File: comp-prim.scm

package info (click to toggle)
scsh-0.6 0.6.7-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 15,124 kB
  • ctags: 16,788
  • sloc: lisp: 82,839; ansic: 23,112; sh: 3,116; makefile: 829
file content (778 lines) | stat: -rw-r--r-- 27,148 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
; -*- Mode: Scheme; Syntax: Scheme; Package: Scheme; -*-
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.


; This is file cprim.scm.

;;;; Compiling primitive procedures and calls to them.

; (primitive-procedure name)  =>  a procedure

(define-compilator 'primitive-procedure syntax-type
  (lambda (node level depth cont)
    (let ((name (cadr (node-form node))))
      (deliver-value (sequentially
		       (instruction (enum op closure))
		       (template ((primop-closed (get-primop name)))
				 (name->symbol (cont-name cont)))
		       (instruction 0)) ; last byte of closure instruction
		     cont))))

; --------------------
; Direct primitives.

; The simplest kind of primitive has fixed arity, corresponds to some
; single VM instruction, and takes its arguments in the usual way (all
; on the stack).

(define (direct-compilator type opcode)
  (lambda (node level depth cont)
    (let ((args (cdr (node-form node))))
      (sequentially (if (null? args)
                        empty-segment
                        (push-all-but-last args level depth node))
                    (deliver-value (instruction opcode) cont)))))

(define (direct-closed-compilator opcode)
  (lambda ()
    (let ((arg-specs (vector-ref opcode-arg-specs opcode)))
      (sequentially (if (pair? arg-specs)
                        (sequentially
                         (instruction (enum op protocol) (car arg-specs))
                         (instruction (enum op pop)))
                        (instruction (enum op protocol) 0))
                    (instruction opcode)
                    (instruction (enum op return))))))

(define (nargs->domain nargs)
  (do ((nargs nargs (- nargs 1))
       (l '() (cons value-type l)))
      ((= nargs 0) (make-some-values-type l))))

(define (get-primop-type id arg-count)
  (or (any (lambda (foo)
	     (if (if (pair? (car foo))
		     (memq id (car foo))
		     (eq? id (car foo)))
		 (cadr foo)
		 #f))
	   primop-types)
      (procedure-type (nargs->domain arg-count)
		      value-type
		      #t)))

; Types for various primops.

(define primop-types
  `((with-continuation
     ,(proc (escape-type (proc () any-values-type #f))
	    any-arguments-type))
    (eq?
     ,(proc (value-type value-type) boolean-type))
    ((number? integer? rational? real? complex? char? eof-object? port?)
     ,(proc (value-type) boolean-type))
    (exact?
     ,(proc (number-type) boolean-type))
    (exact->inexact
     ,(proc (exact-type) inexact-type))
    (inexact->exact
     ,(proc (inexact-type) exact-type))
    ((exp log sin cos tan asin acos sqrt)
     ,(proc (number-type) number-type))
    ((atan)
     ,(proc (number-type number-type) number-type))
    ((floor)
     ,(proc (real-type) integer-type))
    ((real-part imag-part angle magnitude)
     ,(proc (complex-type) real-type))
    ((numerator denominator)
     ,(proc (rational-type) integer-type))
    ((make-polar make-rectangular)
     ,(proc (real-type real-type) complex-type))
    ((quotient remainder)
     ,(proc (integer-type integer-type) integer-type))
    ((bitwise-not)
     ,(proc (exact-integer-type) exact-integer-type))
    ((arithmetic-shift)
     ,(proc (exact-integer-type exact-integer-type)
	    exact-integer-type))
    ((char=? char<?)
     ,(proc (char-type char-type) boolean-type))
    (char->ascii
     ,(proc (char-type) exact-integer-type))
    (ascii->char
     ,(proc (exact-integer-type) char-type))
    (string=?
     ,(proc (string-type string-type) boolean-type))
    (open-channel
     ;; Can return #f
     ,(proc (string-type exact-integer-type) value-type))
    (cons
     ,(proc (value-type value-type) pair-type))
    (intern
     ,(proc (string-type) symbol-type))))

; Can't do I/O until the meta-types interface exports input-port-type and
; output-port-type.

; Define all the primitives that correspond to opcodes in the obvious way.

