File: mtype.scm

package info (click to toggle)
scsh 0.5.1-2
  • links: PTS
  • area: non-free
  • in suites: potato, slink
  • size: 6,540 kB
  • ctags: 8,656
  • sloc: lisp: 39,346; ansic: 13,466; sh: 1,669; makefile: 624
file content (711 lines) | stat: -rw-r--r-- 20,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
; Copyright (c) 1993, 1994 Richard Kelsey and Jonathan Rees.  See file COPYING.

; Type lattice.
; Sorry this is so hairy, but before it was written, type checking 
; consumed 15% of compile time.

; f : t1 -> t2 restrictive means:
;   if x : t1 then (f x) : t2 (possible error!), else (f x) : error.
; f : t1 -> t2 nonrestrictive means:
;   There exists an x : t1 such that (f x) : t2.

(define-record-type meta-type :meta-type
  (really-make-type mask more info)
  meta-type?
  (mask type-mask)
  (more type-more)
  (info type-info))
(define-record-discloser :meta-type
  (lambda (t)
    `(type ,(let ((m (type-mask t)))
	      (or (table-ref mask->name-table m) m))
	   ,(let ((more (type-more t)))
	      (if (and (pair? more) (eq? (cdr more) t))
		  '*
		  more))
	   ,(type-info t))))

(define (make-type mask more info)
  (make-immutable!
   (really-make-type mask more info)))

(define name->type-table (make-table))
(define mask->name-table (make-table))

(define (name->type x)
  (or (table-ref name->type-table x)
      (make-other-type x)))

(define (set-type-name! type name)
  (table-set! name->type-table name type)
  (if (not (or (type-info type)
	       (type-more type)))
      (table-set! mask->name-table (type-mask type) name)))
	     
; Masks
; Top of lattice has mask = -1, bottom has mask = 0.

(define *mask* 1)

(define (new-type-bit)
  (let ((m *mask*))
    (set! *mask* (arithmetic-shift *mask* 1))
    m))

(define (mask->type mask)
  (make-type mask #f #f))

(define bottom-type (mask->type 0))
(define error-type bottom-type)

(define (bottom-type? t)
  (= (type-mask t) 0))

(set-type-name! bottom-type ':error)


(define (new-atomic-type)
  (mask->type (new-type-bit)))

(define (named-atomic-type name)
  (let ((t (new-atomic-type)))
    (set-type-name! t name)
    t))

; --------------------
; Top of the lattice.

(define syntax-type (named-atomic-type ':syntax))
(define other-static-type (new-atomic-type))

; --------------------

; "Rails" are argument sequence or return value sequences.
; Four constructors:
;   empty-rail-type
;   (rail-type t1 t2)
;   (optional-rail-type t1 t2)
;   (make-rest-type t)

; If a type's two-or-more? bit is set, then
;  more = (head . tail).
; Otherwise, more = #f.

(define empty-rail-type (new-atomic-type))

(define (rail-type t1 t2)		;CONS analog
  (cond ((empty-rail-type? t2) t1)
	((bottom-type? t1) t1)
	((bottom-type? t2) t2)
	((and (optional-type? t1)
	      (rest-type? t2)
	      (same-type? t1 (head-type t2)))
	 ;; Turn (&opt t &rest t) into (&rest t)
	 t2)
	((or (optional-type? t1)
	     (optional-type? t2))
	 (make-type (bitwise-ior (type-mask t1) mask/two-or-more)
		    (make-immutable! (cons t1 t2))
		    #f))
	(else
	 (make-type mask/two-or-more
		    (make-immutable! (cons t1 t2))
		    (type-info t1)))))

(define (make-optional-type t)
  (if (type-more t)
      (warn "peculiar type in make-optional-type" t))
  (make-type (bitwise-ior (type-mask t) mask/no-values)
	     #f
	     (type-info t)))

(define (make-rest-type t)
  (if (bottom-type? t)
      t
      (let* ((z (cons (make-optional-type t) #f))
	     (t (make-type (bitwise-ior (type-mask t) mask/&rest)
			   z
			   (type-info t))))
	(set-cdr! z t)
	(make-immutable! z)
	t)))

