File: comp-exp.scm

package info (click to toggle)
scsh-0.6 0.6.7-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 15,124 kB
  • ctags: 16,788
  • sloc: lisp: 82,839; ansic: 23,112; sh: 3,116; makefile: 829
file content (697 lines) | stat: -rw-r--r-- 21,564 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
; -*- Mode: Scheme; Syntax: Scheme; Package: Scheme; -*-
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.

; Compiling expressions.

; This is a two-phase compiler.  The first phase does macro expansion,
; variable resolution, and instruction selection, and computes the
; size of the code vector.  The second phase (assembly) creates the
; code vector, "template" (literals vector), and debugging data
; structures.

; The output of the first phase (the COMPILE- and INSTRUCTION-
; routines) and the input to the second phase (SEGMENT->TEMPLATE) is a
; "segment."  A segment is a pair (size . proc) where size is the size
; of the code segment in bytes, and proc is a procedure that during
; phase 2 will store the segment's bytes into the code vector.

; Optimizations are marked with +++, and may be flushed if desired.

(define (compile-expression node depth cont)
  (compile node 0 depth cont))

; Main dispatch for compiling a single expression.

(define (compile node level depth cont)
  (let ((node (type-check node)))
    ((operator-table-ref compilators (node-operator-id node))
     node
     level
     depth
     cont)))

; Specialists

(define compilators
  (make-operator-table
    (lambda (node level depth cont)
      (generate-trap cont
		     "not valid in expression context"
		     (schemify node)))))

(define (define-compilator name type proc)
  (operator-define! compilators name type proc))

(define-compilator 'literal 'leaf
  (lambda (node level depth cont)
    (let ((obj (node-form node)))
      (if (eq? obj #f)
	  ;; +++ hack for bootstrap from Schemes that don't distinguish #f/()
	  (deliver-value (instruction (enum op false)) cont)
	  (compile-constant obj depth cont)))))

(define-compilator 'unspecific (proc () unspecific-type)
  (lambda (node level depth cont)
    (deliver-value (instruction (enum op unspecific))
		   cont)))

(define-compilator 'unassigned (proc () unspecific-type)
  (lambda (node level depth cont)
    (deliver-value (instruction (enum op unassigned))
		   cont)))

(define-compilator 'quote syntax-type
  (lambda (node level depth cont)
    (let ((exp (node-form node)))
      level				;ignored
      (let ((obj (cadr exp)))
	(compile-constant obj depth cont)))))

(define (compile-constant obj depth cont)
  (if (ignore-values-cont? cont)
      empty-segment			;+++ dead code
      (deliver-value (instruction-with-literal (enum op literal) obj)
		     cont)))

; Variable reference

(define-compilator 'name 'leaf
  (lambda (node level depth cont)
    (let* ((binding (name-node-binding node))
	   (name (node-form node)))
      (deliver-value
         (if (pair? binding)
	     (let ((back (- level (car binding)))
		   (over (cdr binding)))
	       (if (or (>= back byte-limit)
		       (>= over byte-limit))
		   (instruction (enum op big-local)
				(high-byte back)
				(low-byte back)
				(high-byte over)
				(low-byte over))
		   (case back
		     ((0) (instruction (enum op local0) over)) ;+++
		     ((1) (instruction (enum op local1) over)) ;+++
		     ((2) (instruction (enum op local2) over)) ;+++
		     (else (instruction (enum op local) back over)))))
	     (instruction-with-location (enum op global)
					binding
					name
					value-type))
	 cont))))

; Assignment

(define-compilator 'set! syntax-type
  (lambda (node level depth cont)
    (let* ((exp (node-form node))
	   (lhs-node (cadr exp))
	   (name (node-form lhs-node))
	   ;; Error if not a name node...
	   (binding (name-node-binding lhs-node)))
      (sequentially
       (compile (caddr exp) level depth (named-cont name))
       (deliver-value
	(if (pair? binding)
	    (let ((back (- level (car binding)))
		  (over (cdr binding)))
	      (instruction (enum op set-local!)
			   (high-byte back)
			   (low-byte back)
			   (high-byte over)
			   (low-byte over)))
	    (instruction-with-location (enum op set-global!)
				       binding
				       name
				       usual-variable-type))
	cont)))))

