maxmem, P->maxmemfrac, P->maxtime, P->logN,
P->r, P->p, verbose, force)) != 0)
return (rc);
/* Compute the derived keys. */
N = (uint64_t)(1) << P->logN;
if (crypto_scrypt(passwd, passwdlen, salt, 32, N, P->r, P->p, dk, 64))
return (SCRYPT_EKEY);
/* Check header signature (i.e., verify password). */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, header, 64);
HMAC_SHA256_Final(hbuf, &hctx);
if (crypto_verify_bytes(hbuf, &header[64], 32))
return (SCRYPT_EPASS);
/* Success! */
return (SCRYPT_OK);
}
/**
* scryptenc_buf(inbuf, inbuflen, outbuf, passwd, passwdlen,
* params, verbose, force):
* Encrypt ${inbuflen} bytes from ${inbuf}, writing the resulting
* ${inbuflen} + 128 bytes to ${outbuf}. If ${force} is 1, do not check
* whether decryption will exceed the estimated available memory or time.
* The explicit parameters within ${params} must be zero or must all be
* non-zero. If explicit parameters are used and the computation is estimated
* to exceed resource limits, print a warning instead of returning an error.
* Return the explicit parameters used via ${params}.
*/
int
scryptenc_buf(const uint8_t * inbuf, size_t inbuflen, uint8_t * outbuf,
const uint8_t * passwd, size_t passwdlen,
struct scryptenc_params * P, int verbose, int force)
{
uint8_t dk[64];
uint8_t hbuf[32];
uint8_t header[96];
uint8_t * key_enc = dk;
uint8_t * key_hmac = &dk[32];
int rc;
HMAC_SHA256_CTX hctx;
struct crypto_aes_key * key_enc_exp;
struct crypto_aesctr * AES;
/* The explicit parameters must be zero, or all non-zero. */
assert(((P->logN == 0) && (P->r == 0) && (P->p == 0)) ||
((P->logN != 0) && (P->r != 0) && (P->p != 0)));
/* Generate the header and derived key. */
if ((rc = scryptenc_setup(header, dk, passwd, passwdlen,
P, verbose, force)) != 0)
goto err1;
/* Copy header into output buffer. */
memcpy(outbuf, header, 96);
/* Encrypt data. */
if ((key_enc_exp = crypto_aes_key_expand(key_enc, 32)) == NULL) {
rc = SCRYPT_EOPENSSL;
goto err1;
}
if ((AES = crypto_aesctr_init(key_enc_exp, 0)) == NULL) {
crypto_aes_key_free(key_enc_exp);
rc = SCRYPT_ENOMEM;
goto err1;
}
crypto_aesctr_stream(AES, inbuf, &outbuf[96], inbuflen);
crypto_aesctr_free(AES);
crypto_aes_key_free(key_enc_exp);
/* Add signature. */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, outbuf, 96 + inbuflen);
HMAC_SHA256_Final(hbuf, &hctx);
memcpy(&outbuf[96 + inbuflen], hbuf, 32);
/* Zero sensitive data. */
insecure_memzero(dk, 64);
/* Success! */
return (SCRYPT_OK);
err1:
insecure_memzero(dk, 64);
/* Failure! */
return (rc);
}
/**
* scryptdec_buf(inbuf, inbuflen, outbuf, outlen, passwd, passwdlen,
* params, verbose, force):
* Decrypt ${inbuflen} bytes from ${inbuf}, writing the result into ${outbuf}
* and the decrypted data length to ${outlen}. The allocated length of
* ${outbuf} must be at least ${inbuflen}. If ${force} is 1, do not check
* whether decryption will exceed the estimated available memory or time.
* The explicit parameters within ${params} must be zero. Return the explicit
* parameters used via ${params}.
*/
int
scryptdec_buf(const uint8_t * inbuf, size_t inbuflen, uint8_t * outbuf,
size_t * outlen, const uint8_t * passwd, size_t passwdlen,
struct scryptenc_params * P, int verbose,
int force)
{
uint8_t hbuf[32];
uint8_t dk[64];
uint8_t * key_enc = dk;
uint8_t * key_hmac = &dk[32];
int rc;
HMAC_SHA256_CTX hctx;
struct crypto_aes_key * key_enc_exp;
struct crypto_aesctr * AES;
/* The explicit parameters must be zero. */
assert((P->logN == 0) && (P->r == 0) && (P->p == 0));
/*
* All versions of the scrypt format will start with "scrypt" and
* have at least 7 bytes of header.
