1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011, 2012, 2013, 2014 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//#include <cmath>
#include "mt32emu.h"
#include "mmath.h"
#include "internals.h"
namespace MT32Emu {
// Note that when entering nextPhase(), newPhase is set to phase + 1, and the descriptions/names below refer to
// newPhase's value.
enum {
// When this is the target phase, level[0] is targeted within time[0]
// Note that this phase is always set up in reset(), not nextPhase()
PHASE_ATTACK = 1,
// When this is the target phase, level[1] is targeted within time[1]
PHASE_2 = 2,
// When this is the target phase, level[2] is targeted within time[2]
PHASE_3 = 3,
// When this is the target phase, level[3] is targeted within time[3]
PHASE_4 = 4,
// When this is the target phase, immediately goes to PHASE_RELEASE unless the poly is set to sustain.
// Otherwise level[3] is continued with increment 0 - no phase change will occur until some external influence (like pedal release)
PHASE_SUSTAIN = 5,
// 0 is targeted within time[4] (the time calculation is quite different from the other phases)
PHASE_RELEASE = 6,
// 0 is targeted with increment 0 (thus theoretically staying that way forever)
PHASE_DONE = 7
};
static int calcBaseCutoff(const TimbreParam::PartialParam *partialParam, Bit32u basePitch, unsigned int key) {
// This table matches the values used by a real LAPC-I.
static const Bit8s biasLevelToBiasMult[] = {85, 42, 21, 16, 10, 5, 2, 0, -2, -5, -10, -16, -21, -74, -85};
// These values represent unique options with no consistent pattern, so we have to use something like a table in any case.
// The table entries, when divided by 21, match approximately what the manual claims:
// -1, -1/2, -1/4, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 5/4, 3/2, 2, s1, s2
// Note that the entry for 1/8 is rounded to 2 (from 1/8 * 21 = 2.625), which seems strangely inaccurate compared to the others.
static const Bit8s keyfollowMult21[] = {-21, -10, -5, 0, 2, 5, 8, 10, 13, 16, 18, 21, 26, 32, 42, 21, 21};
int baseCutoff = keyfollowMult21[partialParam->tvf.keyfollow] - keyfollowMult21[partialParam->wg.pitchKeyfollow];
// baseCutoff range now: -63 to 63
baseCutoff *= (int)key - 60;
// baseCutoff range now: -3024 to 3024
int biasPoint = partialParam->tvf.biasPoint;
if ((biasPoint & 0x40) == 0) {
// biasPoint range here: 0 to 63
int bias = biasPoint + 33 - key; // bias range here: -75 to 84
if (bias > 0) {
bias = -bias; // bias range here: -1 to -84
baseCutoff += bias * biasLevelToBiasMult[partialParam->tvf.biasLevel]; // Calculation range: -7140 to 7140
// baseCutoff range now: -10164 to 10164
}
} else {
// biasPoint range here: 64 to 127
int bias = biasPoint - 31 - key; // bias range here: -75 to 84
if (bias < 0) {
baseCutoff += bias * biasLevelToBiasMult[partialParam->tvf.biasLevel]; // Calculation range: −6375 to 6375
// baseCutoff range now: -9399 to 9399
}
}
// baseCutoff range now: -10164 to 10164
baseCutoff += ((partialParam->tvf.cutoff << 4) - 800);
// baseCutoff range now: -10964 to 10964
if (baseCutoff >= 0) {
// FIXME: Potentially bad if baseCutoff ends up below -2056?
int pitchDeltaThing = (basePitch >> 4) + baseCutoff - 3584;
if (pitchDeltaThing > 0) {
baseCutoff -= pitchDeltaThing;
}
} else if (baseCutoff < -2048) {
baseCutoff = -2048;
}
baseCutoff += 2056;
baseCutoff >>= 4; // PORTABILITY NOTE: Hmm... Depends whether it could've been below -2056, but maybe arithmetic shift assumed?