; Conditional

(define-compilator 'if syntax-type
  (lambda (node level depth cont)
    (let ((exp (node-form node))
	  (alt-label (make-label))
	  (join-label (make-label)))
      (sequentially
       ;; Test
       (compile (cadr exp) level depth (fall-through-cont node 1))
       (instruction-using-label (enum op jump-if-false) alt-label)
       ;; Consequent
       (compile (caddr exp) level depth cont)
       (if (fall-through-cont? cont)
	   (instruction-using-label (enum op jump) join-label)
	   empty-segment)
       ;; Alternate
       (attach-label alt-label
		     (compile (cadddr exp) level depth cont))
       (attach-label join-label
		     empty-segment)))))

(define-compilator 'begin syntax-type
  (lambda (node level depth cont)
    (let ((exp-list (cdr (node-form node))))
      (if (null? exp-list)
	  (generate-trap cont "null begin")
	  (let ((dummy
		 (make-node operator/begin ;For debugging database
			    `(begin ,@exp-list))))
	    (let loop ((exp-list exp-list) (i 1))
	      (if (null? (cdr exp-list))
		  (compile (car exp-list) level depth cont)
		  (sequentially
		    (compile (car exp-list) level depth
			     (ignore-values-cont dummy i))
		    (loop (cdr exp-list) (+ i 1))))))))))

; Compile a call

(define (compile-call node level depth cont)
  (if (node-ref node 'type-error)
      (compile-unknown-call node level depth cont)
      (let ((proc-node (car (node-form node))))
	(cond ((name-node? proc-node)
	       (compile-name-call node proc-node level depth cont))
	      ((and (lambda-node? proc-node)
		    (not (n-ary? (cadr (node-form proc-node)))))
	       (compile-redex proc-node (cdr (node-form node)) level depth cont))
 	      ((and (literal-node? proc-node)
 		    (primop? (node-form proc-node)))
 	       (let ((primop (node-form proc-node)))
 		 (if (primop-compilator primop)
 		     ((primop-compilator primop) node level depth cont)
 		     (error "compiler bug: primop has no compilator"
 			    primop
 			    (schemify node)))))
	      (else
	       (compile-unknown-call node level depth cont))))))

(define (compile-name-call node proc-node level depth cont)
  (let ((binding (name-node-binding proc-node)))
    (if (binding? binding)
	(let ((static (binding-static binding)))
	  (cond ((primop? static)
		 (if (primop-compilator static)
		     ((primop-compilator static) node level depth cont)
		     (compile-unknown-call node level depth cont)))
		((transform? static)
		 (let* ((form (node-form node))
			(new (apply-inline-transform static
						     form
						     (node-form proc-node))))
		   (if (eq? new form)
		       (compile-unknown-call node level depth cont)
		       (compile new level depth cont))))
		(else
		 (compile-unknown-call node level depth cont))))
	(compile-unknown-call node level depth cont))))

(define-compilator 'call 'internal compile-call)

; A redex is a call of the form ((lambda (x1 ... xn) body ...) e1 ... en).

(define (compile-redex proc-node args level depth cont)
  (let* ((proc-exp (node-form proc-node))
	 (formals (cadr proc-exp))
	 (body (caddr proc-exp)))
    (cond ((not (= (length formals)
		   (length args)))
	   (generate-trap cont
			  "wrong number of arguments"
			  (cons (schemify proc-node)
				(map schemify args))))
	  ((null? formals)
	   (compile body level depth cont)) ;+++
	  (else
	   (maybe-push-continuation
	    (sequentially 
	     (push-all-with-names args formals level 0)
	     (compile-lambda-code formals body level (cont-name cont)))
	    depth
	    cont)))))

; Compile a call to a computed procedure.

(define (compile-unknown-call node level depth cont)
  (let ((exp (node-form node)))
    (let ((call (sequentially (push-arguments node level 0)
			      (compile (car exp)
				       level
				       (length (cdr exp))
				       (fall-through-cont node 0))
			      (let ((nargs (length (cdr exp))))
				(if (> nargs maximum-stack-args)
				    (instruction (enum op big-call)
						 (high-byte nargs)
						 (low-byte nargs))
				    (instruction (enum op call) nargs))))))
      (maybe-push-continuation call depth cont))))

(define (maybe-push-continuation code depth cont)
  (if (return-cont? cont) 
      code
      (let ((label (make-label)))
	(sequentially (if (>= depth byte-limit)
			  (instruction-using-label (enum op make-big-cont)
						   label
						   (high-byte depth)
						   (low-byte depth))
			  (instruction-using-label (enum op make-cont)
						   label
						   depth))
		      (if (keep-source-code?)
			  (note-source-code (fixup-source (cont-source-info cont))
					    code)
			  code)
		      (attach-label label
				    (cont-segment cont))))))

(define (fixup-source info)
  ;; Abbreviate this somehow?
  (if (pair? info)
      (cons (car info)
	    (schemify (cdr info)))
      ;; Name might be generated...
      info))

; Continuation is implicitly fall-through.

