1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/sound/audio32.h"
#include "audio/audiostream.h" // for SeekableAudioStream
#include "audio/decoders/raw.h" // for makeRawStream, RawFlags::FLAG_16BITS
#include "audio/decoders/wave.h" // for makeWAVStream
#include "audio/rate.h" // for RateConverter, makeRateConverter
#include "audio/timestamp.h" // for Timestamp
#include "common/config-manager.h" // for ConfMan
#include "common/endian.h" // for MKTAG
#include "common/memstream.h" // for MemoryReadStream
#include "common/str.h" // for String
#include "common/stream.h" // for SeekableReadStream
#include "common/system.h" // for OSystem, g_system
#include "common/textconsole.h" // for warning
#include "common/types.h" // for Flag::NO
#include "engine.h" // for Engine, g_engine
#include "sci/engine/vm_types.h" // for reg_t, make_reg, NULL_REG
#include "sci/resource.h" // for ResourceId, ResourceType::kResour...
#include "sci/sci.h" // for SciEngine, g_sci, getSciVersion
#include "sci/sound/decoders/sol.h" // for makeSOLStream
namespace Sci {
bool detectSolAudio(Common::SeekableReadStream &stream) {
const size_t initialPosition = stream.pos();
// TODO: Resource manager for audio resources reads past the
// header so even though this is the detection algorithm
// in SSCI, ScummVM can't use it
#if 0
byte header[6];
if (stream.read(header, sizeof(header)) != sizeof(header)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
if (header[0] != 0x8d || READ_BE_UINT32(header + 2) != MKTAG('S', 'O', 'L', 0)) {
return false;
}
return true;
#else
byte header[4];
if (stream.read(header, sizeof(header)) != sizeof(header)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
if (READ_BE_UINT32(header) != MKTAG('S', 'O', 'L', 0)) {
return false;
}
return true;
#endif
}
bool detectWaveAudio(Common::SeekableReadStream &stream) {
const size_t initialPosition = stream.pos();
byte blockHeader[8];
if (stream.read(blockHeader, sizeof(blockHeader)) != sizeof(blockHeader)) {
stream.seek(initialPosition);
return false;
}
stream.seek(initialPosition);
const uint32 headerType = READ_BE_UINT32(blockHeader);
if (headerType != MKTAG('R', 'I', 'F', 'F')) {
return false;
}
return true;
}
#pragma mark -
Audio32::Audio32(ResourceManager *resMan) :
_resMan(resMan),
_mixer(g_system->getMixer()),
_handle(),
_mutex(),
_numActiveChannels(0),
_inAudioThread(false),
_globalSampleRate(44100),
_maxAllowedSampleRate(44100),
_globalBitDepth(16),
_maxAllowedBitDepth(16),
_globalNumOutputChannels(2),
_maxAllowedOutputChannels(2),
_preload(0),
_robotAudioPaused(false),
_pausedAtTick(0),
_startedAtTick(0),
_attenuatedMixing(true),
_monitoredChannelIndex(-1),
_monitoredBuffer(nullptr),
_monitoredBufferSize(0),
_numMonitoredSamples(0) {
if (getSciVersion() < SCI_VERSION_3) {
_channels.resize(5);
} else {
_channels.resize(8);
}
_useModifiedAttenuation = false;
if (getSciVersion() == SCI_VERSION_2_1_MIDDLE) {
switch (g_sci->getGameId()) {
case GID_MOTHERGOOSEHIRES:
case GID_PQ4:
case GID_QFG4:
case GID_SQ6:
_useModifiedAttenuation = true;
default:
break;
}
} else if (getSciVersion() == SCI_VERSION_2_1_EARLY && g_sci->getGameId() == GID_KQ7) {
// KQ7 1.51 uses the non-standard attenuation, but 2.00b
// does not, which is strange.