(define (head-type t)			;Can return an &opt type
  (let ((more (type-more t)))
    (if more
	(car more)
	t)))

(define (head-type-really t)		;Always returns a value type
  (let ((h (head-type t)))
    (if (optional-type? h)
	(make-type (bitwise-and (type-mask h) (bitwise-not mask/no-values))
		   #f
		   (type-info h))
	h)))
	  
(define (tail-type t)
  (if (empty-rail-type? t)
      ;; bottom-type   ?
      (warn "rail-type of empty rail" t))
  (let ((more (type-more t)))
    (if more
	(cdr more)
	empty-rail-type)))

(define (empty-rail-type? t)
  (= (bitwise-and (type-mask t) mask/one-or-more) 0))

(define (rest-type? t)			;For terminating recursions
  (let ((more (type-more t)))
    (and more
	 (eq? (cdr more) t))))

(define (optional-type? t)
  (> (bitwise-and (type-mask t) mask/no-values) 0))


; The no-values type has one element, the rail of length zero.
; The two-or-more type consists of all rails of length two
; or more.

(define mask/no-values (type-mask empty-rail-type))
(define mask/two-or-more (new-type-bit))
(define mask/&rest (bitwise-ior (type-mask empty-rail-type)
				mask/two-or-more))

(table-set! mask->name-table mask/no-values ':no-values)

(define value-type (mask->type (bitwise-not (- *mask* 1))))
(set-type-name! value-type ':value)
(define mask/value (type-mask value-type))

(define (value-type? t)
  (let ((m (type-mask t)))
    (= (bitwise-and m mask/value) m)))

(define any-values-type
  (make-rest-type value-type))
(set-type-name! any-values-type ':values)
				   
(define any-arguments-type any-values-type)

(define mask/one-or-more
  (bitwise-ior mask/value mask/two-or-more))

; --------------------
; Lattice operations.

; Equivalence

(define (same-type? t1 t2)
  (or (eq? t1 t2)
      (and (= (type-mask t1) (type-mask t2))
	   (let ((more1 (type-more t1))
		 (more2 (type-more t2)))
	     (if more1
		 (and more2
		      (if (eq? (cdr more1) t1)
			  (eq? (cdr more2) t2)
			  (if (eq? (cdr more2) t2)
			      #f
			      (and (same-type? (car more1) (car more2))
				   (same-type? (cdr more1) (cdr more2))))))
		 (not more2)))
	   (let ((info1 (type-info t1))
		 (info2 (type-info t2)))
	     (or (eq? info1 info2)
		 (and (pair? info1)
		      (pair? info2)
		      (same-type? (car info1) (car info2))    ;Procedure
		      (same-type? (cadr info1) (cadr info2))
		      (eq? (caddr info1) (caddr info2))))))))

(define (subtype? t1 t2)		;*** optimize later
  (same-type? t1 (meet-type t1 t2)))


; (mask->type mask/procedure) represents the TOP of the procedure
; subhierarchy.

(define (meet-type t1 t2)
  (if (same-type? t1 t2)
      t1
      (let ((m (bitwise-and (type-mask t1) (type-mask t2))))
	(cond ((> (bitwise-and m mask/two-or-more) 0)
	       (meet-rail t1 t2))
	      ((eq? (type-info t1) (type-info t2))
	       (make-type m #f (type-info t1)))
	      ((> (bitwise-and m mask/other) 0)
	       (let ((i1 (other-type-info t1))
		     (i2 (other-type-info t2)))
		 (if (and i1 i2)
		     (mask->type (bitwise-and m (bitwise-not mask/other)))
		     (make-type m
				#f
				(or i1 i2)))))
	      ((> (bitwise-and m mask/procedure) 0)
	       (meet-procedure m t1 t2))
	      (else (mask->type m))))))

(define (other-type-info t)
  (let ((i (type-info t)))
    (if (pair? i) #f i)))


(define (p name x) (write `(,name ,x)) (newline) x)

