1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; Rudimentary type reconstruction, hardly worthy of the name.
; Currently, NODE-TYPE is called in two places. One is to determine
; the type of the right-hand side of a DEFINE for a variable that is
; never assigned, so uses of the variable can be checked later. The
; other is when compiling a call, to check types of arguments and
; produce warning messages.
; This is heuristic, to say the least. It's not clear what the right
; interface or formalism is for Scheme; I'm still experimenting.
; Obviously we can't do Hindley-Milner inference. Not only does
; Scheme have subtyping, but it also has dependent types up the wazoo.
; For example, the following is perfectly correct Scheme:
;
; (define (foo x y) (if (even? x) (car y) (vector-ref y 3)))
(define (node-type node)
(reconstruct node 'fast any-values-type))
(define (reconstruct-type node env)
(reconstruct node '() any-values-type))
(define (reconstruct node constrained want-type)
((operator-table-ref reconstructors (node-operator-id node))
node
constrained
want-type))
(define (examine node constrained want-type)
(if (pair? constrained)
(reconstruct node constrained want-type)
want-type))
(define reconstructors
(make-operator-table (lambda (node constrained want-type)
(reconstruct-call (node-form node)
constrained
want-type))))
(define (define-reconstructor name type proc)
(operator-define! reconstructors name type proc))
(define-reconstructor 'lambda syntax-type
(lambda (node constrained want-type)
(reconstruct-lambda node constrained want-type #f)))
(define-reconstructor 'flat-lambda syntax-type
(lambda (node constrained want-type)
(reconstruct-lambda node constrained want-type #f)))
(define (reconstruct-lambda node constrained want-type called?)
(if (eq? constrained 'fast)
any-procedure-type
(let* ((form (node-form node))
(want-result (careful-codomain want-type))
(formals (cadr form))
(alist (map (lambda (node)
(cons node value-type))
(normalize-formals formals)))
(cod (reconstruct (last form) ; works for normal and flat
(if called?
(append alist constrained)
alist)
want-result)))
(procedure-type (if (n-ary? formals)
any-values-type ;lose
(make-some-values-type (map cdr alist)))
cod
#t))))
(define (careful-codomain proc-type)
(if (procedure-type? proc-type)
(procedure-type-codomain proc-type)
any-values-type))
(define-reconstructor 'name 'leaf
(lambda (node constrained want-type)
(if (eq? constrained 'fast)
(reconstruct-name node)
(let ((z (assq node constrained)))
(if z
(let ((type (meet-type (cdr z) want-type)))
(begin (set-cdr! z type)
type))
(reconstruct-name node))))))
(define (reconstruct-name node)
(let ((probe (node-ref node 'binding)))
(if (binding? probe)
(let ((type (binding-type probe)))
(cond ((variable-type? type)
(variable-value-type type))
((subtype? type value-type)
type)
(else
value-type)))
value-type)))
(define-reconstructor 'call 'internal
(lambda (node constrained want-type)
(let ((form (node-form node)))
(cond ((proc->reconstructor (car form))
=> (lambda (recon)
(recon (cdr form) constrained want-type)))
(else
(reconstruct-call form constrained want-type))))))
; See if PROC is a primop or a variable bound to a primop, and then return
; that primops reconstructor, if it has one.
(define (proc->reconstructor proc)
(cond ((name-node? proc)
(let ((probe (node-ref proc 'binding)))
(if (and probe
(binding? probe)
(primop? (binding-static probe)))
(table-ref primop-reconstructors
(binding-static probe))
#f)))
((literal-node? proc)
(if (primop? (node-form proc))
(table-ref primop-reconstructors
(node-form proc))
#f))
(else #f)))
(define (reconstruct-call form constrained want-type)
(let* ((want-op-type (procedure-type any-arguments-type
want-type
#f))
(op-type (if (lambda-node? (car form))
(reconstruct-lambda (car form)
constrained
want-op-type
#t)
(reconstruct (car form)
constrained
want-op-type)))
(args (cdr form))
(lose (lambda ()
(for-each (lambda (arg)
(examine arg constrained value-type))
args))))
(if (procedure-type? op-type)
(begin (if (restrictive? op-type)
(let loop ((args args)
(dom (procedure-type-domain op-type)))
(if (not (or (null? args)
(empty-rail-type? dom)))
(begin (examine (car args)
constrained
(head-type dom))
(loop (cdr args) (tail-type dom)))))
(lose))
(procedure-type-codomain op-type))
(begin (lose)
any-values-type))))
(define-reconstructor 'literal 'leaf
(lambda (node constrained want-type)
(constant-type (node-form node))))
(define-reconstructor 'quote syntax-type
(lambda (node constrained want-type)
(constant-type (cadr (node-form node)))))
(define-reconstructor 'unspecific #f
(lambda (node constrained wnat-type)
unspecific-type))
(define-reconstructor 'unassigned #f
(lambda (node constrained wnat-type)
unspecific-type))
(define-reconstructor 'if syntax-type
(lambda (node constrained want-type)
(let ((form (node-form node)))
(examine (cadr form) constrained value-type)
;; Fork off two different constrain sets
(let ((con-alist (fork-constraints constrained))
(alt-alist (fork-constraints constrained)))
(let ((con-type (reconstruct (caddr form) con-alist want-type))
(alt-type (reconstruct (cadddr form) alt-alist want-type)))
(if (pair? constrained)
(for-each (lambda (c1 c2 c)
(set-cdr! c (join-type (cdr c1) (cdr c2))))
con-alist
alt-alist
constrained))
(join-type con-type alt-type))))))
(define (fork-constraints constrained)
(if (pair? constrained)
(map (lambda (x) (cons (car x) (cdr x)))
constrained)
constrained))-
(define-reconstructor 'begin syntax-type
(lambda (node constrained want-type)
;; This is unsound - there might be a throw out of some subform
;; other than the final one.