_useModifiedAttenuation = true;
}
_mixer->playStream(Audio::Mixer::kSFXSoundType, &_handle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true);
}
Audio32::~Audio32() {
stop(kAllChannels);
_mixer->stopHandle(_handle);
free(_monitoredBuffer);
}
#pragma mark -
#pragma mark AudioStream implementation
int Audio32::writeAudioInternal(Audio::AudioStream *const sourceStream, Audio::RateConverter *const converter, Audio::st_sample_t *targetBuffer, const int numSamples, const Audio::st_volume_t leftVolume, const Audio::st_volume_t rightVolume, const bool loop) {
int samplesToRead = numSamples;
// The parent rate converter will request N * 2
// samples from this `readBuffer` call, because
// we tell it that we send stereo output, but
// the source stream we're mixing in may be
// mono, in which case we need to request half
// as many samples from the mono stream and let
// the converter double them for stereo output
if (!sourceStream->isStereo()) {
samplesToRead >>= 1;
}
int samplesWritten = 0;
do {
if (loop && sourceStream->endOfStream()) {
Audio::RewindableAudioStream *rewindableStream = dynamic_cast<Audio::RewindableAudioStream *>(sourceStream);
rewindableStream->rewind();
}
const int loopSamplesWritten = converter->flow(*sourceStream, targetBuffer, samplesToRead, leftVolume, rightVolume);
if (loopSamplesWritten == 0) {
break;
}
samplesToRead -= loopSamplesWritten;
samplesWritten += loopSamplesWritten;
targetBuffer += loopSamplesWritten << 1;
} while (loop && samplesToRead > 0);
if (!sourceStream->isStereo()) {
samplesWritten <<= 1;
}
return samplesWritten;
}
// In earlier versions of SCI32 engine, audio mixing is
// split into three different functions.
//
// The first function is called from the main game thread in
// AsyncEventCheck; later versions of SSCI also call it when
// getting the playback position. This function is
// responsible for cleaning up finished channels and
// filling active channel buffers with decompressed audio
// matching the hardware output audio format so they can
// just be copied into the main DAC buffer directly later.
//
// The second function is called by the audio hardware when
// the DAC buffer needs to be filled, and by `play` when
// there is only one active sample (so it can just blow away
// whatever was already in the DAC buffer). It merges all
// active channels into the DAC buffer and then updates the
// offset into the DAC buffer.
//
// Finally, a third function is called by the second
// function, and it actually puts data into the DAC buffer,
// performing volume, distortion, and balance adjustments.
//
// Since we only have one callback from the audio thread,
// and should be able to do all audio processing in
// real time, and we have streams, and we do not need to
// completely fill the audio buffer, the functionality of
// all these original functions is combined here and
// simplified.
int Audio32::readBuffer(Audio::st_sample_t *buffer, const int numSamples) {
Common::StackLock lock(_mutex);
if (_pausedAtTick != 0 || _numActiveChannels == 0) {
return 0;
}
// ResourceManager is not thread-safe so we need to
// avoid calling into it from the audio thread, but at
// the same time we need to be able to clear out any
// finished channels on a regular basis
_inAudioThread = true;
freeUnusedChannels();
// The caller of `readBuffer` is a rate converter,
// which reuses (without clearing) an intermediate
// buffer, so we need to zero the intermediate buffer
// to prevent mixing into audio data from the last
// callback.
memset(buffer, 0, numSamples * sizeof(Audio::st_sample_t));
// This emulates the attenuated mixing mode of SSCI
// engine, which reduces the volume of the target
// buffer when each new channel is mixed in.
// Instead of manipulating the content of the target
// buffer when mixing (which would either require
// modification of RateConverter or an expensive second
// pass against the entire target buffer), we just
// scale the volume for each channel in advance, with
// the earliest (lowest) channel having the highest
// amount of attenuation (lowest volume).
uint8 attenuationAmount;
uint8 attenuationStepAmount;
if (_useModifiedAttenuation) {
// channel | divisor
// 0 | 0 (>> 0)
// 1 | 4 (>> 2)
// 2 | 8...
attenuationAmount = _numActiveChannels * 2;
attenuationStepAmount = 2;
} else {
// channel | divisor
// 0 | 2 (>> 1)
// 1 | 4 (>> 2)
// 2 | 6...