(do ((opcode 0 (+ opcode 1)))
    ((= opcode op-count))
  (let ((arg-specs (vector-ref opcode-arg-specs opcode))
        (name (enumerand->name opcode op)))
    (cond ((memq name '(call-external-value return-from-interrupt return)))
          ((null? arg-specs)
           (let ((type (proc () value-type)))
             (define-compiler-primitive name type
               (direct-compilator type opcode)
               (direct-closed-compilator opcode))))
          ((not (number? (car arg-specs))))
	  ((memq name '(+ * - / = < > <= >=
			bitwise-ior bitwise-xor bitwise-and
			make-string closed-apply)))
          (else
           (let ((type (get-primop-type name (car arg-specs))))
             (define-compiler-primitive name type
               (direct-compilator type opcode)
               (direct-closed-compilator opcode)))))))

; --------------------
; Simple primitives are executed using a fixed instruction or
; instruction sequence.

(define (define-simple-primitive name type segment)
  (let ((winner? (fixed-arity-procedure-type? type)))
    (let ((nargs (if winner?
                     (procedure-type-arity type)
                     (error "n-ary simple primitive?!" name type))))
      (define-compiler-primitive name type
        (simple-compilator segment)
        (simple-closed-compilator nargs segment)))))

(define (simple-compilator segment)
  (lambda (node level depth cont)
    (let ((args (cdr (node-form node))))
      (sequentially (if (null? args)
                        empty-segment
                        (push-all-but-last args level depth node))
                    (deliver-value segment cont)))))

(define (simple-closed-compilator nargs segment)
  (lambda ()
    (sequentially (instruction (enum op protocol) nargs)
                  (instruction (enum op pop))
                  segment
                  (instruction (enum op return)))))

(define (symbol-append . syms)
  (string->symbol (apply string-append
                         (map symbol->string syms))))

(define (define-stob-predicate name stob-name)
  (define-simple-primitive name
    (proc (value-type) boolean-type)
    (instruction (enum op stored-object-has-type?)
                 (name->enumerand stob-name stob))))

(define-stob-predicate 'byte-vector? 'byte-vector)
(define-stob-predicate 'double? 'double)
(define-stob-predicate 'string? 'string)

; Making doubles

(let ((:value (sexp->type ':value #t))
      (:double (sexp->type ':double #t)))
  (define-simple-primitive 'make-double
    (proc () :double)
    (sequentially
      (instruction-with-literal (enum op literal) 0)
      (instruction (enum op push))
      (instruction-with-literal (enum op literal) 0)
      (instruction (enum op make-stored-object) 2 (enum stob double)))))

; Define primitives for record-like stored objects (e.g. pairs).

(define (define-data-struct-primitives name predicate maker . slots)
  (let* ((def-prim (lambda (name type op . stuff)
                     (define-simple-primitive name type
                       (apply instruction (cons op stuff)))))
         (type-byte (name->enumerand name stob))
         (type (sexp->type (symbol-append ': name) #t)))
    (define-stob-predicate predicate name)
    (if maker
        (def-prim maker
          (procedure-type (nargs->domain (length slots)) type #t)
          (enum op make-stored-object)
          (length slots)
          type-byte))
    (do ((i 0 (+ i 1))
         (slots slots (cdr slots)))
        ((null? slots))
      (let ((slot (car slots)))
        (if (car slot)
            (def-prim (car slot)
              (proc (type) value-type)
              (enum op stored-object-ref) type-byte i))
        (if (not (null? (cdr slot)))
            (def-prim (cadr slot)
              (proc (type value-type) unspecific-type)
              (enum op stored-object-set!) type-byte i))))))

(for-each (lambda (stuff)
            (apply define-data-struct-primitives stuff))
          stob-data)

; Define primitives for vector-like stored objects.

(define (define-vector-primitives name element-type make length ref set!)
  (let* ((type-byte (name->enumerand name stob))
         (def-prim (lambda (name type op)
                     (define-simple-primitive name type
                       (instruction op type-byte))))
         (type (sexp->type (symbol-append ': name) #t)))
    (define-stob-predicate (symbol-append name '?) name)
    (if (not (eq? name 'vector))  ; 2nd arg to make-vector is optional
	(def-prim (symbol-append 'make- name)
	  (proc (exact-integer-type element-type) type)
	  make))
    (def-prim (symbol-append name '- 'length)
      (proc (type) exact-integer-type)
      length)
    (def-prim (symbol-append name '- 'ref)
      (proc (type exact-integer-type) element-type)
      ref)
    (def-prim (symbol-append name '- 'set!)
      (proc (type exact-integer-type element-type) unspecific-type)
      set!)))