*/
if ((inbuflen < 7) || (memcmp(inbuf, "scrypt", 6) != 0)) {
rc = SCRYPT_EINVAL;
goto err0;
}
/* Check the format. */
if (inbuf[6] != 0) {
rc = SCRYPT_EVERSION;
goto err0;
}
/* We must have at least 128 bytes. */
if (inbuflen < 128) {
rc = SCRYPT_EINVAL;
goto err0;
}
/* Parse the header and generate derived keys. */
if ((rc = scryptdec_setup(inbuf, dk, passwd, passwdlen,
P, verbose, force)) != 0)
goto err1;
/* Decrypt data. */
if ((key_enc_exp = crypto_aes_key_expand(key_enc, 32)) == NULL) {
rc = SCRYPT_EOPENSSL;
goto err1;
}
if ((AES = crypto_aesctr_init(key_enc_exp, 0)) == NULL) {
crypto_aes_key_free(key_enc_exp);
rc = SCRYPT_ENOMEM;
goto err1;
}
crypto_aesctr_stream(AES, &inbuf[96], outbuf, inbuflen - 128);
crypto_aesctr_free(AES);
crypto_aes_key_free(key_enc_exp);
*outlen = inbuflen - 128;
/* Verify signature. */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, inbuf, inbuflen - 32);
HMAC_SHA256_Final(hbuf, &hctx);
if (crypto_verify_bytes(hbuf, &inbuf[inbuflen - 32], 32)) {
rc = SCRYPT_EINVAL;
goto err1;
}
/* Zero sensitive data. */
insecure_memzero(dk, 64);
/* Success! */
return (SCRYPT_OK);
err1:
insecure_memzero(dk, 64);
err0:
/* Failure! */
return (rc);
}
/**
* scryptenc_file(infile, outfile, passwd, passwdlen, params, verbose, force):
* Read a stream from ${infile} and encrypt it, writing the resulting stream
* to ${outfile}. If ${force} is 1, do not check whether decryption will
* exceed the estimated available memory or time. The explicit parameters
* within ${params} must be zero or must all be non-zero. If explicit
* parameters are used and the computation is estimated to exceed resource
* limits, print a warning instead of returning an error. Return the explicit
* parameters used via ${params}.
*/
int
scryptenc_file(FILE * infile, FILE * outfile,
const uint8_t * passwd, size_t passwdlen,
struct scryptenc_params * P, int verbose, int force)
{
uint8_t buf[ENCBLOCK];
uint8_t dk[64];
uint8_t hbuf[32];
uint8_t header[96];
uint8_t * key_enc = dk;
uint8_t * key_hmac = &dk[32];
size_t readlen;
HMAC_SHA256_CTX hctx;
struct crypto_aes_key * key_enc_exp;
struct crypto_aesctr * AES;
int rc;
/* The explicit parameters must be zero, or all non-zero. */
assert(((P->logN == 0) && (P->r == 0) && (P->p == 0)) ||
((P->logN != 0) && (P->r != 0) && (P->p != 0)));
/* Generate the header and derived key. */
if ((rc = scryptenc_setup(header, dk, passwd, passwdlen,
P, verbose, force)) != 0)
goto err1;
/* Hash and write the header. */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, header, 96);
if (fwrite(header, 96, 1, outfile) != 1) {
rc = SCRYPT_EWRFILE;
goto err1;
}
/*
* Read blocks of data, encrypt them, and write them out; hash the
* data as it is produced.