if (baseCutoff > 255) {
baseCutoff = 255;
}
return (Bit8u)baseCutoff;
}
TVF::TVF(const Partial *usePartial, LA32Ramp *useCutoffModifierRamp) :
partial(usePartial), cutoffModifierRamp(useCutoffModifierRamp) {
}
void TVF::startRamp(Bit8u newTarget, Bit8u newIncrement, int newPhase) {
target = newTarget;
phase = newPhase;
cutoffModifierRamp->startRamp(newTarget, newIncrement);
#if MT32EMU_MONITOR_TVF >= 1
partial->getSynth()->printDebug("[+%lu] [Partial %d] TVF,ramp,%d,%d,%d,%d", partial->debugGetSampleNum(), partial->debugGetPartialNum(), newTarget, (newIncrement & 0x80) ? -1 : 1, (newIncrement & 0x7F), newPhase);
#endif
}
void TVF::reset(const TimbreParam::PartialParam *newPartialParam, unsigned int basePitch) {
partialParam = newPartialParam;
unsigned int key = partial->getPoly()->getKey();
unsigned int velocity = partial->getPoly()->getVelocity();
const Tables *tables = &Tables::getInstance();
baseCutoff = calcBaseCutoff(newPartialParam, basePitch, key);
#if MT32EMU_MONITOR_TVF >= 1
partial->getSynth()->printDebug("[+%lu] [Partial %d] TVF,base,%d", partial->debugGetSampleNum(), partial->debugGetPartialNum(), baseCutoff);
#endif
int newLevelMult = velocity * newPartialParam->tvf.envVeloSensitivity;
newLevelMult >>= 6;
newLevelMult += 109 - newPartialParam->tvf.envVeloSensitivity;
newLevelMult += ((signed)key - 60) >> (4 - newPartialParam->tvf.envDepthKeyfollow);
if (newLevelMult < 0) {
newLevelMult = 0;
}
newLevelMult *= newPartialParam->tvf.envDepth;
newLevelMult >>= 6;
if (newLevelMult > 255) {
newLevelMult = 255;
}
levelMult = newLevelMult;
if (newPartialParam->tvf.envTimeKeyfollow != 0) {
keyTimeSubtraction = ((signed)key - 60) >> (5 - newPartialParam->tvf.envTimeKeyfollow);
} else {
keyTimeSubtraction = 0;
}
int newTarget = (newLevelMult * newPartialParam->tvf.envLevel[0]) >> 8;
int envTimeSetting = newPartialParam->tvf.envTime[0] - keyTimeSubtraction;
int newIncrement;
if (envTimeSetting <= 0) {
newIncrement = (0x80 | 127);
} else {
newIncrement = tables->envLogarithmicTime[newTarget] - envTimeSetting;
if (newIncrement <= 0) {
newIncrement = 1;
}
}
cutoffModifierRamp->reset();
startRamp(newTarget, newIncrement, PHASE_2 - 1);
}
Bit8u TVF::getBaseCutoff() const {
return baseCutoff;
}
void TVF::handleInterrupt() {
nextPhase();
}
void TVF::startDecay() {
if (phase >= PHASE_RELEASE) {
return;
}
if (partialParam->tvf.envTime[4] == 0) {
startRamp(0, 1, PHASE_DONE - 1);
} else {
startRamp(0, -partialParam->tvf.envTime[4], PHASE_DONE - 1);
}
}
void TVF::nextPhase() {
const Tables *tables = &Tables::getInstance();
int newPhase = phase + 1;
switch (newPhase) {
case PHASE_DONE:
startRamp(0, 0, newPhase);
return;
case PHASE_SUSTAIN:
case PHASE_RELEASE:
// FIXME: Afaict newPhase should never be PHASE_RELEASE here. And if it were, this is an odd way to handle it.
if (!partial->getPoly()->canSustain()) {
phase = newPhase; // FIXME: Correct?
startDecay(); // FIXME: This should actually start decay even if phase is already 6. Does that matter?
return;
}
startRamp((levelMult * partialParam->tvf.envLevel[3]) >> 8, 0, newPhase);
return;
}
int envPointIndex = phase;
int envTimeSetting = partialParam->tvf.envTime[envPointIndex] - keyTimeSubtraction;
int newTarget = (levelMult * partialParam->tvf.envLevel[envPointIndex]) >> 8;
int newIncrement;
if (envTimeSetting > 0) {
int targetDelta = newTarget - target;
if (targetDelta == 0) {
if (newTarget == 0) {
targetDelta = 1;
newTarget = 1;
} else {
targetDelta = -1;
newTarget--;
}
}
newIncrement = tables->envLogarithmicTime[targetDelta < 0 ? -targetDelta : targetDelta] - envTimeSetting;
if (newIncrement <= 0) {
newIncrement = 1;
}
if (targetDelta < 0) {
newIncrement |= 0x80;
}
} else {
newIncrement = newTarget >= target ? (0x80 | 127) : 127;
}
startRamp(newTarget, newIncrement, newPhase);
}
}
|