1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Based off ffmpeg's QDM2 decoder
#include "common/scummsys.h"
#include "audio/decoders/qdm2.h"
#ifdef AUDIO_QDM2_H
#include "audio/audiostream.h"
#include "audio/decoders/codec.h"
#include "audio/decoders/qdm2data.h"
#include "audio/decoders/raw.h"
#include "common/array.h"
#include "common/debug.h"
#include "common/math.h"
#include "common/rdft.h"
#include "common/stream.h"
#include "common/memstream.h"
#include "common/bitstream.h"
#include "common/textconsole.h"
namespace Audio {
enum {
SOFTCLIP_THRESHOLD = 27600,
HARDCLIP_THRESHOLD = 35716,
MPA_MAX_CHANNELS = 2,
MPA_FRAME_SIZE = 1152,
FF_INPUT_BUFFER_PADDING_SIZE = 8
};
typedef int8 sb_int8_array[2][30][64];
struct QDM2SubPacket {
int type;
unsigned int size;
const uint8 *data; // pointer to subpacket data (points to input data buffer, it's not a private copy)
};
struct QDM2SubPNode {
QDM2SubPacket *packet;
struct QDM2SubPNode *next; // pointer to next packet in the list, NULL if leaf node
};
struct QDM2Complex {
float re;
float im;
};
struct FFTTone {
float level;
QDM2Complex *complex;
const float *table;
int phase;
int phase_shift;
int duration;
short time_index;
short cutoff;
};
struct FFTCoefficient {
int16 sub_packet;
uint8 channel;
int16 offset;
int16 exp;
uint8 phase;
};
struct VLC {
int32 bits;
int16 (*table)[2]; // code, bits
int32 table_size;
int32 table_allocated;
};
#include "common/pack-start.h"
struct QDM2FFT {
QDM2Complex complex[MPA_MAX_CHANNELS][256];
} PACKED_STRUCT;
#include "common/pack-end.h"
class QDM2Stream : public Codec {
public:
QDM2Stream(Common::SeekableReadStream *extraData, DisposeAfterUse::Flag disposeExtraData);
~QDM2Stream();
AudioStream *decodeFrame(Common::SeekableReadStream &stream);
private:
// Parameters from codec header, do not change during playback
uint8 _channels;
uint16 _sampleRate;
uint16 _bitRate;
uint16 _blockSize; // Group
uint16 _frameSize; // FFT
uint16 _packetSize; // Checksum
// Parameters built from header parameters, do not change during playback
int _groupOrder; // order of frame group
int _fftOrder; // order of FFT (actually fft order+1)
int _fftFrameSize; // size of fft frame, in components (1 comples = re + im)
int _sFrameSize; // size of data frame
int _frequencyRange;
int _subSampling; // subsampling: 0=25%, 1=50%, 2=100% */
int _coeffPerSbSelect; // selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
int _cmTableSelect; // selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
// Packets and packet lists
QDM2SubPacket _subPackets[16]; // the packets themselves
QDM2SubPNode _subPacketListA[16]; // list of all packets
QDM2SubPNode _subPacketListB[16]; // FFT packets B are on list
int _subPacketsB; // number of packets on 'B' list
QDM2SubPNode _subPacketListC[16]; // packets with errors?
QDM2SubPNode _subPacketListD[16]; // DCT packets
// FFT and tones
FFTTone _fftTones[1000];
int _fftToneStart;
int _fftToneEnd;
FFTCoefficient _fftCoefs[1000];
int _fftCoefsIndex;
int _fftCoefsMinIndex[5];
int _fftCoefsMaxIndex[5];
int _fftLevelExp[6];
Common::RDFT *_rdft;
QDM2FFT _fft;
// I/O data
uint8 *_compressedData;
float _outputBuffer[1024];
// Synthesis filter
int16 ff_mpa_synth_window[512];
int16 _synthBuf[MPA_MAX_CHANNELS][512*2];
int _synthBufOffset[MPA_MAX_CHANNELS];
int32 _sbSamples[MPA_MAX_CHANNELS][128][32];
// Mixed temporary data used in decoding
float _toneLevel[MPA_MAX_CHANNELS][30][64];
int8 _codingMethod[MPA_MAX_CHANNELS][30][64];
int8 _quantizedCoeffs[MPA_MAX_CHANNELS][10][8];
int8 _toneLevelIdxBase[MPA_MAX_CHANNELS][30][8];
int8 _toneLevelIdxHi1[MPA_MAX_CHANNELS][3][8][8];
int8 _toneLevelIdxMid[MPA_MAX_CHANNELS][26][8];
int8 _toneLevelIdxHi2[MPA_MAX_CHANNELS][26];
int8 _toneLevelIdx[MPA_MAX_CHANNELS][30][64];
int8 _toneLevelIdxTemp[MPA_MAX_CHANNELS][30][64];
// Flags
bool _hasErrors; // packet has errors
int _superblocktype_2_3; // select fft tables and some algorithm based on superblock type
int _doSynthFilter; // used to perform or skip synthesis filter
uint8 _subPacket; // 0 to 15
uint32 _superBlockStart;
int _noiseIdx; // index for dithering noise table
byte _emptyBuffer[FF_INPUT_BUFFER_PADDING_SIZE];
VLC _vlcTabLevel;
VLC _vlcTabDiff;
VLC _vlcTabRun;
VLC _fftLevelExpAltVlc;
VLC _fftLevelExpVlc;
VLC _fftStereoExpVlc;
VLC _fftStereoPhaseVlc;
VLC _vlcTabToneLevelIdxHi1;
VLC _vlcTabToneLevelIdxMid;
VLC _vlcTabToneLevelIdxHi2;
VLC _vlcTabType30;
VLC _vlcTabType34;
VLC _vlcTabFftToneOffset[5];
bool _vlcsInitialized;
void initVlc(void);
uint16 _softclipTable[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
void softclipTableInit(void);
float _noiseTable[4096];
byte _randomDequantIndex[256][5];
byte _randomDequantType24[128][3];
void rndTableInit(void);
float _noiseSamples[128];
void initNoiseSamples(void);
void average_quantized_coeffs(void);
void build_sb_samples_from_noise(int sb);
void fix_coding_method_array(int sb, int channels, sb_int8_array coding_method);
void fill_tone_level_array(int flag);
void fill_coding_method_array(sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
sb_int8_array coding_method, int nb_channels,
int c, int superblocktype_2_3, int cm_table_select);
void synthfilt_build_sb_samples(Common::BitStreamMemory32LELSB *gb, int length, int sb_min, int sb_max);
void init_quantized_coeffs_elem0(int8 *quantized_coeffs, Common::BitStreamMemory32LELSB *gb, int length);
void init_tone_level_dequantization(Common::BitStreamMemory32LELSB *gb, int length);
void process_subpacket_9(QDM2SubPNode *node);
void process_subpacket_10(QDM2SubPNode *node, int length);
void process_subpacket_11(QDM2SubPNode *node, int length);
void process_subpacket_12(QDM2SubPNode *node, int length);
void process_synthesis_subpackets(QDM2SubPNode *list);
void qdm2_decode_super_block(void);
void qdm2_fft_init_coefficient(int sub_packet, int offset, int duration,
int channel, int exp, int phase);
void qdm2_fft_decode_tones(int duration, Common::BitStreamMemory32LELSB *gb, int b);
void qdm2_decode_fft_packets(void);
void qdm2_fft_generate_tone(FFTTone *tone);
void qdm2_fft_tone_synthesizer(uint8 sub_packet);