(for-each (lambda (name)
            (define-vector-primitives name value-type
              (enum op make-vector-object)
              (enum op stored-object-length)
              (enum op stored-object-indexed-ref)
              (enum op stored-object-indexed-set!)))
          '(vector record continuation extended-number template))

; SIGNAL-CONDITION is the same as TRAP.

(define-simple-primitive 'signal-condition (proc (pair-type) unspecific-type)
  (instruction (enum op trap)))


; (primitive-catch (lambda (cont) ...))

(define-compiler-primitive 'primitive-catch
  (proc ((proc (escape-type) any-values-type #f)) any-values-type)
  ;; (primitive-catch (lambda (cont) ...))
  (lambda (node level depth cont)
    (let* ((exp (node-form node))
           (args (cdr exp)))
      (maybe-push-continuation
       (sequentially (instruction (enum op current-cont))
                     (instruction (enum op push))
                     ;; If lambda exp, should do compile-lambda-code to
                     ;; avoid consing closure...
                     (compile (car args) level 1 (fall-through-cont node 1))
                     (instruction (enum op call) 1))
       0
       cont)))
  (lambda ()
    (sequentially (instruction (enum op protocol) 1)
                  (instruction (enum op make-env)   ;Seems unavoidable.
			       (high-byte 1)
			       (low-byte 1))
                  (instruction (enum op current-cont))
                  (instruction (enum op push))
                  (instruction (enum op local0) 1)
                  (instruction (enum op call) 1))))  

; (call-with-values (lambda () ...producer...)
;                   (lambda args ...consumer...))

(define-compiler-primitive 'call-with-values
  (proc ((proc () any-values-type #f)
	 any-procedure-type)
	any-values-type)
  (lambda (node level depth cont)
    (let ((args (cdr (node-form node))))
      (let ((producer (car args))
            (consumer (cadr args)))
        (maybe-push-continuation
         (sequentially (compile consumer level 0 (fall-through-cont node 2))
                       (instruction (enum op push))
                       (maybe-push-continuation     ; nothing maybe about it
                        (compile-call (make-node operator/call `(,producer))
				      level 0
                                      (return-cont #f))
                        1
                        (fall-through-cont #f 0))
                       (instruction (enum op call-with-values)))
         depth
         cont))))
  (lambda ()
    ;; producer and consumer on stack
    (let ((label (make-label)))
      (sequentially (instruction (enum op protocol) 2)
                    (instruction (enum op make-env)
				 (high-byte 2)
				 (low-byte 2))
                    (instruction (enum op local0) 1) ;consumer
                    (instruction (enum op push))
                    (instruction-using-label (enum op make-cont) label 1)
                    (instruction (enum op local0) 2) ;producer
                    (instruction (enum op call) 0)
                    (attach-label label
                                  (instruction (enum op call-with-values)))))))


; --------------------
; Variable-arity primitives

(define (define-n-ary-compiler-primitive name result-type min-nargs
                                         compilator closed)
  (define-compiler-primitive name
        (if result-type
            (procedure-type any-arguments-type result-type #f)
            #f)
    (if compilator
        (n-ary-primitive-compilator name min-nargs compilator)
        compile-unknown-call)
    closed))

(define (n-ary-primitive-compilator name min-nargs compilator)
  (lambda (node level depth cont)
    (let ((exp (node-form node)))
      (if (>= (length (cdr exp)) min-nargs)
          (compilator node level depth cont)
          (begin (warn "too few arguments to primitive"
                       (schemify node))
                 (compile-unknown-call node level depth cont))))))


; APPLY wants the arguments on the stack, with the final list on top, and the
; procedure in *VAL*.

(define-compiler-primitive 'apply
  (proc (any-procedure-type &rest value-type) any-values-type)
  (n-ary-primitive-compilator 'apply 2
    (lambda (node level depth cont)
      (let ((exp (node-form node)))	; (apply proc arg1 arg2 arg3 rest)
	(let* ((proc+args+rest (cdr exp))
	       (rest+args		; (rest arg3 arg2 arg1)
		(reverse (cdr proc+args+rest)))
	       (args+rest+proc		; (arg1 arg2 arg3 rest proc)
		(reverse (cons (car proc+args+rest) rest+args)))
	       (stack-nargs (length (cdr rest+args))))
	  (maybe-push-continuation
	   (sequentially (push-all-but-last args+rest+proc level 0 #f)
			 ;; Operand is number of non-final arguments
			 (instruction (enum op apply)
				      (high-byte stack-nargs)
				      (low-byte stack-nargs)))
	   depth
	   cont)))))
  (lambda ()
    (sequentially (instruction (enum op protocol) args+nargs-protocol 2)
                  (instruction (enum op closed-apply)))))

; (values value1 value2 ...)

