1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
; -*- Mode: Scheme; Syntax: Scheme; Package: Scheme; -*-
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; This is file base.scm.
;;;; Fundamental definitions
; Order of appearance is approximately that of the Revised^4 Report.
; Booleans
(define (not x) (if x #f #t))
(define (boolean? x) (or (eq? x #t) (eq? x #f)))
; Equality
(define (eqv? x y)
(or (eq? x y)
(and (number? x)
(number? y)
(eq? (exact? x) (exact? y))
(= x y))))
(define (equal? obj1 obj2)
(cond ((eqv? obj1 obj2) #t)
((pair? obj1)
(and (pair? obj2)
(equal? (car obj1) (car obj2))
(equal? (cdr obj1) (cdr obj2))))
((string? obj1)
(and (string? obj2)
(string=? obj1 obj2)))
((vector? obj1)
(and (vector? obj2)
(let ((z (vector-length obj1)))
(and (= z (vector-length obj2))
(let loop ((i 0))
(cond ((= i z) #t)
((equal? (vector-ref obj1 i) (vector-ref obj2 i))
(loop (+ i 1)))
(else #f)))))))
(else #f)))
; Messy because of inexact contagion.
(define (max first . rest)
(max-or-min first rest #t))
(define (min first . rest)
(max-or-min first rest #f))
(define (max-or-min first rest max?)
(let loop ((result first) (rest rest) (lose? (inexact? first)))
(if (null? rest)
(if (and lose? (exact? result))
(exact->inexact result)
result)
(let ((next (car rest)))
(loop (if (if max?
(< result next)
(> result next))
next
result)
(cdr rest)
(or lose? (inexact? next)))))))
(define (abs n) (if (< n 0) (- 0 n) n))
(define (zero? x) (= x 0))
(define (positive? x) (< 0 x))
(define (negative? x) (< x 0))
(define (even? n) (= 0 (remainder n 2)))
(define (odd? n) (not (even? n)))
; Lists
(define (caar x) (car (car x)))
(define (cadr x) (car (cdr x)))
(define (cdar x) (cdr (car x)))
(define (cddr x) (cdr (cdr x)))
(define (caaar x) (caar (car x)))
(define (caadr x) (caar (cdr x)))
(define (cadar x) (cadr (car x)))
(define (caddr x) (cadr (cdr x)))
(define (cdaar x) (cdar (car x)))
(define (cdadr x) (cdar (cdr x)))
(define (cddar x) (cddr (car x)))
(define (cdddr x) (cddr (cdr x)))
(define (caaaar x) (caaar (car x)))
(define (caaadr x) (caaar (cdr x)))
(define (caadar x) (caadr (car x)))
(define (caaddr x) (caadr (cdr x)))
(define (cadaar x) (cadar (car x)))
(define (cadadr x) (cadar (cdr x)))
(define (caddar x) (caddr (car x)))
(define (cadddr x) (caddr (cdr x)))
(define (cdaaar x) (cdaar (car x)))
(define (cdaadr x) (cdaar (cdr x)))
(define (cdadar x) (cdadr (car x)))
(define (cdaddr x) (cdadr (cdr x)))
(define (cddaar x) (cddar (car x)))
(define (cddadr x) (cddar (cdr x)))
(define (cdddar x) (cdddr (car x)))
(define (cddddr x) (cdddr (cdr x)))
(define (null? x) (eq? x '()))
(define (list . l) l)
;(define (length l)
; (reduce (lambda (ignore n) (+ n 1)) 0 l))
; Bummed version. Pretend that you didn't see this.
(define (length l)
(real-length l 0))
(define (real-length l r)
(if (null? l)
r
(real-length (cdr l) (+ r 1))))
(define (append . lists)
(if (null? lists)
'()
(let recur ((lists lists))
(if (null? (cdr lists))
(car lists)
(reduce cons (recur (cdr lists)) (car lists))))))
(define (reverse list)
(append-reverse list '()))
(define (append-reverse list seed)
(if (null? list)
seed
(append-reverse (cdr list) (cons (car list) seed))))
(define (list-tail l i)
(cond ((= i 0) l)
(else (list-tail (cdr l) (- i 1)))))
(define (list-ref l k)
(car (list-tail l k)))
(define (mem pred)
(lambda (obj l)
(let loop ((l l))
(cond ((null? l) #f)
((pred obj (car l)) l)
(else (loop (cdr l)))))))
(define memq (mem eq?))