(define (meet-rail t1 t2)
  (let ((t (meet-type (head-type t1) (head-type t2))))
    (if (and (rest-type? t1)
	     (rest-type? t2))
	(make-rest-type t)
	(rail-type t (meet-type (tail-type t1)
				(tail-type t2))))))
	       
; Start with these assumptions:
;
;  . (meet? t1 t2) == (not (bottom-type? (meet-type t1 t2)))
;  . (subtype? t1 t2) == (same-type? t1 (meet-type t1 t2))
;  . (subtype? t1 t2) == (same-type? t2 (join-type t1 t2))
;  . We signal a type error if not (intersect? have want).
;  . We infer the type of a parameter by intersecting the want-types
;    of all definitely-reached points of use.
;
; 1. If both types are nonrestrictive, we have to JOIN both domains
; and codomains (if we are to avoid conjunctive types).
;
; (+ (f 1) (car (f 'a)))    [reconstructing type of f by computing meet of all contexts]
;   => meet (proc (:integer) :number nonr) (proc (:symbol) :pair nonr)
;   => (proc ((join :integer :symbol) (join :number :pair)) nonr), yes?
;
; 2. If both types are restrictive, we need to MEET both domains and
; codomains.
;
; (define (foo) 3),   (export (foo (proc (:value) :value)))
;  Error - disjoint domains.
;
; (define (foo) 'baz),   (export (foo (proc () :number)))
;  Error - disjoint codomains.
;
; 3. If one is restrictive and the other isn't then we still need to
; MEET on both sides.
;
; (with-output-to-file "foo" car)
;   => meet (proc () :any nonr), (proc (:pair) :value restr)
;   => Error - disjoint domains.
;
; (frob (lambda () 'a))  where (define (frob f) (+ (f) 1))
;   => meet (proc () :symbol restr), (proc () :number nonr)
;   => Error - disjoint codomains.
;
; Does export checking look for (intersect? want have), or for
; (subtype? want have) ?  We should be able to narrow something as we
; export it, but not widen it.
;
; (define (foo . x) 3),   (export (foo (proc (value) value)))
;  No problem, since the domain of the first contains the domain of the second.
;
; (define (foo x . x) (+ x 3)),   (export (foo (proc (value) value)))
;  Dubious; the domains intersect but are incomparable.  The meet
;  should be (proc (number) number).
;
; (define (foo x) (numerator x)),   (export (foo (proc (real) integer)))
;  This is dubious, since the stated domain certainly contains values
;  that will be rejected.  (But then, what about divide by zero, or
;  vector indexing?)
;
; (define (foo x) (numerator x)),   (export (foo (proc (integer) integer)))
;  This should definitely be OK.


(define (meet-procedure m t1 t2)
  (let ((dom1 (procedure-type-domain t1))
	(dom2 (procedure-type-domain t2))
	(cod1 (procedure-type-codomain t1))
	(cod2 (procedure-type-codomain t2)))
    (cond ((or (restrictive? t1) (restrictive? t2))
	   (let ((dom (meet-type dom1 dom2))
		 (cod (meet-type cod1 cod2)))
	     (if (or (bottom-type? dom)
		     (and (bottom-type? cod)
			  (not (bottom-type? cod1)) ;uck
			  (not (bottom-type? cod2))))
		 (mask->type (bitwise-and m (bitwise-not mask/procedure)))
		 (make-procedure-type m
				      dom
				      cod
				      #t))))
	  ((and (subtype? dom2 dom1) (subtype? cod2 cod1))
	   ;; exists x : dom1 s.t. (f x) : cod1   adds no info
	   (make-procedure-type m dom2 cod2 #f))
	  (else
	   ;; Arbitrary choice.
	   (make-procedure-type m dom1 cod1 #f)))))


; MEET? is the operation used all the time by the compiler.  We want
; getting a yes answer to be as fast as possible.  We could do
;
;   (define (meet? t1 t2) (not (bottom-type? (meet-type t1 t2))))
;
; but that would be too slow.