(define-n-ary-compiler-primitive 'values #f 0
  (lambda (node level depth cont)
    (let* ((args (cdr (node-form node)))
	   (nargs (length args)))
      (if (= 1 nargs)
	  (compile (car args) level depth cont)		;+++
	  (maybe-push-continuation (sequentially (push-arguments node level 0)
						 (instruction (enum op values)
							      (high-byte nargs)
							      (low-byte nargs)))
				   depth
				   cont))))
  (lambda ()
    (sequentially (instruction (enum op protocol) args+nargs-protocol 0)
		  (instruction (enum op closed-values)))))


; (error message irritant1 irritant2)
;  => (trap (cons 'error (cons message (cons irritant1 (cons irritant2 '())))))

(let ((cons-instruction
       (instruction (enum op make-stored-object) 2 (enum stob pair))))

  (define-n-ary-compiler-primitive 'error error-type 1
    (lambda (node level depth cont)
      (let ((exp (node-form node)))
        (let ((args (cdr exp)))
          (sequentially (instruction-with-literal (enum op literal) 'error)
                        (instruction (enum op push))
                        (push-arguments node level (+ depth 1))
                        (instruction-with-literal (enum op literal) '())
                        (apply sequentially
                               (map (lambda (arg) cons-instruction) args))
                        cons-instruction
                        (deliver-value (instruction (enum op trap)) cont)))))
    (lambda ()
      ; stack at start is: irritants message
      (sequentially (instruction (enum op protocol)
				 two-byte-nargs+list-protocol
				 0		; (high-byte 1) 
				 1)		; (low-byte 1)
		    (instruction (enum op pop))   ; list into *val*
		    cons-instruction
                    (instruction (enum op push))
                    (instruction-with-literal (enum op literal) 'error)
                    (instruction (enum op push))
                    (instruction (enum op stack-ref) 1)
                    cons-instruction
                    (instruction (enum op trap))
                    (instruction (enum op return))))))


; (call-external-value external-routine arg ...)

(define-n-ary-compiler-primitive 'call-external-value value-type 1
  #f                                         ;Could be done
  (lambda ()
    (sequentially (instruction (enum op protocol) args+nargs-protocol 1)
                  (instruction (enum op call-external-value))
                  (instruction (enum op return)))))

(let ((n-ary-constructor
        (lambda (name type type-byte)
	  (define-n-ary-compiler-primitive name type 0
	    (lambda (node level depth cont)
	      (let ((args (cdr (node-form node))))
		(sequentially (if (null? args)
				  empty-segment
				  (push-all-but-last args level depth node))
			      (deliver-value
			       (instruction (enum op make-stored-object)
					    (length args)
					    type-byte)
			       cont))))
	    (lambda ()
	      (sequentially
	       (instruction (enum op protocol) args+nargs-protocol 0)
	       (instruction (enum op closed-make-stored-object) type-byte)
	       (instruction (enum op return))))))))
  (n-ary-constructor 'vector vector-type (enum stob vector))
  (n-ary-constructor 'record #f (enum stob record)))

; READ-CHAR, PEEK-CHAR and WRITE-CHAR

(let ((define-char-io
	(lambda (id opcode type)
	  (define-compiler-primitive id
	    type
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let ((args (cdr (node-form node))))
		    (if (null? args)
			(deliver-value (instruction opcode 1) cont)
			(sequentially
			 (push-all-but-last args level depth node)
			 (deliver-value (instruction opcode 0) cont))))))
	    (lambda ()
	      (make-dispatch-protocol
	        ; Zero arguments
 	        (sequentially
		  (instruction opcode 1)
		  (instruction (enum op return)))
		; One argument
		(sequentially
		  (instruction (enum op pop))
		  (instruction opcode 0)
		  (instruction (enum op return)))
		empty-segment
		empty-segment))))))
  (define-char-io 'read-char
    (enum op read-char)
    (proc (&opt value-type) value-type))
  (define-char-io 'peek-char
    (enum op peek-char)
    (proc (&opt value-type) value-type)))