void qdm2_calculate_fft(int channel);
void qdm2_synthesis_filter(uint8 index);
bool qdm2_decodeFrame(Common::SeekableReadStream &in, QueuingAudioStream *audioStream);
};
#define QDM2_LIST_ADD(list, size, packet) \
do { \
if (size > 0) \
list[size - 1].next = &list[size]; \
list[size].packet = packet; \
list[size].next = NULL; \
size++; \
} while(0)
// Result is 8, 16 or 30
#define QDM2_SB_USED(subSampling) (((subSampling) >= 2) ? 30 : 8 << (subSampling))
#define FIX_NOISE_IDX(noiseIdx) \
if ((noiseIdx) >= 3840) \
(noiseIdx) -= 3840 \
#define SB_DITHERING_NOISE(sb, noiseIdx) (_noiseTable[(noiseIdx)++] * sb_noise_attenuation[(sb)])
// half mpeg encoding window (full precision)
const int32 ff_mpa_enwindow[257] = {
0, -1, -1, -1, -1, -1, -1, -2,
-2, -2, -2, -3, -3, -4, -4, -5,
-5, -6, -7, -7, -8, -9, -10, -11,
-13, -14, -16, -17, -19, -21, -24, -26,
-29, -31, -35, -38, -41, -45, -49, -53,
-58, -63, -68, -73, -79, -85, -91, -97,
-104, -111, -117, -125, -132, -139, -147, -154,
-161, -169, -176, -183, -190, -196, -202, -208,
213, 218, 222, 225, 227, 228, 228, 227,
224, 221, 215, 208, 200, 189, 177, 163,
146, 127, 106, 83, 57, 29, -2, -36,
-72, -111, -153, -197, -244, -294, -347, -401,
-459, -519, -581, -645, -711, -779, -848, -919,
-991, -1064, -1137, -1210, -1283, -1356, -1428, -1498,
-1567, -1634, -1698, -1759, -1817, -1870, -1919, -1962,
-2001, -2032, -2057, -2075, -2085, -2087, -2080, -2063,
2037, 2000, 1952, 1893, 1822, 1739, 1644, 1535,
1414, 1280, 1131, 970, 794, 605, 402, 185,
-45, -288, -545, -814, -1095, -1388, -1692, -2006,
-2330, -2663, -3004, -3351, -3705, -4063, -4425, -4788,
-5153, -5517, -5879, -6237, -6589, -6935, -7271, -7597,
-7910, -8209, -8491, -8755, -8998, -9219, -9416, -9585,
-9727, -9838, -9916, -9959, -9966, -9935, -9863, -9750,
-9592, -9389, -9139, -8840, -8492, -8092, -7640, -7134,
6574, 5959, 5288, 4561, 3776, 2935, 2037, 1082,
70, -998, -2122, -3300, -4533, -5818, -7154, -8540,
-9975,-11455,-12980,-14548,-16155,-17799,-19478,-21189,
-22929,-24694,-26482,-28289,-30112,-31947,-33791,-35640,
-37489,-39336,-41176,-43006,-44821,-46617,-48390,-50137,
-51853,-53534,-55178,-56778,-58333,-59838,-61289,-62684,
-64019,-65290,-66494,-67629,-68692,-69679,-70590,-71420,
-72169,-72835,-73415,-73908,-74313,-74630,-74856,-74992,
75038
};
void ff_mpa_synth_init(int16 *window) {
int i;
int32 v;
// max = 18760, max sum over all 16 coefs : 44736
for(i = 0; i < 257; i++) {
v = ff_mpa_enwindow[i];
v = (v + 2) >> 2;
window[i] = v;
if ((i & 63) != 0)
v = -v;
if (i != 0)
window[512 - i] = v;
}
}
static inline uint16 round_sample(int *sum) {
int sum1;
sum1 = (*sum) >> 14;
*sum &= (1 << 14)-1;
if (sum1 < (-0x7fff - 1))
sum1 = (-0x7fff - 1);
if (sum1 > 0x7fff)
sum1 = 0x7fff;
return sum1;
}
static inline int MULH(int a, int b) {
return ((int64)(a) * (int64)(b))>>32;
}
// signed 16x16 -> 32 multiply add accumulate
#define MACS(rt, ra, rb) rt += (ra) * (rb)
#define MLSS(rt, ra, rb) ((rt) -= (ra) * (rb))
#define SUM8(op, sum, w, p)\
{\
op(sum, (w)[0 * 64], (p)[0 * 64]);\
op(sum, (w)[1 * 64], (p)[1 * 64]);\
op(sum, (w)[2 * 64], (p)[2 * 64]);\
op(sum, (w)[3 * 64], (p)[3 * 64]);\
op(sum, (w)[4 * 64], (p)[4 * 64]);\
op(sum, (w)[5 * 64], (p)[5 * 64]);\
op(sum, (w)[6 * 64], (p)[6 * 64]);\
op(sum, (w)[7 * 64], (p)[7 * 64]);\
}
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
{\
tmp_s = p[0 * 64];\
op1(sum1, (w1)[0 * 64], tmp_s);\
op2(sum2, (w2)[0 * 64], tmp_s);\
tmp_s = p[1 * 64];\
op1(sum1, (w1)[1 * 64], tmp_s);\
op2(sum2, (w2)[1 * 64], tmp_s);\
tmp_s = p[2 * 64];\
op1(sum1, (w1)[2 * 64], tmp_s);\
op2(sum2, (w2)[2 * 64], tmp_s);\
tmp_s = p[3 * 64];\
op1(sum1, (w1)[3 * 64], tmp_s);\
op2(sum2, (w2)[3 * 64], tmp_s);\
tmp_s = p[4 * 64];\
op1(sum1, (w1)[4 * 64], tmp_s);\
op2(sum2, (w2)[4 * 64], tmp_s);\
tmp_s = p[5 * 64];\
op1(sum1, (w1)[5 * 64], tmp_s);\
op2(sum2, (w2)[5 * 64], tmp_s);\
tmp_s = p[6 * 64];\
op1(sum1, (w1)[6 * 64], tmp_s);\
op2(sum2, (w2)[6 * 64], tmp_s);\
tmp_s = p[7 * 64];\
op1(sum1, (w1)[7 * 64], tmp_s);\
op2(sum2, (w2)[7 * 64], tmp_s);\
}
#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
// tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j)))
// cos(i*pi/64)
#define COS0_0 FIXHR(0.50060299823519630134/2)
#define COS0_1 FIXHR(0.50547095989754365998/2)
#define COS0_2 FIXHR(0.51544730992262454697/2)
#define COS0_3 FIXHR(0.53104259108978417447/2)
#define COS0_4 FIXHR(0.55310389603444452782/2)
#define COS0_5 FIXHR(0.58293496820613387367/2)
#define COS0_6 FIXHR(0.62250412303566481615/2)
#define COS0_7 FIXHR(0.67480834145500574602/2)
#define COS0_8 FIXHR(0.74453627100229844977/2)
#define COS0_9 FIXHR(0.83934964541552703873/2)
#define COS0_10 FIXHR(0.97256823786196069369/2)
#define COS0_11 FIXHR(1.16943993343288495515/4)
#define COS0_12 FIXHR(1.48416461631416627724/4)
#define COS0_13 FIXHR(2.05778100995341155085/8)
#define COS0_14 FIXHR(3.40760841846871878570/8)
#define COS0_15 FIXHR(10.19000812354805681150/32)
#define COS1_0 FIXHR(0.50241928618815570551/2)
#define COS1_1 FIXHR(0.52249861493968888062/2)
#define COS1_2 FIXHR(0.56694403481635770368/2)
#define COS1_3 FIXHR(0.64682178335999012954/2)
#define COS1_4 FIXHR(0.78815462345125022473/2)
#define COS1_5 FIXHR(1.06067768599034747134/4)
#define COS1_6 FIXHR(1.72244709823833392782/4)
#define COS1_7 FIXHR(5.10114861868916385802/16)
#define COS2_0 FIXHR(0.50979557910415916894/2)
#define COS2_1 FIXHR(0.60134488693504528054/2)
#define COS2_2 FIXHR(0.89997622313641570463/2)
#define COS2_3 FIXHR(2.56291544774150617881/8)
#define COS3_0 FIXHR(0.54119610014619698439/2)
#define COS3_1 FIXHR(1.30656296487637652785/4)
#define COS4_0 FIXHR(0.70710678118654752439/2)
/* butterfly operator */
#define BF(a, b, c, s)\
{\
tmp0 = tab[a] + tab[b];\
tmp1 = tab[a] - tab[b];\
tab[a] = tmp0;\
tab[b] = MULH(tmp1<<(s), c);\
}
#define BF1(a, b, c, d)\
{\
BF(a, b, COS4_0, 1);\
BF(c, d,-COS4_0, 1);\
tab[c] += tab[d];\
}
#define BF2(a, b, c, d)\
{\
BF(a, b, COS4_0, 1);\
BF(c, d,-COS4_0, 1);\
tab[c] += tab[d];\
tab[a] += tab[c];\
tab[c] += tab[b];\
tab[b] += tab[d];\
}
#define ADD(a, b) tab[a] += tab[b]
// DCT32 without 1/sqrt(2) coef zero scaling.
