1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
; Copyright (c) 1993-1999 by Richard Kelsey and Jonathan Rees. See file COPYING.
; Generic procedure package
; This is written in fairly portable Scheme. It needs:
; Scheme 48 low-level macros (explicit renaming), in one small place.
; (CALL-ERROR message proc arg ...) - signal an error.
; Record package and DEFINE-RECORD-TYPES macro.
; An object :RECORD-TYPE which is the record type descriptor for
; record type descriptors (records are assumed to be records).
; This wouldn't be difficult to change.
; A RECORD? predicate (not essential - only for defining a DISCLOSE
; method for records).
; --------------------
; Simple types.
; More specific types have higher priorities. The priorities are used
; to establish the ordinary in which type predicates are called.
(define-record-type simple-type :simple-type
(really-make-simple-type supers predicate priority id)
simple-type?
(supers simple-type-superiors)
(predicate simple-type-predicate)
(priority simple-type-priority)
(id simple-type-id)
(more)) ;if needed later
(define-record-discloser :simple-type
(lambda (c) `(simple-type ,(simple-type-id c))))
(define (make-simple-type supers predicate id)
(make-immutable!
(really-make-simple-type supers
predicate
(compute-priority supers)
id)))
(define (compute-priority supers)
(if (null? supers)
0
(+ (apply max (map %type-priority supers))
*increment*)))
(define *increment* 10)
; These two procedures will become generic later, but must exist early
; in order to be able to bootstrap the method definition mechanism.
(define (%type-priority type)
(cond ((simple-type? type)
(simple-type-priority type))
((record-type? type)
(record-type-priority type))
(else (type-priority type)))) ;generic
(define (%type-predicate type)
(cond ((simple-type? type)
(simple-type-predicate type))
((record-type? type)
(record-predicate type))
(else (type-predicate type)))) ;generic
(define (%same-type? t1 t2)
(or (eq? t1 t2)
(if (simple-type? t1)
#f
(if (record-type? t1)
#f
(same-type? t1 t2)))))
(define-syntax define-simple-type
(syntax-rules ()
((define-simple-type ?name (?super ...) ?pred)
(define ?name (make-simple-type (list ?super ...) ?pred '?name)))))
; --------------------
; Built-in Scheme types
(define-simple-type :syntax () #f)
(define-simple-type :values () #f) ;any number of values
(define (value? x) #t)
(define-simple-type :value (:values) value?)
(define-simple-type :zero (:values) (lambda (x) #f))
(define-simple-type :number (:value) number?)
(define-simple-type :complex (:number) complex?)
(define-simple-type :real (:complex) real?)
(define-simple-type :rational (:real) rational?)
(define-simple-type :integer (:rational) integer?)
(define-simple-type :exact-integer (:integer)
(lambda (n) (and (integer? n) (exact? n))))
(define-simple-type :boolean (:value) boolean?)
(define-simple-type :symbol (:value) symbol?)
(define-simple-type :char (:value) char?)
(define-simple-type :null (:value) null?)
(define-simple-type :pair (:value) pair?)
(define-simple-type :vector (:value) vector?)
(define-simple-type :string (:value) string?)
(define-simple-type :procedure (:value) procedure?)
(define-simple-type :input-port (:value) input-port?)
(define-simple-type :output-port (:value) output-port?)
(define-simple-type :eof-object (:value) eof-object?)
; If there is no RECORD? predicate, do
; (define-simple-type :record (:value) value?)
; and change the DISCLOSE method for records to
; (or (disclose-record obj) (next-method)).
(define-simple-type :record (:value) record?)
; If record types are not records, un-comment the following line.
; (define-simple-type :record-type (:value) record-type?)
; Given a record type, RECORD-TYPE-PRIORITY returns its priority.
; Here we establish that every record type is a direct subtype of the
; :RECORD type.
(define record-type-priority
(let ((r-priority
(simple-type-priority (make-simple-type (list :record) #f #f))))
(lambda (rt) r-priority)))
; --------------------
; Method-info records are triples <type-list, n-ary?, proc>.
(define-record-type method-info :method-info
(really-make-method-info types n-ary? proc)
method-info?
(types method-info-types)
(n-ary? method-info-n-ary?)
(proc method-info-proc))
(define (make-method-info types n-ary? proc)
(make-immutable! (really-make-method-info types n-ary? proc)))
(define-record-discloser :method-info
(lambda (info)
`(method-info ,(method-info-types info) ,(method-info-n-ary? info))))
; --------------------
; Method lists
; A method list is a list of method-info records, sorted in order from
; most specific to least specific.
(define (empty-method-list) '())
; insert-method inserts an entry into a method list so that the most
; specific methods come earliest in the list. The last method should
; be a default method or error signal(l)er.
(define (insert-method info ms)
(let recur ((ms ms))
(if (null? ms)
(cons info ms)
(if (more-specific? (car ms) info)
(cons (car ms) (recur (cdr ms)))
(cons info
(if (same-applicability? (car ms) info)
(cdr ms)
ms))))))
; Replace an existing method with identical domain.