(let ((define-char-io
	(lambda (id opcode type)
	  (define-compiler-primitive id
	    type
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let ((args (cdr (node-form node))))
		    (sequentially
		     (push-all-but-last args level depth node)
		     (if (null? (cdr args))
			 (deliver-value (instruction opcode 1) cont)
			 (sequentially
			  (deliver-value (instruction opcode 0) cont)))))))
	    (lambda ()
	      (make-dispatch-protocol
	        empty-segment
	        ; One argument
	        (sequentially
		  (instruction (enum op pop))
		  (instruction opcode 1)
		  (instruction (enum op return)))
		; Two arguments
	        (sequentially
		  (instruction (enum op pop))
		  (instruction opcode 0)
		  (instruction (enum op return)))
		empty-segment))))))
  (define-char-io 'write-char
    (enum op write-char)
    (proc (char-type &opt value-type) unspecific-type)))

; Timings in 0.47 to figure out how to handle the optional ports.
; 
; reading 10**6 characters (no buffer underflow)
; empty loop    time:  3.44 seconds
; read-char     time:  3.68 seconds    ; special primitive, exceptions
; xread-char    time:  9.04 seconds    ; special primitive, no exceptions
; xxread-char   time: 14.05 seconds    ; no special primitive
; Currently, looping through a 10**6 character file takes 1.51 seconds or
; 2.50 seconds if you count the number of characters.

;----------------
; Variable-arity arithmetic primitives.

; +, *, bitwise-... take any number of arguments.

(let ((define+*
	(lambda (id opcode identity type)
	  (define-compiler-primitive id
	    (proc (&rest type) type)
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let ((args (cdr (node-form node))))
		    (cond ((null? args)
			   (deliver-value
			    (instruction-with-literal (enum op literal)
						      identity)
			    cont))
			  ((null? (cdr args))
			   (call-on-arg-and-id opcode identity (car args)
					       node level depth cont))
			  (else
			   (call-on-args opcode args node level depth cont))))))
	    (lambda ()
	      (make-dispatch-protocol
	        ; No arguments
	        (sequentially
		  (instruction-with-literal (enum op literal) identity)
		  (instruction (enum op return)))
		; One argument
		(sequentially
		  (instruction-with-literal (enum op literal) identity)
		  (instruction opcode)
		  (instruction (enum op return)))
		; Two arguments
		(sequentially
		  (instruction (enum op pop))
		  (instruction opcode)
		  (instruction (enum op return)))
		; More than two arguments
		(sequentially
		  (instruction (enum op pop))	; pop off nargs
		  (instruction (enum op binary-reduce1))
		  (instruction opcode)
		  (instruction (enum op binary-reduce2))
		  (instruction (enum op return)))))))))
  (define+* '+ (enum op +) 0 number-type)
  (define+* '* (enum op *) 1 number-type)
  (define+* 'bitwise-ior (enum op bitwise-ior) 0 exact-integer-type)
  (define+* 'bitwise-xor (enum op bitwise-xor) 0 exact-integer-type)
  (define+* 'bitwise-and (enum op bitwise-and) -1 exact-integer-type))

; = and < and so forth take two or more arguments.

(let ((define=<
	(lambda (id opcode)
	  (define-compiler-primitive id
	    (proc (real-type real-type &rest real-type) boolean-type)
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let ((args (cdr (node-form node))))
		    (if (= (length args) 2)
			(call-on-args opcode args node level depth cont)
			(compile-unknown-call node level depth cont)))))
	    (lambda ()
	      (make-dispatch-protocol
	        empty-segment
		empty-segment
		; Two arguments
		(sequentially 
		  (instruction (enum op pop))           ; get first argument
		  (instruction opcode)
		  (instruction (enum op return)))
		; More than two arguments
		(sequentially
		  (instruction (enum op pop))
		  (instruction (enum op binary-reduce1))
		  (instruction opcode)
		  (instruction (enum op binary-comparison-reduce2))
		  (instruction (enum op return)))))))))
  (define=< '= (enum op =))
  (define=< '< (enum op <))
  (define=< '> (enum op >))
  (define=< '<= (enum op <=))
  (define=< '>= (enum op >=)))

; Returns code to apply OPCODE to IDENTITY and ARGUMENT.

(define (call-on-arg-and-id opcode identity argument node level depth cont)
  (sequentially (instruction-with-literal (enum op literal) identity)
		(instruction (enum op push))
		(compile argument level (+ depth 1) (fall-through-cont node 1))
		(deliver-value (instruction opcode) cont)))
  
; Returns code to redue ARGS using OPCODE.