(define (push-arguments node level depth)
  (let recur ((args (cdr (node-form node))) (depth depth) (i 1))
    (if (null? args)
	empty-segment
	(sequentially (compile (car args) level depth
			       (fall-through-cont node i))
		      (instruction (enum op push))
		      (recur (cdr args) (+ depth 1) (+ i 1))))))

(define (push-all-with-names exp-list names level depth)
  (if (null? exp-list)
      empty-segment
      (sequentially (compile (car exp-list)
			     level depth
			     (named-cont (node-form (car names))))
		    (instruction (enum op push))
                    (push-all-with-names (cdr exp-list)
					 (cdr names)
					 level
					 (+ depth 1)))))
     
; OK, now that you've got all that under your belt, here's LAMBDA.

(define-compilator 'lambda syntax-type
  (lambda (node level depth cont)
    (let ((exp (node-form node))
	  (name (cont-name cont)))
      (deliver-value
       (sequentially
	 (instruction (enum op closure))
	 (template (compile-lambda exp level #f)
		   (if (name? name)
		       (name->symbol name)
		       #f))
	 (instruction 0)) ; last byte of closure instruction, 0 means use
                          ; *env* for environment
       cont))))

(define (compile-lambda exp level body-name)
  (let* ((formals (cadr exp))
	 (nargs (number-of-required-args formals))
	 (fast-protocol? (and (<= nargs maximum-stack-args)
			      (not (n-ary? formals)))))
    (sequentially
     ;; Insert protocol
     (cond (fast-protocol?
	    (instruction (enum op protocol) nargs))
	   ((<= nargs available-stack-space)
	    (instruction (enum op protocol)
			 (if (n-ary? formals)
			     two-byte-nargs+list-protocol
			     two-byte-nargs-protocol)
			 (high-byte nargs)
			 (low-byte nargs)))
	   (else
	    (error "compiler bug: too many formals"
		   (schemify exp))))
     (compile-lambda-code formals (caddr exp) level body-name))))

; name isn't the name of the procedure, it's the name to be given to
; the value that the procedure will return.

(define (compile-lambda-code formals body level name)
  (if (null? formals)		;+++ Don't make null environment
      (compile body level 0 (return-cont name))
      ;; (if (node-ref node 'no-inferior-lambdas) ...)
      (sequentially
       (let* ((nargs (number-of-required-args formals))
	      (nargs (if (n-ary? formals)
			 (+ nargs 1)
			 nargs)))
	 (instruction (enum op make-env)
		      (high-byte nargs)
		      (low-byte nargs)))
       (let ((vars (normalize-formals formals))
	     (level (+ level 1)))
	 (set-lexical-offsets! (reverse vars) level)
	 (note-environment
	  (map name-node->symbol vars)
	  (compile body level 0 (return-cont name)))))))

(define (name-node->symbol node)
  (let ((form (node-form node)))
    (cond ((name? form)
	   (name->symbol form))
	  ((symbol? form)
	   form)
	  (else
	   #f))))

; Give each name node in NAMES a binding record that has the names lexical
; level and offset.

(define (set-lexical-offsets! names level)
  (let loop ((over 1) (names names))
    (if (not (null? names))
	(begin
	  (node-set! (car names) 
		     'binding
		     (cons level over))
	  (loop (+ over 1) (cdr names))))))

(define-compilator 'flat-lambda syntax-type
  (lambda (node level depth cont)
    (let ((exp (node-form node))
	  (name (cont-name cont)))
      (let ((vars (cadr exp))
	    (free (caddr exp))
 	    (body (cadddr exp)))
 	(deliver-value (compile-flat-lambda name vars body free level)
 		       cont)))))
 
; The MAKE-FLAT-ENV instruction is designed to allow us to make nested flat
; environments (i.e. flat environments consisting of a linked chain of vectors)
; but this code doesn't generate them.  The nested environments would avoid
; the need for offsets larger than a byte.  The current code cannot handle
; large environments.
; When we're done we have to restore the old locations of the free variables.