if (_monitoredChannelIndex == -1 && _numActiveChannels > 1) {
attenuationAmount = _numActiveChannels + 1;
attenuationStepAmount = 1;
} else {
attenuationAmount = 0;
attenuationStepAmount = 0;
}
}
int maxSamplesWritten = 0;
for (int16 channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) {
attenuationAmount -= attenuationStepAmount;
const AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick || (channel.robot && _robotAudioPaused)) {
continue;
}
// Channel finished fading and had the
// stopChannelOnFade flag set, so no longer exists
if (channel.fadeStartTick && processFade(channelIndex)) {
--channelIndex;
continue;
}
if (channel.robot) {
if (channel.stream->endOfStream()) {
stop(channelIndex--);
} else {
const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, kMaxVolume, kMaxVolume, channel.loop);
if (channelSamplesWritten > maxSamplesWritten) {
maxSamplesWritten = channelSamplesWritten;
}
}
continue;
}
Audio::st_volume_t leftVolume, rightVolume;
if (channel.pan == -1 || !isStereo()) {
leftVolume = rightVolume = channel.volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
} else {
// TODO: This should match the SCI3 algorithm,
// which seems to halve the volume of each
// channel when centered; is this intended?
leftVolume = channel.volume * (100 - channel.pan) / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
rightVolume = channel.volume * channel.pan / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume;
}
if (_monitoredChannelIndex == -1 && _attenuatedMixing) {
leftVolume >>= attenuationAmount;
rightVolume >>= attenuationAmount;
}
if (channelIndex == _monitoredChannelIndex) {
const size_t bufferSize = numSamples * sizeof(Audio::st_sample_t);
if (_monitoredBufferSize < bufferSize) {
_monitoredBuffer = (Audio::st_sample_t *)realloc(_monitoredBuffer, bufferSize);
_monitoredBufferSize = bufferSize;
}
memset(_monitoredBuffer, 0, _monitoredBufferSize);
_numMonitoredSamples = writeAudioInternal(channel.stream, channel.converter, _monitoredBuffer, numSamples, leftVolume, rightVolume, channel.loop);
Audio::st_sample_t *sourceBuffer = _monitoredBuffer;
Audio::st_sample_t *targetBuffer = buffer;
const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples;
while (sourceBuffer != end) {
Audio::clampedAdd(*targetBuffer++, *sourceBuffer++);
}
if (_numMonitoredSamples > maxSamplesWritten) {
maxSamplesWritten = _numMonitoredSamples;
}
} else if (!channel.stream->endOfStream() || channel.loop) {
if (_monitoredChannelIndex != -1) {
// Audio that is not on the monitored channel is silent
// when the monitored channel is active, but the stream still
// needs to be read in order to ensure that sound effects sync
// up once the monitored channel is turned off. The easiest
// way to guarantee this is to just do the normal channel read,
// but set the channel volume to zero so nothing is mixed in
leftVolume = rightVolume = 0;
}
const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, leftVolume, rightVolume, channel.loop);
if (channelSamplesWritten > maxSamplesWritten) {
maxSamplesWritten = channelSamplesWritten;
}
}
}
_inAudioThread = false;
return maxSamplesWritten;
}
#pragma mark -
#pragma mark Channel management
int16 Audio32::findChannelByArgs(int argc, const reg_t *argv, const int startIndex, const reg_t soundNode) const {
// NOTE: argc/argv are already reduced by one in our engine because
// this call is always made from a subop, so no reduction for the
// subop is made in this function. SSCI takes extra steps to skip
// the subop argument.