(define (same-applicability? info1 info2)
(and (every2 %same-type?
(method-info-types info1)
(method-info-types info2))
(eq? (method-info-n-ary? info1) (method-info-n-ary? info2))))
(define (every2 pred l1 l2)
(if (null? l1)
(null? l2)
(if (null? l2)
#f
(and (pred (car l1) (car l2)) (every2 pred (cdr l1) (cdr l2))))))
; This interacts with methods->perform, below.
; In this version, it's supposed to be a total order.
(define (more-specific? info1 info2)
(let ((t1 (method-info-types info1))
(t2 (method-info-types info2)))
(let ((l1 (length t1))
(l2 (length t2))
(foo? (and (not (method-info-n-ary? info1))
(method-info-n-ary? info2))))
(if (= l1 l2)
(or foo?
(let loop ((l1 t1)
(l2 t2))
(if (null? l2)
#f
(or (more-specific-type? (car l1) (car l2))
(and (%same-type? (car l1) (car l2))
(loop (cdr l1) (cdr l2)))))))
(and (> l1 l2)
foo?)))))
(define (more-specific-type? t1 t2)
(> (%type-priority t1) (%type-priority t2)))
; --------------------
; A method table is a cell that contains a method list.
; Note that the method table is not reachable from the generic
; procedure. This means good things for the GC.
(define-record-type method-table :method-table
(really-make-method-table methods prototype
generic get-perform set-perform! id)
method-table?
(methods method-table-methods set-method-table-methods!)
(prototype method-table-prototype)
(generic make-generic)
(get-perform method-table-get-perform)
(set-perform! method-table-set-perform!)
(id method-table-id))
(define-record-discloser :method-table
(lambda (t) `(method-table ,(method-table-id t))))
(define (make-method-table id . option)
(let* ((prototype (if (null? option)
(make-method-info '() #t #f)
(car option)))
(mtable (call-with-values make-cell-for-generic
(lambda (generic get-perform set-perform!)
(really-make-method-table '()
prototype
generic
get-perform
set-perform!
id)))))
(set-final-method!
mtable
(lambda (next-method . args)
(apply call-error "invalid or unimplemented operation"
id args)))
mtable))
(define (make-cell-for-generic)
(let ((perform #f))
;; PERFORM always caches (METHODS->PERFORM method-list prototype).
(values (lambda args (perform args)) ;Generic proc
(lambda () perform)
(lambda (new) (set! perform new)))))
(define (add-to-method-table! mtable info)
(let ((l (insert-method info (method-table-methods mtable))))
(set-method-table-methods! mtable l)
((method-table-set-perform! mtable)
(methods->perform l (method-table-prototype mtable)))))
(define (set-final-method! mtable proc)
(add-to-method-table! mtable
(make-method-info '()
#t
proc)))
(define (apply-generic mtable args)
;; (apply (make-generic mtable) args)
(((method-table-get-perform mtable)) args)) ;+++
; DEFINE-GENERIC
(define-syntax define-generic
(syntax-rules ()
((define-generic ?name ?mtable-name)
(begin (define ?mtable-name (make-method-table '?name))
(define ?name (make-generic ?mtable-name))))
((define-generic ?name ?mtable-name (?spec . ?specs))
(begin (define ?mtable-name
(make-method-table '?name
(method-info ?name ("next" next-method
?spec . ?specs)
(next-method))))
(define ?name (make-generic ?mtable-name))))))
; --------------------
; Method combination.
; Here is the specification:
;(define (apply-generic mtable args)
; (let loop ((ms (method-table-methods mtable)))
; (let ((next-method (lambda () (loop (cdr ms)))))
; (if (let test ((ts (method-info-types (car ms)))
; (args args))
; (if (null? ts)
; (or (null? args)
; (method-info-n-ary? (car ms)))
; (and ((%type-predicate (car ts)) (car args))
; (test (cdr ts) (cdr args)))))
; (apply (method-info-proc (car ms))
; next-method
; args)
; (next-method)))))
; (perform arg-list)
; (apply proc next-method-thunk arg-list)
; This version of METHODS->PERFORM simply marches through all the
; methods, looking for one that handles the operation.
; The prototype is currently ignored, but it could be put to good use.
(define (methods->perform l prototype)
(let recur ((l l))
(let* ((info (car l))
(proc (method-info-proc info)))
(if (null? (cdr l))
(last-action proc)
(one-action (argument-sequence-predicate info)
proc
(recur (cdr l)))))))
(define (last-action proc)
(lambda (args)
(apply proc #f args)))
(define (one-action pred proc perform-next)
(lambda (args)
(if (pred args)
(apply proc
(lambda () (perform-next args)) ; next-method
args)
(perform-next args))))
(define (argument-sequence-predicate info)
(let recur ((types (method-info-types info)))
(if (null? types)
(if (method-info-n-ary? info) value? null?)
(let ((pred (%type-predicate (car types)))
(check-rest (recur (cdr types))))
(if (eq? pred value?)