static void dct32(int32 *out, int32 *tab) {
int tmp0, tmp1;
// pass 1
BF( 0, 31, COS0_0 , 1);
BF(15, 16, COS0_15, 5);
// pass 2
BF( 0, 15, COS1_0 , 1);
BF(16, 31,-COS1_0 , 1);
// pass 1
BF( 7, 24, COS0_7 , 1);
BF( 8, 23, COS0_8 , 1);
// pass 2
BF( 7, 8, COS1_7 , 4);
BF(23, 24,-COS1_7 , 4);
// pass 3
BF( 0, 7, COS2_0 , 1);
BF( 8, 15,-COS2_0 , 1);
BF(16, 23, COS2_0 , 1);
BF(24, 31,-COS2_0 , 1);
// pass 1
BF( 3, 28, COS0_3 , 1);
BF(12, 19, COS0_12, 2);
// pass 2
BF( 3, 12, COS1_3 , 1);
BF(19, 28,-COS1_3 , 1);
// pass 1
BF( 4, 27, COS0_4 , 1);
BF(11, 20, COS0_11, 2);
// pass 2
BF( 4, 11, COS1_4 , 1);
BF(20, 27,-COS1_4 , 1);
// pass 3
BF( 3, 4, COS2_3 , 3);
BF(11, 12,-COS2_3 , 3);
BF(19, 20, COS2_3 , 3);
BF(27, 28,-COS2_3 , 3);
// pass 4
BF( 0, 3, COS3_0 , 1);
BF( 4, 7,-COS3_0 , 1);
BF( 8, 11, COS3_0 , 1);
BF(12, 15,-COS3_0 , 1);
BF(16, 19, COS3_0 , 1);
BF(20, 23,-COS3_0 , 1);
BF(24, 27, COS3_0 , 1);
BF(28, 31,-COS3_0 , 1);
// pass 1
BF( 1, 30, COS0_1 , 1);
BF(14, 17, COS0_14, 3);
// pass 2
BF( 1, 14, COS1_1 , 1);
BF(17, 30,-COS1_1 , 1);
// pass 1
BF( 6, 25, COS0_6 , 1);
BF( 9, 22, COS0_9 , 1);
// pass 2
BF( 6, 9, COS1_6 , 2);
BF(22, 25,-COS1_6 , 2);
// pass 3
BF( 1, 6, COS2_1 , 1);
BF( 9, 14,-COS2_1 , 1);
BF(17, 22, COS2_1 , 1);
BF(25, 30,-COS2_1 , 1);
// pass 1
BF( 2, 29, COS0_2 , 1);
BF(13, 18, COS0_13, 3);
// pass 2
BF( 2, 13, COS1_2 , 1);
BF(18, 29,-COS1_2 , 1);
// pass 1
BF( 5, 26, COS0_5 , 1);
BF(10, 21, COS0_10, 1);
// pass 2
BF( 5, 10, COS1_5 , 2);
BF(21, 26,-COS1_5 , 2);
// pass 3
BF( 2, 5, COS2_2 , 1);
BF(10, 13,-COS2_2 , 1);
BF(18, 21, COS2_2 , 1);
BF(26, 29,-COS2_2 , 1);
// pass 4
BF( 1, 2, COS3_1 , 2);
BF( 5, 6,-COS3_1 , 2);
BF( 9, 10, COS3_1 , 2);
BF(13, 14,-COS3_1 , 2);
BF(17, 18, COS3_1 , 2);
BF(21, 22,-COS3_1 , 2);
BF(25, 26, COS3_1 , 2);
BF(29, 30,-COS3_1 , 2);
// pass 5
BF1( 0, 1, 2, 3);
BF2( 4, 5, 6, 7);
BF1( 8, 9, 10, 11);
BF2(12, 13, 14, 15);
BF1(16, 17, 18, 19);
BF2(20, 21, 22, 23);
BF1(24, 25, 26, 27);
BF2(28, 29, 30, 31);
// pass 6
ADD( 8, 12);
ADD(12, 10);
ADD(10, 14);
ADD(14, 9);
ADD( 9, 13);
ADD(13, 11);
ADD(11, 15);
out[ 0] = tab[0];
out[16] = tab[1];
out[ 8] = tab[2];
out[24] = tab[3];
out[ 4] = tab[4];
out[20] = tab[5];
out[12] = tab[6];
out[28] = tab[7];
out[ 2] = tab[8];
out[18] = tab[9];
out[10] = tab[10];
out[26] = tab[11];
out[ 6] = tab[12];
out[22] = tab[13];
out[14] = tab[14];
out[30] = tab[15];
ADD(24, 28);
ADD(28, 26);
ADD(26, 30);
ADD(30, 25);
ADD(25, 29);
ADD(29, 27);
ADD(27, 31);
out[ 1] = tab[16] + tab[24];
out[17] = tab[17] + tab[25];
out[ 9] = tab[18] + tab[26];
out[25] = tab[19] + tab[27];
out[ 5] = tab[20] + tab[28];
out[21] = tab[21] + tab[29];
out[13] = tab[22] + tab[30];
out[29] = tab[23] + tab[31];
out[ 3] = tab[24] + tab[20];
out[19] = tab[25] + tab[21];
out[11] = tab[26] + tab[22];
out[27] = tab[27] + tab[23];
out[ 7] = tab[28] + tab[18];
out[23] = tab[29] + tab[19];
out[15] = tab[30] + tab[17];
out[31] = tab[31];
}
// 32 sub band synthesis filter. Input: 32 sub band samples, Output:
// 32 samples.