(define memv (mem eqv?))
(define member (mem equal?))
(define (ass pred)
(lambda (obj l)
(let loop ((l l))
(cond ((null? l) #f)
((pred obj (caar l)) (car l))
(else (loop (cdr l)))))))
;(define assq (ass eq?)) ; done by VM for speed
(define assv (ass eqv?))
(define assoc (ass equal?))
(define (list? l) ;New in R4RS
(let recur ((l l) (lag l)) ;Cycle detection
(or (null? l)
(and (pair? l)
(or (null? (cdr l))
(and (pair? (cdr l))
(not (eq? (cdr l) lag))
(recur (cddr l) (cdr lag))))))))
; Characters
(define (char>? x y) (char<? y x))
(define (char>=? x y) (not (char<? x y)))
(define (char<=? x y) (not (char>? x y)))
(define (char-whitespace? c)
(if (memq (char->ascii c) ascii-whitespaces) #t #f))
(define (char-lower-case? c)
(and (char>=? c #\a)
(char<=? c #\z)))
(define (char-upper-case? c)
(and (char>=? c #\A)
(char<=? c #\Z)))
(define (char-numeric? c)
(and (char>=? c #\0)
(char<=? c #\9)))
(define (char-alphabetic? c)
(or (char-upper-case? c)
(char-lower-case? c)))
(define char-case-delta
(- (char->ascii #\a) (char->ascii #\A)))
(define (make-character-map f)
(let ((s (make-string ascii-limit #\0)))
(do ((i 0 (+ i 1)))
((>= i ascii-limit))
(string-set! s i (f (ascii->char i))))
s))
(define upcase-map
(make-character-map
(lambda (c)
(if (char-lower-case? c)
(ascii->char (- (char->ascii c) char-case-delta))
c))))
(define (char-upcase c)
(string-ref upcase-map (char->ascii c)))
(define downcase-map
(make-character-map
(lambda (c)
(if (char-upper-case? c)
(ascii->char (+ (char->ascii c) char-case-delta))
c))))
(define (char-downcase c)
(string-ref downcase-map (char->ascii c)))
(define (char-ci-compare pred)
(lambda (c1 c2) (pred (char-upcase c1) (char-upcase c2))))
(define char-ci=? (char-ci-compare char=?))
(define char-ci<? (char-ci-compare char<?))
(define char-ci<=? (char-ci-compare char<=?))
(define char-ci>? (char-ci-compare char>?))
(define char-ci>=? (char-ci-compare char>=?))
; Strings
(define (string . rest)
(list->string rest))
(define (substring s start end)
(let ((new-string (make-string (- end start) #\space)))
(do ((i start (+ i 1))
(j 0 (+ j 1)))
((= i end) new-string)
(string-set! new-string j (string-ref s i)))))
(define (string-append . strings)
(let ((len (reduce (lambda (s n) (+ (string-length s) n)) 0 strings)))
(let ((new-string (make-string len #\space)))
(let loop ((s strings)
(i 0))
(if (null? s)
new-string
(let* ((string (car s))
(l (string-length string)))
(do ((j 0 (+ j 1))
(i i (+ i 1)))
((= j l) (loop (cdr s) i))
(string-set! new-string i (string-ref string j)))))))))
(define (string->list v)
(let ((z (string-length v)))
(do ((i (- z 1) (- i 1))
(l '() (cons (string-ref v i) l)))
((< i 0) l))))
(define (list->string l)
(let ((v (make-string (length l) #\space)))
(do ((i 0 (+ i 1))
(l l (cdr l)))
((null? l) v)
(string-set! v i (car l)))))
; comes from low-level package ...