argc -= startIndex;
if (argc <= 0) {
return kAllChannels;
}
Common::StackLock lock(_mutex);
if (_numActiveChannels == 0) {
return kNoExistingChannel;
}
ResourceId searchId;
if (argc < 5) {
searchId = ResourceId(kResourceTypeAudio, argv[startIndex].toUint16());
} else {
searchId = ResourceId(
kResourceTypeAudio36,
argv[startIndex].toUint16(),
argv[startIndex + 1].toUint16(),
argv[startIndex + 2].toUint16(),
argv[startIndex + 3].toUint16(),
argv[startIndex + 4].toUint16()
);
}
return findChannelById(searchId, soundNode);
}
int16 Audio32::findChannelById(const ResourceId resourceId, const reg_t soundNode) const {
Common::StackLock lock(_mutex);
if (_numActiveChannels == 0) {
return kNoExistingChannel;
}
if (resourceId.getType() == kResourceTypeAudio) {
for (int16 i = 0; i < _numActiveChannels; ++i) {
const AudioChannel channel = _channels[i];
if (
channel.id == resourceId &&
(soundNode.isNull() || soundNode == channel.soundNode)
) {
return i;
}
}
} else if (resourceId.getType() == kResourceTypeAudio36) {
for (int16 i = 0; i < _numActiveChannels; ++i) {
const AudioChannel &candidate = getChannel(i);
if (!candidate.robot && candidate.id == resourceId) {
return i;
}
}
} else {
error("Audio32::findChannelById: Unknown resource type %d", resourceId.getType());
}
return kNoExistingChannel;
}
void Audio32::freeUnusedChannels() {
Common::StackLock lock(_mutex);
for (int channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) {
const AudioChannel &channel = getChannel(channelIndex);
if (!channel.robot && channel.stream->endOfStream()) {
if (channel.loop) {
dynamic_cast<Audio::SeekableAudioStream *>(channel.stream)->rewind();
} else {
stop(channelIndex--);
}
}
}
if (!_inAudioThread) {
unlockResources();
}
}
void Audio32::freeChannel(const int16 channelIndex) {
// The original engine did this:
// 1. Unlock memory-cached resource, if one existed
// 2. Close patched audio file descriptor, if one existed
// 3. Free decompression memory buffer, if one existed
// 4. Clear monitored memory buffer, if one existed
Common::StackLock lock(_mutex);
AudioChannel &channel = getChannel(channelIndex);
// Robots have no corresponding resource to free
if (channel.robot) {
delete channel.stream;
channel.stream = nullptr;
channel.robot = false;
} else {
// We cannot unlock resources from the audio thread
// because ResourceManager is not thread-safe; instead,
// we just record that the resource needs unlocking and
// unlock it whenever we are on the main thread again
if (_inAudioThread) {
_resourcesToUnlock.push_back(channel.resource);
} else {
_resMan->unlockResource(channel.resource);
}
channel.resource = nullptr;
delete channel.stream;
channel.stream = nullptr;
delete channel.resourceStream;
channel.resourceStream = nullptr;
}
delete channel.converter;
channel.converter = nullptr;
if (_monitoredChannelIndex == channelIndex) {
_monitoredChannelIndex = -1;
}
}
void Audio32::unlockResources() {
Common::StackLock lock(_mutex);
assert(!_inAudioThread);
for (UnlockList::const_iterator it = _resourcesToUnlock.begin(); it != _resourcesToUnlock.end(); ++it) {
_resMan->unlockResource(*it);
}
_resourcesToUnlock.clear();
}
#pragma mark -
#pragma mark Script compatibility
void Audio32::setSampleRate(uint16 rate) {
if (rate > _maxAllowedSampleRate) {
rate = _maxAllowedSampleRate;
}
_globalSampleRate = rate;
}
void Audio32::setBitDepth(uint8 depth) {
if (depth > _maxAllowedBitDepth) {
depth = _maxAllowedBitDepth;
}
_globalBitDepth = depth;
}
void Audio32::setNumOutputChannels(int16 numChannels) {
if (numChannels > _maxAllowedOutputChannels) {
numChannels = _maxAllowedOutputChannels;
}
_globalNumOutputChannels = numChannels;
}
#pragma mark -
#pragma mark Robot
int16 Audio32::findRobotChannel() const {
Common::StackLock lock(_mutex);
for (int16 i = 0; i < _numActiveChannels; ++i) {
if (_channels[i].robot) {
return i;
}
}
return kNoExistingChannel;
}
bool Audio32::playRobotAudio(const RobotAudioStream::RobotAudioPacket &packet) {
// Stop immediately
if (packet.dataSize == 0) {