// XXX: optimize by avoiding ring buffer usage
void ff_mpa_synth_filter(int16 *synth_buf_ptr, int *synth_buf_offset,
int16 *window, int *dither_state,
int16 *samples, int incr,
int32 sb_samples[32])
{
int16 *synth_buf;
const int16 *w, *w2, *p;
int j, offset;
int16 *samples2;
int32 tmp[32];
int sum, sum2;
int tmp_s;
offset = *synth_buf_offset;
synth_buf = synth_buf_ptr + offset;
dct32(tmp, sb_samples);
for(j = 0; j < 32; j++) {
// NOTE: can cause a loss in precision if very high amplitude sound
if (tmp[j] < (-0x7fff - 1))
synth_buf[j] = (-0x7fff - 1);
else if (tmp[j] > 0x7fff)
synth_buf[j] = 0x7fff;
else
synth_buf[j] = tmp[j];
}
// copy to avoid wrap
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(int16));
samples2 = samples + 31 * incr;
w = window;
w2 = window + 31;
sum = *dither_state;
p = synth_buf + 16;
SUM8(MACS, sum, w, p);
p = synth_buf + 48;
SUM8(MLSS, sum, w + 32, p);
*samples = round_sample(&sum);
samples += incr;
w++;
// we calculate two samples at the same time to avoid one memory
// access per two sample
for(j = 1; j < 16; j++) {
sum2 = 0;
p = synth_buf + 16 + j;
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
p = synth_buf + 48 - j;
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
*samples = round_sample(&sum);
samples += incr;
sum += sum2;
*samples2 = round_sample(&sum);
samples2 -= incr;
w++;
w2--;
}
p = synth_buf + 32;
SUM8(MLSS, sum, w + 32, p);
*samples = round_sample(&sum);
*dither_state= sum;
offset = (offset - 32) & 511;
*synth_buf_offset = offset;
}
/**
* parses a vlc code, faster then get_vlc()
* @param bits is the number of bits which will be read at once, must be
* identical to nb_bits in init_vlc()
* @param max_depth is the number of times bits bits must be read to completely
* read the longest vlc code
* = (max_vlc_length + bits - 1) / bits
*/
static int getVlc2(Common::BitStreamMemory32LELSB *s, int16 (*table)[2], int bits, int maxDepth) {
int index = s->peekBits(bits);
int code = table[index][0];
int n = table[index][1];
if (maxDepth > 1 && n < 0) {
s->skip(bits);
int nbBits = -n;
index = s->peekBits(-n) + code;
code = table[index][0];
n = table[index][1];
if (maxDepth > 2 && n < 0) {
s->skip(nbBits);
index = s->getBits(-n) + code;
code = table[index][0];
n = table[index][1];
}
}
s->skip(n);
return code;
}
static int allocTable(VLC *vlc, int size, int use_static) {
int index;
int16 (*temp)[2] = NULL;
index = vlc->table_size;
vlc->table_size += size;
if (vlc->table_size > vlc->table_allocated) {
if(use_static)
error("QDM2 cant do anything, init_vlc() is used with too little memory");
vlc->table_allocated += (1 << vlc->bits);
temp = (int16 (*)[2])realloc(vlc->table, sizeof(int16 *) * 2 * vlc->table_allocated);
if (!temp) {
free(vlc->table);
vlc->table = NULL;
return -1;
}
vlc->table = temp;
}
return index;
}
#define GET_DATA(v, table, i, wrap, size)\
{\
const uint8 *ptr = (const uint8 *)table + i * wrap;\
switch(size) {\
case 1:\
v = *(const uint8 *)ptr;\
break;\
case 2:\
v = *(const uint16 *)ptr;\
break;\
default:\
v = *(const uint32 *)ptr;\
break;\
}\
}
static int build_table(VLC *vlc, int table_nb_bits,
int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size,
const void *symbols, int symbols_wrap, int symbols_size,
int code_prefix, int n_prefix, int flags)
{
int i, j, k, n, table_size, table_index, nb, n1, index, code_prefix2, symbol;
uint32 code;
int16 (*table)[2];
table_size = 1 << table_nb_bits;
table_index = allocTable(vlc, table_size, flags & 4);
if (table_index < 0)
return -1;
table = &vlc->table[table_index];
for(i = 0; i < table_size; i++) {
table[i][1] = 0; //bits
table[i][0] = -1; //codes
}
// first pass: map codes and compute auxillary table sizes
for(i = 0; i < nb_codes; i++) {
GET_DATA(n, bits, i, bits_wrap, bits_size);
GET_DATA(code, codes, i, codes_wrap, codes_size);
// we accept tables with holes
if (n <= 0)
continue;
if (!symbols)
symbol = i;
else
GET_DATA(symbol, symbols, i, symbols_wrap, symbols_size);
// if code matches the prefix, it is in the table
n -= n_prefix;
if(flags & 2)
code_prefix2= code & (n_prefix>=32 ? 0xffffffff : (1 << n_prefix)-1);
else
code_prefix2= code >> n;
if (n > 0 && code_prefix2 == code_prefix) {
if (n <= table_nb_bits) {
// no need to add another table
j = (code << (table_nb_bits - n)) & (table_size - 1);
nb = 1 << (table_nb_bits - n);
for(k = 0; k < nb; k++) {
if(flags & 2)
j = (code >> n_prefix) + (k<<n);
if (table[j][1] /*bits*/ != 0) {
error("QDM2 incorrect codes");
return -1;
}
table[j][1] = n; //bits
table[j][0] = symbol;
j++;
}
} else {
n -= table_nb_bits;
j = (code >> ((flags & 2) ? n_prefix : n)) & ((1 << table_nb_bits) - 1);
// compute table size
n1 = -table[j][1]; //bits
if (n > n1)
n1 = n;
table[j][1] = -n1; //bits
}
}
}
// second pass : fill auxillary tables recursively
for(i = 0;i < table_size; i++) {
n = table[i][1]; //bits
if (n < 0) {
n = -n;
if (n > table_nb_bits) {
n = table_nb_bits;
table[i][1] = -n; //bits
}
index = build_table(vlc, n, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
symbols, symbols_wrap, symbols_size,
(flags & 2) ? (code_prefix | (i << n_prefix)) : ((code_prefix << table_nb_bits) | i),
n_prefix + table_nb_bits, flags);
if (index < 0)
return -1;
// note: realloc has been done, so reload tables
table = &vlc->table[table_index];
table[i][0] = index; //code
}
}
return table_index;
}
/* Build VLC decoding tables suitable for use with get_vlc().
'nb_bits' set thee decoding table size (2^nb_bits) entries. The
bigger it is, the faster is the decoding. But it should not be too
big to save memory and L1 cache. '9' is a good compromise.
'nb_codes' : number of vlcs codes
'bits' : table which gives the size (in bits) of each vlc code.
'codes' : table which gives the bit pattern of of each vlc code.
'symbols' : table which gives the values to be returned from get_vlc().
'xxx_wrap' : give the number of bytes between each entry of the
'bits' or 'codes' tables.
'xxx_size' : gives the number of bytes of each entry of the 'bits'
or 'codes' tables.
'wrap' and 'size' allows to use any memory configuration and types
(byte/word/long) to store the 'bits', 'codes', and 'symbols' tables.
'use_static' should be set to 1 for tables, which should be freed
with av_free_static(), 0 if free_vlc() will be used.