(define (meet? t1 t2)
  (or (eq? t1 t2)
      (let ((m (bitwise-and (type-mask t1) (type-mask t2))))
	(cond ((= m mask/two-or-more)
	       (and (meet? (head-type t1) (head-type t2))
		    (meet? (tail-type t1) (tail-type t2))))
	      ((= m 0) #f)
	      ((eq? (type-info t1) (type-info t2)) #t)
	      ((= m mask/other)
	       (not (and (other-type-info t1) (other-type-info t2))))
	      ((= m mask/procedure) (meet-procedure? t1 t2))
	      (else #t)))))

(define (meet-procedure? t1 t2)
  (if (or (restrictive? t1) (restrictive? t2))
      (and (meet? (procedure-type-domain t1) (procedure-type-domain t2))
	   (meet? (procedure-type-codomain t1) (procedure-type-codomain t2)))
      #t))


; Join

(define (join-type t1 t2)
  (if (same-type? t1 t2)
      t1
      (let ((m (bitwise-ior (type-mask t1) (type-mask t2))))
	(if (> (bitwise-and m mask/two-or-more) 0)
	    (join-rail t1 t2)
	    (let ((info1 (type-info t1)) (info2 (type-info t2)))
	      (cond ((equal? info1 info2)
		     (make-type m #f (type-info t1)))
		    ((> (bitwise-and m mask/other) 0)
		     (make-type m #f #f))
		    ((> (bitwise-and m mask/procedure) 0)
		     (join-procedure m t1 t2))
		    (else
		     (error "This shouldn't happen" t1 t2))))))))

(define (join-rail t1 t2)
  (let ((t (join-type (head-type t1) (head-type t2))))
    (if (and (rest-type? t1)
	     (rest-type? t2))
	(make-rest-type t)
	(rail-type t
		   (if (type-more t1)
		       (if (type-more t2)
			   (join-type (tail-type t1)
				      (tail-type t2))
			   (tail-type t1))
		       (tail-type t2))))))
	
; This is pretty gross.

(define (join-procedure m t1 t2)
  (if (procedure-type? t1)
      (if (procedure-type? t2)
	  (let ((dom1 (procedure-type-domain t1))
		(dom2 (procedure-type-domain t2))
		(cod1 (procedure-type-codomain t1))
		(cod2 (procedure-type-codomain t2)))
	    (make-procedure-type m
				 (join-type dom1 dom2) ;Error when outside here
				 (join-type cod1 cod2)
				 (and (restrictive? t1) (restrictive? t2))))
	  (make-type m #f (type-info t1)))
      (make-type m #f (type-info t2))))


; --------------------
; Value types.

; First, the ten indivisible number types.

(define number-hierarchy
  '(:integer :rational :real :complex :number))

(let loop ((names number-hierarchy)
	   (exact bottom-type)
	   (inexact bottom-type))
  (if (null? names)
      (begin (set-type-name! exact ':exact)
	     (set-type-name! inexact ':inexact))
      (let* ((exact (join-type exact (new-atomic-type)))
	     (inexact (join-type inexact (new-atomic-type))))
	(set-type-name! (join-type exact inexact)
			(car names))
	(loop (cdr names)
	      exact
	      inexact))))

(define integer-type  (name->type ':integer))
(define rational-type (name->type ':rational))
(define real-type     (name->type ':real))
(define complex-type  (name->type ':complex))
(define number-type   (name->type ':number))
(define exact-type    (name->type ':exact))
(define inexact-type  (name->type ':inexact))

(define exact-integer-type (meet-type integer-type exact-type))
(set-type-name! exact-integer-type ':exact-integer)


; Next, all the others.

(define boolean-type (named-atomic-type ':boolean))
(define pair-type (named-atomic-type ':pair))
(define null-type (named-atomic-type ':null))
(define record-type (named-atomic-type ':record))

(define any-procedure-type (named-atomic-type ':procedure))

; ???
; (define procedure-nonbottom-type (new-atomic-type))
; (define procedure-bottom-type (new-atomic-type))
; (define mask/procedure (meet procedure-nonbottom-type procedure-bottom-type))

; OTHER-VALUE-TYPE is a catchall for all the other ones we don't
; anticipate (for now including string, vector, char, etc.).