warning("Stopping robot stream by zero-length packet");
return stopRobotAudio();
}
// Flush and then stop
if (packet.dataSize == -1) {
warning("Stopping robot stream by negative-length packet");
return finishRobotAudio();
}
Common::StackLock lock(_mutex);
int16 channelIndex = findRobotChannel();
bool isNewChannel = false;
if (channelIndex == kNoExistingChannel) {
if (_numActiveChannels == _channels.size()) {
return false;
}
channelIndex = _numActiveChannels++;
isNewChannel = true;
}
AudioChannel &channel = getChannel(channelIndex);
if (isNewChannel) {
channel.id = ResourceId();
channel.resource = nullptr;
channel.loop = false;
channel.robot = true;
channel.fadeStartTick = 0;
channel.pausedAtTick = 0;
channel.soundNode = NULL_REG;
channel.volume = kMaxVolume;
// TODO: SCI3 introduces stereo audio
channel.pan = -1;
channel.converter = Audio::makeRateConverter(RobotAudioStream::kRobotSampleRate, getRate(), false);
// The RobotAudioStream buffer size is
// ((bytesPerSample * channels * sampleRate * 2000ms) / 1000ms) & ~3
// where bytesPerSample = 2, channels = 1, and sampleRate = 22050
channel.stream = new RobotAudioStream(88200);
_robotAudioPaused = false;
if (_numActiveChannels == 1) {
_startedAtTick = g_sci->getTickCount();
}
}
return static_cast<RobotAudioStream *>(channel.stream)->addPacket(packet);
}
bool Audio32::queryRobotAudio(RobotAudioStream::StreamState &status) const {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
status.bytesPlaying = 0;
return false;
}
status = static_cast<RobotAudioStream *>(getChannel(channelIndex).stream)->getStatus();
return true;
}
bool Audio32::finishRobotAudio() {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
return false;
}
static_cast<RobotAudioStream *>(getChannel(channelIndex).stream)->finish();
return true;
}
bool Audio32::stopRobotAudio() {
Common::StackLock lock(_mutex);
const int16 channelIndex = findRobotChannel();
if (channelIndex == kNoExistingChannel) {
return false;
}
stop(channelIndex);
return true;
}
#pragma mark -
#pragma mark Playback
uint16 Audio32::play(int16 channelIndex, const ResourceId resourceId, const bool autoPlay, const bool loop, const int16 volume, const reg_t soundNode, const bool monitor) {
Common::StackLock lock(_mutex);
freeUnusedChannels();
if (channelIndex != kNoExistingChannel) {
AudioChannel &channel = getChannel(channelIndex);
Audio::SeekableAudioStream *stream = dynamic_cast<Audio::SeekableAudioStream *>(channel.stream);
if (channel.pausedAtTick) {
resume(channelIndex);
return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000);
}
warning("Tried to resume channel %s that was not paused", channel.id.toString().c_str());
return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000);
}
if (_numActiveChannels == _channels.size()) {
warning("Audio mixer is full when trying to play %s", resourceId.toString().c_str());
return 0;
}
// NOTE: SCI engine itself normally searches in this order:
//
// For Audio36:
//
// 1. First, request a FD using Audio36 name and use it as the
// source FD for reading the audio resource data.
// 2a. If the returned FD is -1, or equals the audio map, or
// equals the audio bundle, try to get the offset of the
// data from the audio map, using the Audio36 name.
//
// If the returned offset is -1, this is not a valid resource;
// return 0. Otherwise, set the read offset for the FD to the
// returned offset.
// 2b. Otherwise, use the FD as-is (it is a patch file), with zero
// offset, and record it separately so it can be closed later.
//
// For plain audio:
//
// 1. First, request an Audio resource from the resource cache. If
// one does not exist, make the same request for a Wave resource.
// 2a. If an audio resource was discovered, record its memory ID
// and clear the streaming FD
// 2b. Otherwise, request an Audio FD. If one does not exist, make
// the same request for a Wave FD. If neither exist, this is not
// a valid resource; return 0. Otherwise, use the returned FD as
// the streaming ID and set the memory ID to null.