(define (compile-flat-lambda name vars body free level)
  (let* ((alist (sort-list (get-variables-offsets free level)
			   (lambda (p1 p2)
			     (< (cadr p1)
				(cadr p2)))))
	 (free (map car alist))
	 (old-locations (map name-node-binding free)))
    (set-lexical-offsets! free 0)  ; 0 is the level
    (let ((code (sequentially
		 (instruction (enum op false)) ; either the super env or the env
		 (if (null? free)
		     empty-segment
		     (apply instruction (enum op make-flat-env)
			    1   ; add in *val*
			    (+ (length free) 1)
			    (variable-env-data (map cdr alist))))
		 (instruction (enum op closure))
		 (note-environment (reverse (map node-form free))
				   (template (compile-lambda `(lambda ,vars
								,body)
							     0
							     #f)
					     (if (name? name)
						 (name->symbol name)
						 #f)))
		 (instruction 1)))) ; last byte of closure instruction, 1 means
                                    ; use *val* as environment, instead of *env*
      (for-each (lambda (node location)
		  (node-set! node 'binding location))
		free
		old-locations)
      code)))

; Looks up VARS in CENV and returns an alist of (<name> . (<level> <over>))
; pairs.

(define (get-variables-offsets vars level)
  (let loop ((vars vars) (locs '()))
    (if (null? vars)
	locs
	(let ((binding (name-node-binding (car vars))))
	  (if (pair? binding)
	      (let ((back (- level (car binding)))
		    (over (cdr binding)))
		(if (< byte-limit over)
		    (error "lexical environment limit exceeded; complain to implementors"))
		(loop (cdr vars)
		      (cons (cons (car vars)
				  (cons back over))
			    locs)))
	      (error "variable in flat-lambda list is not local"
		     (car vars)))))))

; Addresses is a list of (level . over) pairs, sorted by level.
; This returns the reverse of the following data:
;   <back for level>
;   <number of variables from this level>
;   <over of 1st var> ...
;   <back for next level>
;   ...
; If a <back> is too large we insert some empty levels.

(define (variable-env-data addresses)
  (let level-loop ((addresses addresses) (last-level 0) (data '()))
    (if (null? addresses)
	(reverse data)
	(let ((level (caar addresses)))
	  (let loop ((addresses addresses) (overs '()))
	    (if (or (null? addresses)
		    (not (= level (caar addresses))))
		(level-loop addresses
			    level
			    (append overs
				    (list (length overs))
				    (let loop ((delta (- level last-level))
					       (back '()))
				      (if (<= delta byte-limit)
					  (cons delta back)
					  (loop (- delta byte-limit)
						`(0 ,byte-limit . ,back))))
				    data))
		(loop (cdr addresses)
		      (cons (cdar addresses) overs))))))))
	  
; We should probably just use the sort from big-scheme.

(define (sort-list xs less?)
  (letrec ((insert (lambda (x xs)
		     (if (null? xs)
			 (list x)
			 (if (less? (car xs) x)
			     (cons (car xs)
				   (insert x (cdr xs)))
			     (cons x xs))))))
    (let sort ((xs xs))    
      (if (null? xs)
	  '()
	  (insert (car xs)
		  (sort (cdr xs)))))))

; LETREC.

(define-compilator 'letrec syntax-type
  (lambda (node level depth cont)
    ;; (if (node-ref node 'pure-letrec) ...)
    (let* ((exp (node-form node))
	   (specs (cadr exp))
	   (body (caddr exp))
	   (body (make-node operator/begin
			    `(begin
			       ,@(map (lambda (spec)
					(make-node operator/set!
						   `(set! ,@spec)))
				      specs)
			       ,body))))
      (if (null? specs)
	  (compile body level depth cont) ;+++
	  (maybe-push-continuation
	    (sequentially
	      (apply sequentially
		     (map (lambda (spec)
			    (sequentially
			      (instruction (enum op unassigned))
			      (instruction (enum op push))))
			  specs))
	      (compile-lambda-code (map car specs) body level (cont-name cont)))
	    depth
	    cont)))))

; --------------------
; Compile-time continuations
;
; A compile-time continuation is a pair (segment . source-info).
; Segment is one of the following:
;   a return instruction - invoke the current full continuation.
;   empty-segment - fall through to subsequent instructions.
;   an ignore-values instruction - ignore values, then fall through.
; Source-info is one of:
;   #f - we don't know anything
;   symbol - value delivered to subsequent instructions will be assigned to
;     a variable with this name.  If the value being assigned is a lambda, we
;     can give that lambda that name.
;   (i . node) - the value being computed is the i'th subexpression of the node.