(do ((forms (cdr (node-form node)) (cdr forms)))
((null? (cdr forms))
(reconstruct (car forms) constrained want-type))
(examine (car forms) constrained any-values-type))))
(define-reconstructor 'set! syntax-type
(lambda (node constrained want-type)
(examine (caddr (node-form node)) constrained value-type)
unspecific-type))
(define-reconstructor 'letrec syntax-type
(lambda (node constrained want-type)
(let ((form (node-form node)))
(if (eq? constrained 'fast)
(reconstruct (caddr form) 'fast want-type)
(let ((alist (map (lambda (spec)
(cons (car spec)
(reconstruct (cadr spec)
constrained
value-type)))
(cadr form))))
(reconstruct (caddr form)
(append alist constrained)
want-type))))))
(define-reconstructor 'loophole syntax-type
(lambda (node constrained want-type)
(let ((args (cdr (node-form node))))
(examine (cadr args) constrained any-values-type)
(car args))))
(define (node->type node)
(if (node? node)
(let ((form (node-form node)))
(if (pair? form)
(map node->type form)
(desyntaxify form)))
(desyntaxify node)))
(define-reconstructor 'define syntax-type
(lambda (node constrained want-type)
':definition))
(define-reconstructor 'lap syntax-type
(lambda (node constrained want-type)
any-procedure-type))
(define name-node? (node-predicate 'name 'leaf))
(define lambda-node? (node-predicate 'lambda syntax-type))
(define literal-node? (node-predicate 'literal 'leaf))
; --------------------
; Primops.
;
; Most primops just have the types assigned in comp-prim.scm.
(define primop-reconstructors (make-symbol-table))
(define (define-primop-reconstructor name proc)
(table-set! primop-reconstructors name proc))
(define-reconstructor 'primitive-procedure syntax-type
(lambda (node constrained want-type)
(primop-type (get-primop (cadr (node-form node))))))
(define-primop-reconstructor 'values
(lambda (args constrained want-type)
(make-some-values-type (map (lambda (node)
(meet-type
(reconstruct node constrained value-type)
value-type))
args))))
(define-primop-reconstructor 'call-with-values
(lambda (args constrained want-type)
(if (= (length args) 2)
(let ((thunk-type (reconstruct (car args)
constrained
(procedure-type empty-rail-type
any-values-type
#f))))
(careful-codomain
(reconstruct (cadr args)
constrained
(procedure-type (careful-codomain thunk-type)
any-values-type
#f))))
error-type)))
(define (reconstruct-apply args constrained want-type)
(if (not (null? args))
(let ((proc-type (reconstruct (car args)
constrained
any-procedure-type)))
(for-each (lambda (arg) (examine arg constrained value-type))
(cdr args))
(careful-codomain proc-type))
error-type))
(define-primop-reconstructor 'apply reconstruct-apply)
(define-primop-reconstructor 'primitive-catch reconstruct-apply)
(define (constant-type x)
(cond ((number? x)
(meet-type (if (exact? x) exact-type inexact-type)
(cond ((integer? x) integer-type)
((rational? x) rational-type)
((real? x) real-type)
((complex? x) complex-type)
(else number-type))))
((boolean? x) boolean-type)
((pair? x) pair-type)
((string? x) string-type)
((char? x) char-type)
((null? x) null-type)
((symbol? x) symbol-type)
((vector? x) vector-type)
(else value-type)))
|