//
// Once these steps are complete, the audio engine either has a file
// descriptor + offset that it can use to read streamed audio, or it
// has a memory ID that it can use to read cached audio.
//
// Here in ScummVM we just ask the resource manager to give us the
// resource and we get a seekable stream.
// TODO: This should be fixed to use streaming, which means
// fixing the resource manager to allow streaming, which means
// probably rewriting a bunch of the resource manager.
Resource *resource = _resMan->findResource(resourceId, true);
if (resource == nullptr) {
return 0;
}
channelIndex = _numActiveChannels++;
AudioChannel &channel = getChannel(channelIndex);
channel.id = resourceId;
channel.resource = resource;
channel.loop = loop;
channel.robot = false;
channel.fadeStartTick = 0;
channel.soundNode = soundNode;
channel.volume = volume < 0 || volume > kMaxVolume ? (int)kMaxVolume : volume;
// TODO: SCI3 introduces stereo audio
channel.pan = -1;
if (monitor) {
_monitoredChannelIndex = channelIndex;
}
Common::MemoryReadStream headerStream(resource->_header, resource->_headerSize, DisposeAfterUse::NO);
Common::SeekableReadStream *dataStream = channel.resourceStream = resource->makeStream();
if (detectSolAudio(headerStream)) {
channel.stream = makeSOLStream(&headerStream, dataStream, DisposeAfterUse::NO);
} else if (detectWaveAudio(*dataStream)) {
channel.stream = Audio::makeWAVStream(dataStream, DisposeAfterUse::NO);
} else {
byte flags = Audio::FLAG_LITTLE_ENDIAN;
if (_globalBitDepth == 16) {
flags |= Audio::FLAG_16BITS;
} else {
flags |= Audio::FLAG_UNSIGNED;
}
if (_globalNumOutputChannels == 2) {
flags |= Audio::FLAG_STEREO;
}
channel.stream = Audio::makeRawStream(dataStream, _globalSampleRate, flags, DisposeAfterUse::NO);
}
channel.converter = Audio::makeRateConverter(channel.stream->getRate(), getRate(), channel.stream->isStereo(), false);
// NOTE: SCI engine sets up a decompression buffer here for the audio
// stream, plus writes information about the sample to the channel to
// convert to the correct hardware output format, and allocates the
// monitoring buffer to match the bitrate/samplerate/channels of the
// original stream. We do not need to do any of these things since we
// use audio streams, and allocate and fill the monitoring buffer
// when reading audio data from the stream.
channel.duration = /* round up */ 1 + (dynamic_cast<Audio::SeekableAudioStream *>(channel.stream)->getLength().msecs() * 60 / 1000);
const uint32 now = g_sci->getTickCount();
channel.pausedAtTick = autoPlay ? 0 : now;
channel.startedAtTick = now;
if (_numActiveChannels == 1) {
_startedAtTick = now;
}
return channel.duration;
}
bool Audio32::resume(const int16 channelIndex) {
if (channelIndex == kNoExistingChannel) {
return false;
}
Common::StackLock lock(_mutex);
const uint32 now = g_sci->getTickCount();
if (channelIndex == kAllChannels) {
// Global pause in SSCI is an extra layer over
// individual channel pauses, so only unpause channels
// if there was not a global pause in place
if (_pausedAtTick == 0) {
return false;
}
for (int i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (!channel.pausedAtTick) {
channel.startedAtTick += now - _pausedAtTick;
}
}
_startedAtTick += now - _pausedAtTick;
_pausedAtTick = 0;
return true;
} else if (channelIndex == kRobotChannel) {
for (int i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (channel.robot) {
channel.startedAtTick += now - channel.pausedAtTick;
channel.pausedAtTick = 0;
return true;
}
}
} else {
AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick) {
channel.startedAtTick += now - channel.pausedAtTick;
channel.pausedAtTick = 0;
return true;
}
}
return false;
}
bool Audio32::pause(const int16 channelIndex) {
if (channelIndex == kNoExistingChannel) {
return false;
}
Common::StackLock lock(_mutex);
const uint32 now = g_sci->getTickCount();
bool didPause = false;
if (channelIndex == kAllChannels) {
if (_pausedAtTick == 0) {
_pausedAtTick = now;
didPause = true;
}
} else if (channelIndex == kRobotChannel) {
_robotAudioPaused = true;
for (int16 i = 0; i < _numActiveChannels; ++i) {
AudioChannel &channel = getChannel(i);
if (channel.robot) {
channel.pausedAtTick = now;
}
}
// NOTE: The actual engine returns false here regardless of whether
// or not channels were paused
} else {
AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick == 0) {
channel.pausedAtTick = now;
didPause = true;
}
}
return didPause;
}
int16 Audio32::stop(const int16 channelIndex) {
Common::StackLock lock(_mutex);
const int16 oldNumChannels = _numActiveChannels;
if (channelIndex == kNoExistingChannel || oldNumChannels == 0) {
return 0;
}
if (channelIndex == kAllChannels) {
for (int i = 0; i < oldNumChannels; ++i) {
freeChannel(i);
}
_numActiveChannels = 0;
} else {
freeChannel(channelIndex);
--_numActiveChannels;
for (int i = channelIndex; i < oldNumChannels - 1; ++i) {
_channels[i] = _channels[i + 1];
if (i + 1 == _monitoredChannelIndex) {
_monitoredChannelIndex = i;
}
}
}
// NOTE: SSCI stops the DSP interrupt and frees the
// global decompression buffer here if there are no
// more active channels
return oldNumChannels;
}
int16 Audio32::getPosition(const int16 channelIndex) const {
Common::StackLock lock(_mutex);
if (channelIndex == kNoExistingChannel || _numActiveChannels == 0) {
return -1;
}
// NOTE: SSCI treats this as an unsigned short except for
// when the value is 65535, then it treats it as signed
int position = -1;
const uint32 now = g_sci->getTickCount();
// NOTE: The original engine also queried the audio driver to see whether
// it thought that there was audio playback occurring via driver opcode 9
if (channelIndex == kAllChannels) {
if (_pausedAtTick) {
position = _pausedAtTick - _startedAtTick;
} else {
position = now - _startedAtTick;
}
} else {
const AudioChannel &channel = getChannel(channelIndex);
if (channel.pausedAtTick) {
position = channel.pausedAtTick - channel.startedAtTick;
} else if (_pausedAtTick) {
position = _pausedAtTick - channel.startedAtTick;
} else {
position = now - channel.startedAtTick;
}
}
return MIN(position, 65534);
}
void Audio32::setLoop(const int16 channelIndex, const bool loop) {
Common::StackLock lock(_mutex);
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return;
}
AudioChannel &channel = getChannel(channelIndex);
channel.loop = loop;
}
reg_t Audio32::kernelPlay(const bool autoPlay, const int argc, const reg_t *const argv) {
if (argc == 0) {
return make_reg(0, _numActiveChannels);
}
const int16 channelIndex = findChannelByArgs(argc, argv, 0, NULL_REG);
ResourceId resourceId;
bool loop;
int16 volume;
bool monitor = false;
reg_t soundNode = NULL_REG;
if (argc >= 5) {
resourceId = ResourceId(kResourceTypeAudio36, argv[0].toUint16(), argv[1].toUint16(), argv[2].toUint16(), argv[3].toUint16(), argv[4].toUint16());
if (argc < 6 || argv[5].toSint16() == 1) {
loop = false;
} else {
// NOTE: Uses -1 for infinite loop. Presumably the
// engine was supposed to allow counter loops at one
// point, but ended up only using loop as a boolean.