(define (make-cont seg source-info) (cons seg source-info))
(define cont-segment car)
(define cont-source-info cdr)

; We could probably be able to optimize jumps to jumps.
;(define (make-jump-cont label cont)
;  (if (fall-through-cont? cont)
;      (make-cont label (cont-name cont))
;      cont))

(define return-cont-segment (instruction (enum op return)))

(define (return-cont name)
  (make-cont return-cont-segment name))

(define (return-cont? cont)
  (eq? (cont-segment cont) return-cont-segment))

; Fall through into next instruction while compiling the I'th part of NODE.

(define (fall-through-cont node i)
  (make-cont empty-segment (cons i node)))

(define (fall-through-cont? cont)
  (not (return-cont? cont)))

; Ignore return value, then fall through

(define ignore-values-segment
  (instruction (enum op ignore-values)))

(define (ignore-values-cont node i)
  (make-cont ignore-values-segment (cons i node)))

(define (ignore-values-cont? cont)
  (eq? (cont-segment cont) ignore-values-segment))

; Value is in *val*; deliver it to its continuation.
; No need to generate an ignore-values instruction in this case.

(define (deliver-value segment cont)
  (if (ignore-values-cont? cont)	;+++
      segment
      (sequentially segment (cont-segment cont))))

; For putting names to lambda expressions:

(define (named-cont name)
  (make-cont empty-segment name))

(define (cont-name cont)
  (if (pair? (cont-source-info cont))
      #f
      (cont-source-info cont)))

; Find lookup result that was cached by classifier

(define (name-node-binding node)
  (or (node-ref node 'binding)
      (node-form node)))

; --------------------
; Utilities

; Produce something for source code that contains a compile-time error.

(define (generate-trap cont . stuff)
  (apply warn stuff)
  (sequentially (instruction-with-literal (enum op literal)
					  (cons 'error stuff))
		(deliver-value (instruction (enum op trap))
			       cont)))

; --------------------
; Type checking.  This gets called on all nodes.

(define (type-check node)
  (if *type-check?*
      (let ((form (node-form node)))
	(if (pair? form)
	    (let ((proc-node (car form)))
	      (if (node? proc-node)
		  (let ((proc-type (node-type proc-node)))
		    (cond ((procedure-type? proc-type)
			   (if (restrictive? proc-type)
			       (let* ((args (cdr form))
				      (args-type (make-some-values-type
						  (map (lambda (arg)
							 (meet-type
							  (node-type arg)
							  value-type))
						       args)))
				      (node (make-similar-node node
							       (cons proc-node
								     args))))
				 (if (not (meet? args-type
						 (procedure-type-domain proc-type)))
				     (diagnose-call-error node proc-type))
				 node)
			       node))
			  ((not (meet? proc-type any-procedure-type))
			   ;; Could also check args for one-valuedness.
			   (let ((message "non-procedure in operator position"))
			     (warn message
				   (schemify node)
				   `(procedure: ,proc-type))
			     (node-set! node 'type-error message))
			   node)
			  (else node)))
		  node))
	    node))
      node))

(define (set-type-check?! check?)
  (set! *type-check?* check?))

(define *type-check?* #t)


(define (diagnose-call-error node proc-type)
  (let ((message
	 (cond ((not (fixed-arity-procedure-type? proc-type))
		"invalid arguments")
	       ((= (procedure-type-arity proc-type)
		   (length (cdr (node-form node))))
		"argument type error")
	       (else
		"wrong number of arguments"))))
    (warn message
	  (schemify node)
	  `(procedure wants:
		      ,(rail-type->sexp (procedure-type-domain proc-type)
					#f))
	  `(arguments are: ,(map (lambda (arg)
				   (type->sexp (node-type arg) #t))
				 (cdr (node-form node)))))
    (node-set! node 'type-error message)))


; Type system loophole

(define-compilator 'loophole syntax-type
  (lambda (node level depth cont)
    (compile (caddr (node-form node)) level depth cont)))

; Node predicates and operators.

(define lambda-node?  (node-predicate 'lambda syntax-type))
(define name-node?    (node-predicate 'name 'leaf))
(define literal-node? (node-predicate 'literal 'leaf))

(define operator/lambda     (get-operator 'lambda syntax-type))
(define operator/set!	    (get-operator 'set!   syntax-type))
(define operator/call	    (get-operator 'call   'internal))
(define operator/begin      (get-operator 'begin  syntax-type))