*/
void initVlcSparse(VLC *vlc, int nb_bits, int nb_codes,
const void *bits, int bits_wrap, int bits_size,
const void *codes, int codes_wrap, int codes_size,
const void *symbols, int symbols_wrap, int symbols_size) {
vlc->bits = nb_bits;
if (vlc->table_size && vlc->table_size == vlc->table_allocated) {
return;
} else if (vlc->table_size) {
error("called on a partially initialized table");
}
if (build_table(vlc, nb_bits, nb_codes,
bits, bits_wrap, bits_size,
codes, codes_wrap, codes_size,
symbols, symbols_wrap, symbols_size,
0, 0, 4 | 2) < 0) {
free(vlc->table);
return; // Error
}
if(vlc->table_size != vlc->table_allocated)
error("QDM2 needed %d had %d", vlc->table_size, vlc->table_allocated);
}
void QDM2Stream::softclipTableInit(void) {
uint16 i;
double dfl = SOFTCLIP_THRESHOLD - 32767;
float delta = 1.0 / -dfl;
for (i = 0; i < ARRAYSIZE(_softclipTable); i++)
_softclipTable[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
}
// random generated table
void QDM2Stream::rndTableInit(void) {
uint16 i;
uint16 j;
uint32 ldw, hdw;
int64 tmp64_1;
int64 random_seed = 0;
float delta = 1.0 / 16384.0;
for(i = 0; i < ARRAYSIZE(_noiseTable); i++) {
random_seed = random_seed * 214013 + 2531011;
_noiseTable[i] = (delta * (float)(((int32)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
}
for (i = 0; i < 256; i++) {
random_seed = 81;
ldw = i;
for (j = 0; j < 5; j++) {
_randomDequantIndex[i][j] = (uint8)((ldw / random_seed) & 0xFF);
ldw = (uint32)ldw % (uint32)random_seed;
tmp64_1 = (random_seed * 0x55555556);
hdw = (uint32)(tmp64_1 >> 32);
random_seed = (int64)(hdw + (ldw >> 31));
}
}
for (i = 0; i < 128; i++) {
random_seed = 25;
ldw = i;
for (j = 0; j < 3; j++) {
_randomDequantType24[i][j] = (uint8)((ldw / random_seed) & 0xFF);
ldw = (uint32)ldw % (uint32)random_seed;
tmp64_1 = (random_seed * 0x66666667);
hdw = (uint32)(tmp64_1 >> 33);
random_seed = hdw + (ldw >> 31);
}
}
}
void QDM2Stream::initNoiseSamples(void) {
uint16 i;
uint32 random_seed = 0;
float delta = 1.0 / 16384.0;
for (i = 0; i < ARRAYSIZE(_noiseSamples); i++) {
random_seed = random_seed * 214013 + 2531011;
_noiseSamples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
}
}
static const uint16 qdm2_vlc_offs[18] = {
0, 260, 566, 598, 894, 1166, 1230, 1294, 1678, 1950, 2214, 2278, 2310, 2570, 2834, 3124, 3448, 3838
};
void QDM2Stream::initVlc(void) {
static int16 qdm2_table[3838][2];
if (!_vlcsInitialized) {
_vlcTabLevel.table = &qdm2_table[qdm2_vlc_offs[0]];
_vlcTabLevel.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
_vlcTabLevel.table_size = 0;
initVlcSparse(&_vlcTabLevel, 8, 24,
vlc_tab_level_huffbits, 1, 1,
vlc_tab_level_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabDiff.table = &qdm2_table[qdm2_vlc_offs[1]];
_vlcTabDiff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
_vlcTabDiff.table_size = 0;
initVlcSparse(&_vlcTabDiff, 8, 37,
vlc_tab_diff_huffbits, 1, 1,
vlc_tab_diff_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabRun.table = &qdm2_table[qdm2_vlc_offs[2]];
_vlcTabRun.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
_vlcTabRun.table_size = 0;
initVlcSparse(&_vlcTabRun, 5, 6,
vlc_tab_run_huffbits, 1, 1,
vlc_tab_run_huffcodes, 1, 1, NULL, 0, 0);
_fftLevelExpAltVlc.table = &qdm2_table[qdm2_vlc_offs[3]];
_fftLevelExpAltVlc.table_allocated = qdm2_vlc_offs[4] - qdm2_vlc_offs[3];
_fftLevelExpAltVlc.table_size = 0;
initVlcSparse(&_fftLevelExpAltVlc, 8, 28,
fft_level_exp_alt_huffbits, 1, 1,
fft_level_exp_alt_huffcodes, 2, 2, NULL, 0, 0);
_fftLevelExpVlc.table = &qdm2_table[qdm2_vlc_offs[4]];
_fftLevelExpVlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
_fftLevelExpVlc.table_size = 0;
initVlcSparse(&_fftLevelExpVlc, 8, 20,
fft_level_exp_huffbits, 1, 1,
fft_level_exp_huffcodes, 2, 2, NULL, 0, 0);
_fftStereoExpVlc.table = &qdm2_table[qdm2_vlc_offs[5]];
_fftStereoExpVlc.table_allocated = qdm2_vlc_offs[6] - qdm2_vlc_offs[5];
_fftStereoExpVlc.table_size = 0;
initVlcSparse(&_fftStereoExpVlc, 6, 7,
fft_stereo_exp_huffbits, 1, 1,
fft_stereo_exp_huffcodes, 1, 1, NULL, 0, 0);
_fftStereoPhaseVlc.table = &qdm2_table[qdm2_vlc_offs[6]];
_fftStereoPhaseVlc.table_allocated = qdm2_vlc_offs[7] - qdm2_vlc_offs[6];
_fftStereoPhaseVlc.table_size = 0;
initVlcSparse(&_fftStereoPhaseVlc, 6, 9,
fft_stereo_phase_huffbits, 1, 1,
fft_stereo_phase_huffcodes, 1, 1, NULL, 0, 0);
_vlcTabToneLevelIdxHi1.table = &qdm2_table[qdm2_vlc_offs[7]];
_vlcTabToneLevelIdxHi1.table_allocated = qdm2_vlc_offs[8] - qdm2_vlc_offs[7];
_vlcTabToneLevelIdxHi1.table_size = 0;
initVlcSparse(&_vlcTabToneLevelIdxHi1, 8, 20,
vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabToneLevelIdxMid.table = &qdm2_table[qdm2_vlc_offs[8]];
_vlcTabToneLevelIdxMid.table_allocated = qdm2_vlc_offs[9] - qdm2_vlc_offs[8];
_vlcTabToneLevelIdxMid.table_size = 0;
initVlcSparse(&_vlcTabToneLevelIdxMid, 8, 24,
vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabToneLevelIdxHi2.table = &qdm2_table[qdm2_vlc_offs[9]];
_vlcTabToneLevelIdxHi2.table_allocated = qdm2_vlc_offs[10] - qdm2_vlc_offs[9];
_vlcTabToneLevelIdxHi2.table_size = 0;
initVlcSparse(&_vlcTabToneLevelIdxHi2, 8, 24,
vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabType30.table = &qdm2_table[qdm2_vlc_offs[10]];
_vlcTabType30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
_vlcTabType30.table_size = 0;
initVlcSparse(&_vlcTabType30, 6, 9,
vlc_tab_type30_huffbits, 1, 1,
vlc_tab_type30_huffcodes, 1, 1, NULL, 0, 0);
_vlcTabType34.table = &qdm2_table[qdm2_vlc_offs[11]];
_vlcTabType34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
_vlcTabType34.table_size = 0;
initVlcSparse(&_vlcTabType34, 5, 10,
vlc_tab_type34_huffbits, 1, 1,
vlc_tab_type34_huffcodes, 1, 1, NULL, 0, 0);
_vlcTabFftToneOffset[0].table = &qdm2_table[qdm2_vlc_offs[12]];
_vlcTabFftToneOffset[0].table_allocated = qdm2_vlc_offs[13] - qdm2_vlc_offs[12];
_vlcTabFftToneOffset[0].table_size = 0;
initVlcSparse(&_vlcTabFftToneOffset[0], 8, 23,
vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabFftToneOffset[1].table = &qdm2_table[qdm2_vlc_offs[13]];