loop = (bool)argv[5].toSint16();
}
if (argc < 7 || argv[6].toSint16() < 0 || argv[6].toSint16() > Audio32::kMaxVolume) {
volume = Audio32::kMaxVolume;
if (argc >= 7) {
monitor = true;
}
} else {
volume = argv[6].toSint16();
}
} else {
resourceId = ResourceId(kResourceTypeAudio, argv[0].toUint16());
if (argc < 2 || argv[1].toSint16() == 1) {
loop = false;
} else {
loop = (bool)argv[1].toSint16();
}
// TODO: SCI3 uses the 0x80 bit as a flag to
// indicate "priority channel", but the volume is clamped
// in this call to 0x7F so that flag never makes it into
// the audio subsystem
if (argc < 3 || argv[2].toSint16() < 0 || argv[2].toSint16() > Audio32::kMaxVolume) {
volume = Audio32::kMaxVolume;
if (argc >= 3) {
monitor = true;
}
} else {
volume = argv[2].toSint16();
}
soundNode = argc == 4 ? argv[3] : NULL_REG;
}
return make_reg(0, play(channelIndex, resourceId, autoPlay, loop, volume, soundNode, monitor));
}
#pragma mark -
#pragma mark Effects
int16 Audio32::getVolume(const int16 channelIndex) const {
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return _mixer->getChannelVolume(_handle) * kMaxVolume / Audio::Mixer::kMaxChannelVolume;
}
Common::StackLock lock(_mutex);
return getChannel(channelIndex).volume;
}
void Audio32::setVolume(const int16 channelIndex, int16 volume) {
volume = MIN((int16)kMaxVolume, volume);
if (channelIndex == kAllChannels) {
ConfMan.setInt("sfx_volume", volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
ConfMan.setInt("speech_volume", volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
_mixer->setChannelVolume(_handle, volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume);
g_engine->syncSoundSettings();
} else if (channelIndex != kNoExistingChannel) {
Common::StackLock lock(_mutex);
getChannel(channelIndex).volume = volume;
}
}
bool Audio32::fadeChannel(const int16 channelIndex, const int16 targetVolume, const int16 speed, const int16 steps, const bool stopAfterFade) {
Common::StackLock lock(_mutex);
if (channelIndex < 0 || channelIndex >= _numActiveChannels) {
return false;
}
AudioChannel &channel = getChannel(channelIndex);
if (channel.id.getType() != kResourceTypeAudio || channel.volume == targetVolume) {
return false;
}
if (steps && speed) {
channel.fadeStartTick = g_sci->getTickCount();
channel.fadeStartVolume = channel.volume;
channel.fadeTargetVolume = targetVolume;
channel.fadeDuration = speed * steps;
channel.stopChannelOnFade = stopAfterFade;
} else {
setVolume(channelIndex, targetVolume);
}
return true;
}
bool Audio32::processFade(const int16 channelIndex) {
Common::StackLock lock(_mutex);
AudioChannel &channel = getChannel(channelIndex);
if (channel.fadeStartTick) {
const uint32 fadeElapsed = g_sci->getTickCount() - channel.fadeStartTick;
if (fadeElapsed > channel.fadeDuration) {
channel.fadeStartTick = 0;
if (channel.stopChannelOnFade) {
stop(channelIndex);
return true;
} else {
setVolume(channelIndex, channel.fadeTargetVolume);
}
return false;
}
int volume;
if (channel.fadeStartVolume > channel.fadeTargetVolume) {
volume = channel.fadeStartVolume - fadeElapsed * (channel.fadeStartVolume - channel.fadeTargetVolume) / channel.fadeDuration;
} else {
volume = channel.fadeStartVolume + fadeElapsed * (channel.fadeTargetVolume - channel.fadeStartVolume) / channel.fadeDuration;
}
setVolume(channelIndex, volume);
return false;
}
return false;
}
#pragma mark -
#pragma mark Signal monitoring
bool Audio32::hasSignal() const {
Common::StackLock lock(_mutex);
if (_monitoredChannelIndex == -1) {
return false;
}
const Audio::st_sample_t *buffer = _monitoredBuffer;
const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples;
while (buffer != end) {
const Audio::st_sample_t sample = *buffer++;
if (sample > 1280 || sample < -1280) {
return true;
}
}
return false;
}
} // End of namespace Sci
|