;(define (string-copy s)
; (let ((z (string-length s)))
; (let ((copy (make-string z #\space)))
; (let loop ((i 0))
; (cond ((= i z) copy)
; (else
; (string-set! copy i (string-ref s i))
; (loop (+ i 1))))))))
(define (string-fill! v x)
(let ((z (string-length v)))
(do ((i 0 (+ i 1)))
((= i z) (unspecific))
(string-set! v i x))))
(define (make-string=? char=?)
(lambda (s1 s2)
(let ((z (string-length s1)))
(and (= z (string-length s2))
(let loop ((i 0))
(cond ((= i z) #t)
((char=? (string-ref s1 i) (string-ref s2 i))
(loop (+ i 1)))
(else #f)))))))
;(define string=? (make-string=? char=?)) -- VM implements this
(define string-ci=? (make-string=? char-ci=?))
(define (make-string<? char<? char=?)
(lambda (s1 s2)
(let ((z1 (string-length s1))
(z2 (string-length s2)))
(let ((z (min z1 z2)))
(let loop ((i 0))
(if (= i z)
(< z1 z2)
(let ((c1 (string-ref s1 i))
(c2 (string-ref s2 i)))
(or (char<? c1 c2)
(and (char=? c1 c2)
(loop (+ i 1)))))))))))
(define string<? (make-string<? char<? char=?))
(define string-ci<? (make-string<? char-ci<? char-ci=?))
(define (string>? s1 s2) (string<? s2 s1))
(define (string<=? s1 s2) (not (string>? s1 s2)))
(define (string>=? s1 s2) (not (string<? s1 s2)))
(define (string-ci>? s1 s2) (string-ci<? s2 s1))
(define (string-ci<=? s1 s2) (not (string-ci>? s1 s2)))
(define (string-ci>=? s1 s2) (not (string-ci<? s1 s2)))
; Vectors
;(define (vector . l) ; now an opcode for efficiency
; (list->vector l))
(define (vector->list v)
(do ((i (- (vector-length v) 1) (- i 1))
(l '() (cons (vector-ref v i) l)))
((< i 0) l)))
(define (list->vector l)
(let ((v (make-vector (length l) #f)))
(do ((i 0 (+ i 1))
(l l (cdr l)))
((null? l) v)
(vector-set! v i (car l)))))
(define (vector-fill! v x)
(let ((z (vector-length v)))
(do ((i 0 (+ i 1)))
((= i z) (unspecific))
(vector-set! v i x))))
; Control features
(define (map proc first . rest)
(if (null? rest)
(map1 proc first)
(map2+ proc first rest)))
(define (map1 proc l)
;; (reduce (lambda (x l) (cons (proc x) l)) '() l)
(if (null? l)
'()
(cons (proc (car l)) (map1 proc (cdr l)))))
(define (map2+ proc first rest)
(if (or (null? first)
(any null? rest))
'()
(cons (apply proc (cons (car first) (map1 car rest)))
(map2+ proc (cdr first) (map1 cdr rest)))))
(define (for-each proc first . rest)
(if (null? rest)
(for-each1 proc first)
(for-each2+ proc first rest)))
(define (for-each1 proc first)
(let loop ((first first))
(if (null? first)
(unspecific)
(begin (proc (car first))
(loop (cdr first))))))
(define (for-each2+ proc first rest)
(let loop ((first first) (rest rest))
(if (or (null? first)
(any null? rest))
(unspecific)
(begin (apply proc (cons (car first) (map car rest)))
(loop (cdr first) (map cdr rest))))))
; Promises, promises.
(define-syntax delay
(syntax-rules ()
((delay ?exp) (make-promise (lambda () ?exp)))))
; A slightly modified copy of the code from R4RS; the modification ensures
; that the thunk is GC'ed after the promise is evaluted.
; JAR writes: "It is not for us to judge the wisdom of the new definition."
(define (make-promise thunk-then-result)
(let ((already-run? #f))
(lambda ()
(if already-run? ; can't be interrupted from now
thunk-then-result
(let ((result (thunk-then-result))) ; until after this call
(cond ((not already-run?)
(set! already-run? #t)
(set! thunk-then-result result)))
thunk-then-result)))))
(define (force promise)
(promise))
|