(define other-value-type (named-atomic-type ':other))
(define mask/other (type-mask other-value-type))

(define (make-other-type id)
  (let ((t (make-type mask/other #f id)))
    (set-type-name! t id)
    t))

(define char-type	(make-other-type ':char))
(define unspecific-type (make-other-type ':unspecific))
(define string-type	(make-other-type ':string))
(define symbol-type	(make-other-type ':symbol))
(define vector-type	(make-other-type ':vector))
(define escape-type	(make-other-type ':escape))
(define structure-type  (make-other-type ':structure))


; --------------------
; Procedures.

(define mask/procedure (type-mask any-procedure-type))

(define (procedure-type dom cod r?)
  (make-procedure-type mask/procedure dom cod r?))

(define (make-procedure-type m dom cod r?)
  (make-type m
	     #f
	     (if (and (not r?)
		      (same-type? dom value-type)
		      (same-type? cod value-type))
		 #f	;LUB of all procedure types
		 (list dom cod r?))))

(define (procedure-type-domain t)
  (let ((info (type-info t)))
    (if (pair? info)
	(car info)
	any-values-type)))

(define (procedure-type-codomain t)
  (let ((info (type-info t)))
    (if (pair? info)
	(cadr info)
	any-values-type)))

(define (restrictive? t)
  (let ((info (type-info t)))
    (if (pair? info)
	(caddr info)
	#f)))

; --------------------
; Conversion to and from S-expression.

(define (sexp->type x r?)
  (cond ((symbol? x)
	 (name->type x))
	((pair? x)
	 (case (car x)
	   ((some-values)
	    (sexp->values-type (cdr x) #t r?))
	   ((proc)
	    (let ((r? (if (or (null? (cdddr x))
			      (eq? (cadddr x) r?))
			  r?
			  (not r?))))
	      (procedure-type (sexp->values-type (cadr x) #t (not r?))
			      (sexp->type (caddr x) r?)
			      r?)))
	   ((meet)
	    (if (null? (cdr x))
		bottom-type
		(let ((l (map (lambda (x) (sexp->type x r?)) (cdr x))))
		  (reduce meet-type (car l) (cdr l)))))
	   ((join)
	    (let ((l (map (lambda (x) (sexp->type x r?)) (cdr x))))
	      (reduce join-type (car l) (cdr l))))
	   ((mask->type)
	    (mask->type (cadr x)))
	   (else (error "unrecognized type" x))))
	(else (error "unrecognized type" x))))

(define (sexp->values-type l req? r?)
  (cond ((null? l) empty-rail-type)
	((eq? (car l) '&rest)
	 (make-rest-type (sexp->type (cadr l) r?)))
	((eq? (car l) '&opt)
	 (sexp->values-type (cdr l) #f r?))
	(else
	 (let ((t (sexp->type (car l) r?)))
	   (rail-type (if req? t (make-optional-type t))
		      (sexp->values-type (cdr l)
					 req?
					 r?))))))

; Convert type to S-expression

(define (type->sexp t r?)
  (if (> (bitwise-and (type-mask t) mask/&rest) 0)
      (if (same-type? t any-values-type)
	  ':values
	  `(some-values ,@(rail-type->sexp t r?)))
      (let ((j (disjoin-type t)))
	(cond ((null? j) ':error)
	      ((null? (cdr j))
	       (atomic-type->sexp (car j) r?))
	      (else
	       `(join ,@(map (lambda (t)
			       (atomic-type->sexp t r?))
			     j)))))))
	 
(define (atomic-type->sexp t r?)
  (let ((m (type-mask t)))
    (cond ((and (not (type-info t))
		(table-ref mask->name-table m)))
	  ((= m mask/other) 
	   (or (type-info t) ':value))	;not quite
	  ((= m mask/procedure)
	   (let ((r (restrictive? t)))
	     `(proc ,(rail-type->sexp (procedure-type-domain t)
				      (not r))
		    ,(type->sexp (procedure-type-codomain t) r)
		    ,@(if (eq? r r?)
			  '()
			  `(,r)))))
	  ((type-info t)
	   `(ill-formed ,(type-mask t) ,(type-info t)))
	  ((subtype? t exact-type)
	   `(meet :exact
		  ,(type->sexp (mask->type (let ((m (type-mask t)))
					     (bitwise-ior m (arithmetic-shift m 1))))
			       #t)))
	  ((subtype? t inexact-type)
	   `(meet :inexact
		  ,(type->sexp (mask->type (let ((m (type-mask t)))
					     (bitwise-ior m (arithmetic-shift m -1))))
			       #t)))
	  ;; ((meet? t number-type) ...)
	  (else
	   `(mask->type ,(type-mask t))))))