(define (call-on-args opcode args node level depth cont)
  (let ((do-arg (lambda (arg index)
		  (compile arg
			   level
			   (if (= index 1) depth (+ depth 1))
			   (fall-through-cont node index)))))
    (let loop ((args (cdr args)) (i 2) (code (do-arg (car args) 1)))
      (if (null? args)
	  (deliver-value code cont)
	  (loop (cdr args)
		(+ i 1)
		(sequentially code
			      (instruction (enum op push))
			      (do-arg (car args) i)
			      (instruction opcode)))))))

(define op/unspecific (get-operator 'unspecific))
(define op/literal (get-operator 'literal))

; -, and / take one or two arguments.

(let ((define-one-or-two
	(lambda (id opcode default-arg)
	  (define-compiler-primitive id
            (proc (number-type &opt number-type) number-type)
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let* ((args (cdr (node-form node)))
			 (args (if (null? (cdr args))
				   (list (make-node op/literal default-arg)
					 (car args))
				   args)))
		    (sequentially
		     (push-all-but-last args level depth node)
		     (deliver-value (instruction opcode) cont)))))
	    (lambda ()
	      (make-dispatch-protocol
	        empty-segment
		; One argument
 	        (sequentially
		  (instruction-with-literal (enum op literal) default-arg)
		  (instruction (enum op push))
		  (instruction (enum op stack-ref) 1)
		  (instruction opcode)
		  (instruction (enum op return)))
		; Two arguments
		(sequentially
		  (instruction (enum op pop))
		  (instruction opcode)
		  (instruction (enum op return)))
		empty-segment))))))
  (define-one-or-two '- (enum op -) 0)
  (define-one-or-two '/ (enum op /) 1))

; make-vector and make-string take one or two arguments.

(let ((define-one-or-two
	(lambda (id op-segment default-arg default-arg-segment type)
	  (define-compiler-primitive id
	    type
	    (lambda (node level depth cont)
	      (if (node-ref node 'type-error)
		  (compile-unknown-call node level depth cont)
		  (let* ((args (cdr (node-form node)))
			 (args (if (null? (cdr args))
				   (list (car args) default-arg)
				   args)))
		    (sequentially
		     (push-all-but-last args level depth node)
		     (deliver-value op-segment cont)))))
	    (lambda ()
	      (make-dispatch-protocol
	        empty-segment
		; One argument
 	        (sequentially
		  default-arg-segment
		  op-segment
		  (instruction (enum op return)))
		; Two arguments
 	        (sequentially
		  (instruction (enum op pop))
		  op-segment
		  (instruction (enum op return)))
		empty-segment))))))
  (define-one-or-two 'make-vector
    (instruction (enum op make-vector-object) (enum stob vector))
    (make-node op/unspecific '(unspecific))
    (instruction (enum op unspecific))
    (proc (number-type &opt value-type) vector-type))
  (define-one-or-two 'make-string
    (instruction (enum op make-string))
    (make-node op/literal #\?)
    (instruction-with-literal (enum op literal) #\?)
    (proc (number-type &opt char-type) string-type)))

; --------------------
; Utilities

(define (push-all-but-last args level depth source-info)
  (let recur ((args args) (depth depth) (i 1))
    (let ((first-code
           (compile (car args) level depth (fall-through-cont source-info i))))
      (if (null? (cdr args))
          first-code
          (sequentially first-code
                        (instruction (enum op push))
                        (recur (cdr args) (+ depth 1) (+ i 1)))))))

; Building primitives that use the computed-goto provided by the
; protocol dispatcher.

(define dispatch-protocol-size
  (segment-size (instruction (enum op protocol) nary-dispatch-protocol
			     0 0 0 0)))

(define (make-dispatch-protocol zero-args one-arg two-args three-plus-args)
  (sequentially
    (instruction (enum op protocol) nary-dispatch-protocol
		 (if (= 0 (segment-size zero-args))
		     0
		     dispatch-protocol-size)
		 (if (= 0 (segment-size one-arg))
		     0
		     (+ dispatch-protocol-size
			(segment-size zero-args)))
		 (if (= 0 (segment-size two-args))
		     0
		     (+ dispatch-protocol-size
			(segment-size zero-args)
			(segment-size one-arg)))
		 (if (= 0 (segment-size three-plus-args))
		     0
		     (+ dispatch-protocol-size
			(segment-size zero-args)
			(segment-size one-arg)
			(segment-size two-args))))
    zero-args
    one-arg
    two-args
    three-plus-args))