_vlcTabFftToneOffset[1].table_allocated = qdm2_vlc_offs[14] - qdm2_vlc_offs[13];
_vlcTabFftToneOffset[1].table_size = 0;
initVlcSparse(&_vlcTabFftToneOffset[1], 8, 28,
vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabFftToneOffset[2].table = &qdm2_table[qdm2_vlc_offs[14]];
_vlcTabFftToneOffset[2].table_allocated = qdm2_vlc_offs[15] - qdm2_vlc_offs[14];
_vlcTabFftToneOffset[2].table_size = 0;
initVlcSparse(&_vlcTabFftToneOffset[2], 8, 32,
vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabFftToneOffset[3].table = &qdm2_table[qdm2_vlc_offs[15]];
_vlcTabFftToneOffset[3].table_allocated = qdm2_vlc_offs[16] - qdm2_vlc_offs[15];
_vlcTabFftToneOffset[3].table_size = 0;
initVlcSparse(&_vlcTabFftToneOffset[3], 8, 35,
vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, NULL, 0, 0);
_vlcTabFftToneOffset[4].table = &qdm2_table[qdm2_vlc_offs[16]];
_vlcTabFftToneOffset[4].table_allocated = qdm2_vlc_offs[17] - qdm2_vlc_offs[16];
_vlcTabFftToneOffset[4].table_size = 0;
initVlcSparse(&_vlcTabFftToneOffset[4], 8, 38,
vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, NULL, 0, 0);
_vlcsInitialized = true;
}
}
QDM2Stream::QDM2Stream(Common::SeekableReadStream *extraData, DisposeAfterUse::Flag disposeExtraData) {
uint32 tmp;
int tmp_val;
int i;
debug(1, "QDM2Stream::QDM2Stream() Call");
_compressedData = NULL;
_subPacket = 0;
_superBlockStart = 0;
memset(_quantizedCoeffs, 0, sizeof(_quantizedCoeffs));
memset(_fftLevelExp, 0, sizeof(_fftLevelExp));
_noiseIdx = 0;
memset(_fftCoefsMinIndex, 0, sizeof(_fftCoefsMinIndex));
memset(_fftCoefsMaxIndex, 0, sizeof(_fftCoefsMaxIndex));
_fftToneStart = 0;
_fftToneEnd = 0;
for(i = 0; i < ARRAYSIZE(_subPacketListA); i++) {
_subPacketListA[i].packet = NULL;
_subPacketListA[i].next = NULL;
}
_subPacketsB = 0;
for(i = 0; i < ARRAYSIZE(_subPacketListB); i++) {
_subPacketListB[i].packet = NULL;
_subPacketListB[i].next = NULL;
}
for(i = 0; i < ARRAYSIZE(_subPacketListC); i++) {
_subPacketListC[i].packet = NULL;
_subPacketListC[i].next = NULL;
}
for(i = 0; i < ARRAYSIZE(_subPacketListD); i++) {
_subPacketListD[i].packet = NULL;
_subPacketListD[i].next = NULL;
}
memset(_synthBuf, 0, sizeof(_synthBuf));
memset(_synthBufOffset, 0, sizeof(_synthBufOffset));
memset(_sbSamples, 0, sizeof(_sbSamples));
memset(_outputBuffer, 0, sizeof(_outputBuffer));
_vlcsInitialized = false;
_superblocktype_2_3 = 0;
_hasErrors = false;
// The QDM2 "extra data" is really just an amalgam of three QuickTime
// atoms needed to correctly set up the decoder.
// Rewind extraData stream from any previous calls
extraData->seek(0, SEEK_SET);
// First, the frma atom
uint32 frmaSize = extraData->readUint32BE();
if (frmaSize != 12)
error("Invalid QDM2 frma atom");
if (extraData->readUint32BE() != MKTAG('f', 'r', 'm', 'a'))
error("Failed to find frma atom for QDM2");
uint32 version = extraData->readUint32BE();
if (version == MKTAG('Q', 'D', 'M', 'C'))
error("Unhandled QDMC sound");
else if (version != MKTAG('Q', 'D', 'M', '2'))
error("Failed to find QDM2 tag in frma atom");
// Second, the QDCA atom
uint32 qdcaSize = extraData->readUint32BE();
if (qdcaSize > (uint32)(extraData->size() - extraData->pos()))
error("Invalid QDM2 QDCA atom");
if (extraData->readUint32BE() != MKTAG('Q', 'D', 'C', 'A'))
error("Failed to find QDCA atom for QDM2");
extraData->readUint32BE(); // unknown
_channels = extraData->readUint32BE();
_sampleRate = extraData->readUint32BE();
_bitRate = extraData->readUint32BE();
_blockSize = extraData->readUint32BE();
_frameSize = extraData->readUint32BE();
_packetSize = extraData->readUint32BE();
// Third, we don't care about the QDCP atom
_fftOrder = Common::intLog2(_frameSize) + 1;
_fftFrameSize = 2 * _frameSize; // complex has two floats
// something like max decodable tones
_groupOrder = Common::intLog2(_blockSize) + 1;
_sFrameSize = _blockSize / 16; // 16 iterations per super block
_subSampling = _fftOrder - 7;
_frequencyRange = 255 / (1 << (2 - _subSampling));
switch (_subSampling * 2 + _channels - 1) {
case 0:
tmp = 40;
break;
case 1:
tmp = 48;
break;
case 2:
tmp = 56;
break;
case 3:
tmp = 72;
break;
case 4:
tmp = 80;
break;
case 5:
tmp = 100;
break;
default:
tmp = _subSampling;
break;
}
tmp_val = 0;
if ((tmp * 1000) < _bitRate) tmp_val = 1;
if ((tmp * 1440) < _bitRate) tmp_val = 2;
if ((tmp * 1760) < _bitRate) tmp_val = 3;
if ((tmp * 2240) < _bitRate) tmp_val = 4;
_cmTableSelect = tmp_val;
if (_subSampling == 0)
tmp = 7999;
else
tmp = ((-(_subSampling -1)) & 8000) + 20000;
if (tmp < 8000)
_coeffPerSbSelect = 0;
else if (tmp <= 16000)
_coeffPerSbSelect = 1;
else
_coeffPerSbSelect = 2;
if (_fftOrder < 7 || _fftOrder > 9)
error("QDM2Stream::QDM2Stream() Unsupported fft_order: %d", _fftOrder);
_rdft = new Common::RDFT(_fftOrder, Common::RDFT::IDFT_C2R);
initVlc();
ff_mpa_synth_init(ff_mpa_synth_window);
softclipTableInit();
rndTableInit();
initNoiseSamples();
_compressedData = new uint8[_packetSize + FF_INPUT_BUFFER_PADDING_SIZE];
if (disposeExtraData == DisposeAfterUse::YES)
delete extraData;
}
QDM2Stream::~QDM2Stream() {
delete _rdft;
delete[] _compressedData;
}
static int qdm2_get_vlc(Common::BitStreamMemory32LELSB *gb, VLC *vlc, int flag, int depth) {
int value = getVlc2(gb, vlc->table, vlc->bits, depth);
// stage-2, 3 bits exponent escape sequence
if (value-- == 0)
value = gb->getBits(gb->getBits(3) + 1);
// stage-3, optional
if (flag) {
int tmp = vlc_stage3_values[value];
if ((value & ~3) > 0)
tmp += gb->getBits(value >> 2);
value = tmp;
}
return value;
}
static int qdm2_get_se_vlc(VLC *vlc, Common::BitStreamMemory32LELSB *gb, int depth)
{
int value = qdm2_get_vlc(gb, vlc, 0, depth);
return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
}
/**
* QDM2 checksum
*
* @param data pointer to data to be checksum'ed
* @param length data length
* @param value checksum value
*
* @return 0 if checksum is OK
*/
static uint16 qdm2_packet_checksum(const uint8 *data, int length, int value) {
int i;
for (i = 0; i < length; i++)
value -= data[i];
return (uint16)(value & 0xffff);
}
/**
* Return node pointer to first packet of requested type in list.