*/
if ((key_enc_exp = crypto_aes_key_expand(key_enc, 32)) == NULL) {
rc = SCRYPT_EOPENSSL;
goto err1;
}
if ((AES = crypto_aesctr_init(key_enc_exp, 0)) == NULL) {
crypto_aes_key_free(key_enc_exp);
rc = SCRYPT_ENOMEM;
goto err1;
}
do {
if ((readlen = fread(buf, 1, ENCBLOCK, infile)) == 0)
break;
crypto_aesctr_stream(AES, buf, buf, readlen);
HMAC_SHA256_Update(&hctx, buf, readlen);
if (fwrite(buf, 1, readlen, outfile) < readlen) {
crypto_aesctr_free(AES);
rc = SCRYPT_EWRFILE;
goto err1;
}
} while (1);
crypto_aesctr_free(AES);
crypto_aes_key_free(key_enc_exp);
/* Did we exit the loop due to a read error? */
if (ferror(infile)) {
rc = SCRYPT_ERDFILE;
goto err1;
}
/* Compute the final HMAC and output it. */
HMAC_SHA256_Final(hbuf, &hctx);
if (fwrite(hbuf, 32, 1, outfile) != 1) {
rc = SCRYPT_EWRFILE;
goto err1;
}
/* Zero sensitive data. */
insecure_memzero(dk, 64);
/* Success! */
return (SCRYPT_OK);
err1:
insecure_memzero(dk, 64);
/* Failure! */
return (rc);
}
/**
* scryptdec_file_cookie_free(cookie):
* Free the ${cookie}.
*/
void
scryptdec_file_cookie_free(struct scryptdec_file_cookie * C)
{
/* Behave consistently with free(NULL). */
if (C == NULL)
return;
/* Zero sensitive data. */
insecure_memzero(C->dk, 64);
/* We do not free C->infile because it is not owned by this cookie. */
/* Free the cookie. */
free(C);
}
/* Load the header and check the magic. */
static int
scryptdec_file_load_header(FILE * infile, uint8_t header[static 96])
{
int rc;
/*
* Read the first 7 bytes of the file; all future versions of scrypt
* are guaranteed to have at least 7 bytes of header.
*/
if (fread(header, 7, 1, infile) < 1) {
if (ferror(infile)) {
rc = SCRYPT_ERDFILE;
goto err0;
} else {
rc = SCRYPT_EINVAL;
goto err0;
}
}
/* Do we have the right magic? */
if (memcmp(header, "scrypt", 6)) {
rc = SCRYPT_EINVAL;
goto err0;
}
if (header[6] != 0) {
rc = SCRYPT_EVERSION;
goto err0;
}
/*
* Read another 89 bytes of the file; version 0 of the scrypt file
* format has a 96-byte header.
*/
if (fread(&header[7], 89, 1, infile) < 1) {
if (ferror(infile)) {
rc = SCRYPT_ERDFILE;
goto err0;
} else {
rc = SCRYPT_EINVAL;
goto err0;
}
}
/* Success! */
return (SCRYPT_OK);
err0:
/* Failure! */
return (rc);
}
/**
* scryptdec_file_prep(infile, passwd, passwdlen, params, verbose, force,
* cookie):
* Prepare to decrypt ${infile}, including checking the passphrase. Allocate
* a cookie at ${cookie}. After calling this function, ${infile} should not
* be modified until the decryption is completed by scryptdec_file_copy().
* If ${force} is 1, do not check whether decryption will exceed the estimated
* available memory or time. The explicit parameters within ${params} must be
* zero. Return the explicit parameters to be used via ${params}.
*/
int
scryptdec_file_prep(FILE * infile, const uint8_t * passwd,
size_t passwdlen, struct scryptenc_params * P,
int verbose, int force, struct scryptdec_file_cookie ** cookie)
{
struct scryptdec_file_cookie * C;
int rc;
/* The explicit parameters must be zero. */
assert((P->logN == 0) && (P->r == 0) && (P->p == 0));
/* Allocate the cookie. */
if ((C = malloc(sizeof(struct scryptdec_file_cookie))) == NULL)
return (SCRYPT_ENOMEM);
C->infile = infile;
/* Load the header. */
if ((rc = scryptdec_file_load_header(infile, C->header)) != 0)
goto err1;
/* Parse the header and generate derived keys. */
if ((rc = scryptdec_setup(C->header, C->dk, passwd, passwdlen,
P, verbose, force)) != 0)
goto err1;
/* Set cookie for calling function. */
*cookie = C;
/* Success! */
return (SCRYPT_OK);
err1:
scryptdec_file_cookie_free(C);
/* Failure! */
return (rc);
}
/**
* scryptdec_file_copy(cookie, outfile):
* Read a stream from the file that was passed into the ${cookie} by
* scryptdec_file_prep(), decrypt it, and write the resulting stream to
* ${outfile}. After this function completes, it is safe to modify/close
* ${outfile} and the ${infile} which was given to scryptdec_file_prep().