(define (rail-type->sexp t r?)
  (let recur ((t t) (prev-req? #t) (r? r?))
    (cond ((empty-rail-type? t) '())
	  ((rest-type? t)
	   `(&rest ,(type->sexp (head-type-really t) r?)))
	  ((optional-type? t)
	   (let ((tail (cons (type->sexp (head-type-really t) r?)
			     (recur (tail-type t) #f r?))))
	     (if prev-req?
		 `(&opt ,@tail)
		 tail)))
	  (else
	   (cons (type->sexp (head-type t) r?)
		 (recur (tail-type t) #t r?))))))

; Decompose a type into components

(define (disjoin-type t)
  (cond ((bottom-type? t) '())
	((and (not (type-info t))
	      (table-ref mask->name-table (type-mask t)))
	 (list t))
	((meet? t other-value-type)
	 (cons (meet-type t other-value-type)
	       (disjoin-rest t mask/other)))
	((meet? t any-procedure-type)
	 (cons (meet-type t any-procedure-type)
	       (disjoin-rest t mask/procedure)))
	((meet? t number-type)
	 (cons (meet-type t number-type)
	       (disjoin-rest t mask/number)))
	(else
	 (do ((i 1 (arithmetic-shift i 1)))
	     ((> (bitwise-and (type-mask t) i) 0)
	      (cons (mask->type i)
		    (disjoin-rest t i)))))))

(define (disjoin-rest t mask)
  (disjoin-type (mask->type (bitwise-and (type-mask t)
					 (bitwise-not mask)))))

(define mask/number (type-mask number-type))

; --------------------
; obsolescent?  see lambda and values reconstructors in recon.scm

(define (make-some-values-type types)
  (if (null? types)
      empty-rail-type
      (rail-type (car types) (make-some-values-type (cdr types)))))

(define-syntax proc
  (syntax-rules ()
    ((proc (?type ...) ?cod)
     (procedure-type (some-values ?type ...) ?cod #t))
    ((proc (?type ...) ?cod ?r)
     (procedure-type (some-values ?type ...) ?cod ?r))))

(define-syntax some-values
  (syntax-rules (&opt &rest)
    ((some-values) empty-rail-type)
    ((some-values &opt) empty-rail-type)
    ((some-values ?t) ?t)
    ((some-values &rest ?t) (make-rest-type ?t))
    ((some-values &opt &rest ?t) (make-rest-type ?t))
    ((some-values &opt ?t1 . ?ts)
     (rail-type (make-optional-type ?t1)
		(some-values &opt . ?ts)))
    ((some-values ?t1 . ?ts)
     (rail-type ?t1 (some-values . ?ts)))))


(define (procedure-type? t)
  (= (type-mask t) mask/procedure))

(define (fixed-arity-procedure-type? t)
  (and (procedure-type? t)
       (let loop ((d (procedure-type-domain t)))
	 (cond ((empty-rail-type? d) #t)
	       ((optional-type? d) #f)
	       (else (loop (tail-type d)))))))

(define (procedure-type-arity t)
  (do ((d (procedure-type-domain t) (tail-type d))
       (i 0 (+ i 1)))
      ((empty-rail-type? d) i)
    (if (optional-type? d)
	(error "this shouldn't happen" t d))))

(define (procedure-type-argument-types t)
  (let recur ((d (procedure-type-domain t)))
    (cond ((empty-rail-type? d) '())
	  ((optional-type? d)
	   (call-error "lossage" procedure-type-argument-types t))
	  (else
	   (cons (head-type d)
		 (recur (tail-type d)))))))