*
* @param list list of subpackets to be scanned
* @param type type of searched subpacket
* @return node pointer for subpacket if found, else NULL
*/
static QDM2SubPNode* qdm2_search_subpacket_type_in_list(QDM2SubPNode *list, int type)
{
while (list != NULL && list->packet != NULL) {
if (list->packet->type == type)
return list;
list = list->next;
}
return NULL;
}
/**
* Replaces 8 elements with their average value.
* Called by qdm2_decode_superblock before starting subblock decoding.
*/
void QDM2Stream::average_quantized_coeffs(void) {
int i, j, n, ch, sum;
n = coeff_per_sb_for_avg[_coeffPerSbSelect][QDM2_SB_USED(_subSampling) - 1] + 1;
for (ch = 0; ch < _channels; ch++) {
for (i = 0; i < n; i++) {
sum = 0;
for (j = 0; j < 8; j++)
sum += _quantizedCoeffs[ch][i][j];
sum /= 8;
if (sum > 0)
sum--;
for (j = 0; j < 8; j++)
_quantizedCoeffs[ch][i][j] = sum;
}
}
}
/**
* Build subband samples with noise weighted by q->tone_level.
* Called by synthfilt_build_sb_samples.
*
* @param sb subband index
*/
void QDM2Stream::build_sb_samples_from_noise(int sb) {
int ch, j;
FIX_NOISE_IDX(_noiseIdx);
if (!_channels)
return;
for (ch = 0; ch < _channels; ch++) {
for (j = 0; j < 64; j++) {
_sbSamples[ch][j * 2][sb] = (int32)(SB_DITHERING_NOISE(sb, _noiseIdx) * _toneLevel[ch][sb][j] + .5);
_sbSamples[ch][j * 2 + 1][sb] = (int32)(SB_DITHERING_NOISE(sb, _noiseIdx) * _toneLevel[ch][sb][j] + .5);
}
}
}
/**
* Called while processing data from subpackets 11 and 12.
* Used after making changes to coding_method array.
*
* @param sb subband index
* @param channels number of channels
* @param coding_method q->coding_method[0][0][0]
*/
void QDM2Stream::fix_coding_method_array(int sb, int channels, sb_int8_array coding_method)
{
int j, k;
int ch;
int run, case_val;
int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
for (ch = 0; ch < channels; ch++) {
for (j = 0; j < 64; ) {
if ((coding_method[ch][sb][j] - 8) > 22) {
run = 1;
case_val = 8;
} else {
switch (switchtable[coding_method[ch][sb][j]-8]) {
case 0: run = 10; case_val = 10; break;
case 1: run = 1; case_val = 16; break;
case 2: run = 5; case_val = 24; break;
case 3: run = 3; case_val = 30; break;
case 4: run = 1; case_val = 30; break;
case 5: run = 1; case_val = 8; break;
default: run = 1; case_val = 8; break;
}
}
for (k = 0; k < run; k++)
if (j + k < 128)
if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
if (k > 0) {
warning("QDM2 Untested Code: not debugged, almost never used");
memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8));
memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8));
}
j += run;
}
}
}
/**
* Related to synthesis filter
* Called by process_subpacket_10
*
* @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
*/
void QDM2Stream::fill_tone_level_array(int flag) {
int i, sb, ch, sb_used;
int tmp, tab;
// This should never happen
if (_channels <= 0)
return;
for (ch = 0; ch < _channels; ch++) {
for (sb = 0; sb < 30; sb++) {
for (i = 0; i < 8; i++) {
if ((tab=coeff_per_sb_for_dequant[_coeffPerSbSelect][sb]) < (last_coeff[_coeffPerSbSelect] - 1))
tmp = _quantizedCoeffs[ch][tab + 1][i] * dequant_table[_coeffPerSbSelect][tab + 1][sb]+
_quantizedCoeffs[ch][tab][i] * dequant_table[_coeffPerSbSelect][tab][sb];
else
tmp = _quantizedCoeffs[ch][tab][i] * dequant_table[_coeffPerSbSelect][tab][sb];
if(tmp < 0)
tmp += 0xff;
_toneLevelIdxBase[ch][sb][i] = (tmp / 256) & 0xff;
}
}
}
sb_used = QDM2_SB_USED(_subSampling);
if ((_superblocktype_2_3 != 0) && !flag) {
for (sb = 0; sb < sb_used; sb++) {
for (ch = 0; ch < _channels; ch++) {
for (i = 0; i < 64; i++) {
_toneLevelIdx[ch][sb][i] = _toneLevelIdxBase[ch][sb][i / 8];
if (_toneLevelIdx[ch][sb][i] < 0)
_toneLevel[ch][sb][i] = 0;
else
_toneLevel[ch][sb][i] = fft_tone_level_table[0][_toneLevelIdx[ch][sb][i] & 0x3f];
}
}
}
} else {
tab = _superblocktype_2_3 ? 0 : 1;
for (sb = 0; sb < sb_used; sb++) {
if ((sb >= 4) && (sb <= 23)) {
for (ch = 0; ch < _channels; ch++) {
for (i = 0; i < 64; i++) {
tmp = _toneLevelIdxBase[ch][sb][i / 8] -
_toneLevelIdxHi1[ch][sb / 8][i / 8][i % 8] -
_toneLevelIdxMid[ch][sb - 4][i / 8] -
_toneLevelIdxHi2[ch][sb - 4];
_toneLevelIdx[ch][sb][i] = tmp & 0xff;
if ((tmp < 0) || (!_superblocktype_2_3 && !tmp))
_toneLevel[ch][sb][i] = 0;
else
_toneLevel[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
}
}
} else {
if (sb > 4) {
for (ch = 0; ch < _channels; ch++) {
for (i = 0; i < 64; i++) {
tmp = _toneLevelIdxBase[ch][sb][i / 8] -
_toneLevelIdxHi1[ch][2][i / 8][i % 8] -
_toneLevelIdxHi2[ch][sb - 4];
_toneLevelIdx[ch][sb][i] = tmp & 0xff;
if ((tmp < 0) || (!_superblocktype_2_3 && !tmp))
_toneLevel[ch][sb][i] = 0;
else
_toneLevel[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
}
}
} else {
for (ch = 0; ch < _channels; ch++) {
for (i = 0; i < 64; i++) {
tmp = _toneLevelIdx[ch][sb][i] = _toneLevelIdxBase[ch][sb][i / 8];
if ((tmp < 0) || (!_superblocktype_2_3 && !tmp))
_toneLevel[ch][sb][i] = 0;
else
_toneLevel[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
}
}
}
}
}
}
}
/**
* Related to synthesis filter
* Called by process_subpacket_11
* c is built with data from subpacket 11
* Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
*
* @param tone_level_idx
* @param tone_level_idx_temp
* @param coding_method q->coding_method[0][0][0]
* @param nb_channels number of channels
* @param c coming from subpacket 11, passed as 8*c
* @param superblocktype_2_3 flag based on superblock packet type
* @param cm_table_select q->cm_table_select
*/
void QDM2Stream::fill_coding_method_array(sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
sb_int8_array coding_method, int nb_channels,
int c, int superblocktype_2_3, int cm_table_select) {
int ch, sb, j;
int tmp, acc, esp_40, comp;
int add1, add2, add3, add4;
int64 multres;
// This should never happen
if (nb_channels <= 0)
return;
if (!superblocktype_2_3) {
warning("QDM2 This case is untested, no samples available");
for (ch = 0; ch < nb_channels; ch++) {
for (sb = 0; sb < 30; sb++) {