*/
int
scryptdec_file_copy(struct scryptdec_file_cookie * C, FILE * outfile)
{
uint8_t buf[ENCBLOCK + 32];
uint8_t hbuf[32];
uint8_t * key_enc;
uint8_t * key_hmac;
size_t buflen = 0;
size_t readlen;
HMAC_SHA256_CTX hctx;
struct crypto_aes_key * key_enc_exp;
struct crypto_aesctr * AES;
int rc;
/* Sanity check. */
assert(C != NULL);
/* Use existing array for these pointers. */
key_enc = C->dk;
key_hmac = &C->dk[32];
/* Start hashing with the header. */
HMAC_SHA256_Init(&hctx, key_hmac, 32);
HMAC_SHA256_Update(&hctx, C->header, 96);
/*
* We don't know how long the encrypted data block is (we can't know,
* since data can be streamed into 'scrypt enc') so we need to read
* data and decrypt all of it except the final 32 bytes, then check
* if that final 32 bytes is the correct signature.
*/
if ((key_enc_exp = crypto_aes_key_expand(key_enc, 32)) == NULL) {
rc = SCRYPT_EOPENSSL;
goto err0;
}
if ((AES = crypto_aesctr_init(key_enc_exp, 0)) == NULL) {
crypto_aes_key_free(key_enc_exp);
rc = SCRYPT_ENOMEM;
goto err0;
}
do {
/* Read data until we have more than 32 bytes of it. */
if ((readlen = fread(&buf[buflen], 1,
ENCBLOCK + 32 - buflen, C->infile)) == 0)
break;
buflen += readlen;
if (buflen <= 32)
continue;
/*
* Decrypt, hash, and output everything except the last 32
* bytes out of what we have in our buffer.
*/
HMAC_SHA256_Update(&hctx, buf, buflen - 32);
crypto_aesctr_stream(AES, buf, buf, buflen - 32);
if (fwrite(buf, 1, buflen - 32, outfile) < buflen - 32) {
crypto_aesctr_free(AES);
rc = SCRYPT_EWRFILE;
goto err0;
}
/* Move the last 32 bytes to the start of the buffer. */
memmove(buf, &buf[buflen - 32], 32);
buflen = 32;
} while (1);
crypto_aesctr_free(AES);
crypto_aes_key_free(key_enc_exp);
/* Did we exit the loop due to a read error? */
if (ferror(C->infile)) {
rc = SCRYPT_ERDFILE;
goto err0;
}
/* Did we read enough data that we *might* have a valid signature? */
if (buflen < 32) {
rc = SCRYPT_EINVAL;
goto err0;
}
/* Verify signature. */
HMAC_SHA256_Final(hbuf, &hctx);
if (crypto_verify_bytes(hbuf, buf, 32)) {
rc = SCRYPT_EINVAL;
goto err0;
}
/* Success! */
return (SCRYPT_OK);
err0:
/* Failure! */
return (rc);
}
/**
* scryptdec_file(infile, outfile, passwd, passwdlen, params, verbose, force):
* Read a stream from ${infile} and decrypt it, writing the resulting stream
* to ${outfile}. If ${force} is 1, do not check whether decryption
* will exceed the estimated available memory or time. The explicit
* parameters within ${params} must be zero. Return the explicit parameters
* used via ${params}.
*/
int
scryptdec_file(FILE * infile, FILE * outfile, const uint8_t * passwd,
size_t passwdlen, struct scryptenc_params * P,
int verbose, int force)
{
struct scryptdec_file_cookie * C;
int rc;
/* The explicit parameters must be zero. */
assert((P->logN == 0) && (P->r == 0) && (P->p == 0));
/* Check header, including passphrase. */
if ((rc = scryptdec_file_prep(infile, passwd, passwdlen, P,
verbose, force, &C)) != 0)
goto err0;
/* Copy unencrypted data to outfile. */
if ((rc = scryptdec_file_copy(C, outfile)) != 0)
goto err1;
/* Clean up cookie, attempting to zero sensitive data. */
scryptdec_file_cookie_free(C);
/* Success! */
return (SCRYPT_OK);
err1:
scryptdec_file_cookie_free(C);
err0:
/* Failure! */
return (rc);
}
|