(check-for-next check-rest) ;+++
(check-next pred check-rest))))))
(define (check-for-next check-rest)
(lambda (args)
(if (null? args)
#f
(check-rest (cdr args)))))
(define (check-next pred check-rest)
(lambda (args)
(if (null? args)
#f
(if (pred (car args))
(check-rest (cdr args))
#f))))
; --------------------
; METHOD-INFO macro.
; Returns a method-info record.
; You can specify the name of the next-method parameter by saying
; (method-info my-name (x y "next" n) body ...)
; Otherwise, the next-method parameter will be named next-method.
; Just pretend it's Dylan and that #next reads as "next".
(define-syntax method-info
(syntax-rules ()
((method-info ?id ?formals ?body ...)
(method-internal ?formals () () #f ?id ?body ...))))
(define-syntax method-internal
(syntax-rules ()
((method-internal ((?formal1 ?type1) . ?specs)
(?formal ...) (?type ...) ?next
. ?rest)
(method-internal ?specs
(?formal ... ?formal1) (?type ... ?type1) ?next
. ?rest))
((method-internal ("next" ?next . ?specs)
(?formal ...) (?type ...) ?ignore
. ?rest)
(method-internal ?specs
(?formal ...) (?type ...) ?next
. ?rest))
((method-internal (?spec . ?specs)
(?formal ...) (?type ...) ?next
. ?rest)
(method-internal ?specs
(?formal ... ?spec) (?type ... :value) ?next
. ?rest))
((method-internal ?rest
(?formal ...) (?type ...) ?next
?id ?body ...)
(make-method-info (list ?type ...)
(not (null? '?rest))
(let ((?id (with-next-method ?next (?formal ... . ?rest)
?body ...)))
;; The (let ...) is a hack for the Scheme 48
;; byte code compiler, which will remember
;; ?id as the procedure's name. This should
;; aid debugging a little bit since the name
;; shows up in backtraces and the inspector.
?id)))))
; Non-hygienic, a la Dylan
(define-syntax with-next-method
(cons (lambda (e r c)
(let ((next (or (cadr e) 'next-method)))
`(,(r 'lambda) (,next ,@(caddr e))
,@(cdddr e))))
'(lambda)))
; DEFINE-METHOD macro.
(define-syntax define-method
(syntax-rules ()
((define-method ?mtable ?formals ?body ...)
(add-method! ?mtable
(method-info ?mtable ?formals ?body ...)))))
(define-generic add-method! &add-method! (mtable info))
(let ((info
(method-info add-method! ((mtable :method-table) (info :method-info))
(add-to-method-table! mtable info))))
(add-to-method-table! &add-method! info))
; --------------------
; Generic functions on types: sort of a meta-object protocol, huh?
(define-generic type-predicate &type-predicate (t))
(define-method &type-predicate ((t :record-type)) (record-predicate t))
(define-method &type-predicate ((t :simple-type)) (simple-type-predicate t))
(define-generic type-priority &type-priority (t))
(define-method &type-priority ((t :record-type)) (record-type-priority t))
(define-method &type-priority ((t :simple-type)) (simple-type-priority t))
(define-generic type-superiors &type-superiors (t))
(define-method &type-superiors ((t :record-type)) (list :record))
(define-method &type-superiors ((t :simple-type)) (simple-type-superiors t))
; Type equivalence
(define-generic same-type? &same-type? (t1 t2))
(define-method &same-type? (t1 t2) (eq? t1 t2))
(define-method &same-type? ((t1 :simple-type) (t2 :simple-type))
(and (eq? (simple-type-predicate t1) (simple-type-predicate t2))
(eq? (simple-type-id t1) (simple-type-id t2)))) ;?
; --------------------
; Singleton types.
(define-record-type singleton :singleton
(singleton value)
(value singleton-value))
(define-record-discloser :singleton
(lambda (s) `(singleton ,(singleton-value s))))
(define (compare-to val)
(lambda (x) (eqv? x val)))
(define-method &type-predicate ((s :singleton))
(compare-to (singleton-value s)))
(define-method &type-priority ((s :singleton)) 1000000)
(define-method &same-type? ((s1 :singleton) (s2 :singleton))
(eqv? (singleton-value s1) (singleton-value s2)))
; --------------------
; DISCLOSE
; A generic procedure for producing printed representations.
; Should return one of
; - A list (symbol info ...), to be printed as #{Symbol info ...}
; - #f, meaning no information available on how to print.
; This is intended to be used not only by write and display, but also by
; the pretty printer.
(define-generic disclose &disclose (x))
(define-method &disclose (obj) #f)
(define-method &disclose ((obj :record))
(or (disclose-record obj)
'(record)))
(define-method &add-method! ((d (singleton &disclose)) info)
(let ((t (car (method-info-types info))))
(if (record-type? t)
(define-record-discloser t (proc->discloser (method-info-proc info)))
(next-method))))
(define (proc->discloser proc)
(lambda (arg)
(proc (lambda () #f) arg)))
;(define-method &disclose ((s :singleton))
; `(singleton ,(singleton-value s)))
|