for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
add1 = tone_level_idx[ch][sb][j] - 10;
if (add1 < 0)
add1 = 0;
add2 = add3 = add4 = 0;
if (sb > 1) {
add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
if (add2 < 0)
add2 = 0;
}
if (sb > 0) {
add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
if (add3 < 0)
add3 = 0;
}
if (sb < 29) {
add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
if (add4 < 0)
add4 = 0;
}
tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
if (tmp < 0)
tmp = 0;
tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
}
tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
}
}
acc = 0;
for (ch = 0; ch < nb_channels; ch++)
for (sb = 0; sb < 30; sb++)
for (j = 0; j < 64; j++)
acc += tone_level_idx_temp[ch][sb][j];
multres = 0x66666667 * (acc * 10);
esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
for (ch = 0; ch < nb_channels; ch++) {
for (sb = 0; sb < 30; sb++) {
for (j = 0; j < 64; j++) {
comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
if (comp < 0)
comp += 0xff;
comp /= 256; // signed shift
switch(sb) {
case 0:
if (comp < 30)
comp = 30;
comp += 15;
break;
case 1:
if (comp < 24)
comp = 24;
comp += 10;
break;
case 2:
case 3:
case 4:
if (comp < 16)
comp = 16;
}
if (comp <= 5)
tmp = 0;
else if (comp <= 10)
tmp = 10;
else if (comp <= 16)
tmp = 16;
else if (comp <= 24)
tmp = -1;
else
tmp = 0;
coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
}
}
}
for (sb = 0; sb < 30; sb++)
fix_coding_method_array(sb, nb_channels, coding_method);
for (ch = 0; ch < nb_channels; ch++) {
for (sb = 0; sb < 30; sb++) {
for (j = 0; j < 64; j++) {
if (sb >= 10) {
if (coding_method[ch][sb][j] < 10)
coding_method[ch][sb][j] = 10;
} else {
if (sb >= 2) {
if (coding_method[ch][sb][j] < 16)
coding_method[ch][sb][j] = 16;
} else {
if (coding_method[ch][sb][j] < 30)
coding_method[ch][sb][j] = 30;
}
}
}
}
}
} else { // superblocktype_2_3 != 0
for (ch = 0; ch < nb_channels; ch++)
for (sb = 0; sb < 30; sb++)
for (j = 0; j < 64; j++)
coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
}
}
/**
*
* Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
* Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
*
* @param gb bitreader context
* @param length packet length in bits
* @param sb_min lower subband processed (sb_min included)
* @param sb_max higher subband processed (sb_max excluded)
*/
void QDM2Stream::synthfilt_build_sb_samples(Common::BitStreamMemory32LELSB *gb, int length, int sb_min, int sb_max) {
int sb, j, k, n, ch, run, channels;
int joined_stereo, zero_encoding, chs;
int type34_first;
float type34_div = 0;
float type34_predictor;
float samples[10], sign_bits[16];
if (length == 0) {
// If no data use noise
for (sb = sb_min; sb < sb_max; sb++)
build_sb_samples_from_noise(sb);
return;
}
for (sb = sb_min; sb < sb_max; sb++) {
FIX_NOISE_IDX(_noiseIdx);
channels = _channels;
if (_channels <= 1 || sb < 12)
joined_stereo = 0;
else if (sb >= 24)
joined_stereo = 1;
else
joined_stereo = ((length - gb->pos()) >= 1) ? gb->getBit() : 0;
if (joined_stereo) {
if ((length - gb->pos()) >= 16)
for (j = 0; j < 16; j++)
sign_bits[j] = gb->getBit();
for (j = 0; j < 64; j++)
if (_codingMethod[1][sb][j] > _codingMethod[0][sb][j])
_codingMethod[0][sb][j] = _codingMethod[1][sb][j];
fix_coding_method_array(sb, _channels, _codingMethod);
channels = 1;
}
for (ch = 0; ch < channels; ch++) {
zero_encoding = ((length - gb->pos()) >= 1) ? gb->getBit() : 0;
type34_predictor = 0.0;
type34_first = 1;
for (j = 0; j < 128; ) {
switch (_codingMethod[ch][sb][j / 2]) {
case 8:
if ((length - gb->pos()) >= 10) {
if (zero_encoding) {
for (k = 0; k < 5; k++) {
if ((j + 2 * k) >= 128)
break;
samples[2 * k] = gb->getBit() ? dequant_1bit[joined_stereo][2 * gb->getBit()] : 0;
}
} else {
n = gb->getBits(8);
for (k = 0; k < 5; k++)
samples[2 * k] = dequant_1bit[joined_stereo][_randomDequantIndex[n][k]];
}
for (k = 0; k < 5; k++)
samples[2 * k + 1] = SB_DITHERING_NOISE(sb, _noiseIdx);
} else {
for (k = 0; k < 10; k++)
samples[k] = SB_DITHERING_NOISE(sb, _noiseIdx);
}
run = 10;
break;
case 10:
if ((length - gb->pos()) >= 1) {
double f = 0.81;
if (gb->getBit())
f = -f;
f -= _noiseSamples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
samples[0] = f;
} else {
samples[0] = SB_DITHERING_NOISE(sb, _noiseIdx);
}
run = 1;
break;
case 16:
if ((length - gb->pos()) >= 10) {
if (zero_encoding) {
for (k = 0; k < 5; k++) {
if ((j + k) >= 128)
break;
samples[k] = (gb->getBit() == 0) ? 0 : dequant_1bit[joined_stereo][2 * gb->getBit()];
}
} else {
n = gb->getBits(8);
for (k = 0; k < 5; k++)
samples[k] = dequant_1bit[joined_stereo][_randomDequantIndex[n][k]];
}
} else {
for (k = 0; k < 5; k++)
samples[k] = SB_DITHERING_NOISE(sb, _noiseIdx);
}
run = 5;
break;
case 24:
if ((length - gb->pos()) >= 7) {
n = gb->getBits(7);
for (k = 0; k < 3; k++)
samples[k] = (_randomDequantType24[n][k] - 2.0) * 0.5;
} else {
for (k = 0; k < 3; k++)
samples[k] = SB_DITHERING_NOISE(sb, _noiseIdx);
}
run = 3;
break;
case 30:
if ((length - gb->pos()) >= 4)
samples[0] = type30_dequant[qdm2_get_vlc(gb, &_vlcTabType30, 0, 1)];
else
samples[0] = SB_DITHERING_NOISE(sb, _noiseIdx);
run = 1;
break;
case 34:
if ((length - gb->pos()) >= 7) {
if (type34_first) {
type34_div = (float)(1 << gb->getBits(2));
samples[0] = ((float)gb->getBits(5) - 16.0) / 15.0;
type34_predictor = samples[0];
type34_first = 0;
} else {
samples[0] = type34_delta[qdm2_get_vlc(gb, &_vlcTabType34, 0, 1)] / type34_div + type34_predictor;
type34_predictor = samples[0];
}
} else {
samples[0] = SB_DITHERING_NOISE(sb, _noiseIdx);
}
run = 1;
break;
default:
samples[0] = SB_DITHERING_NOISE(sb, _noiseIdx);
run = 1;
break;
}
if (joined_stereo) {
float tmp[10][MPA_MAX_CHANNELS];
for (k = 0; k < run; k++) {
tmp[k][0] = samples[k];
tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
}
for (chs = 0; chs < _channels; chs++)
for (k = 0; k < run; k++)
if ((j + k) < 128)
_sbSamples[chs][j + k][sb] = (int32)(_toneLevel[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
} else {
for (k = 0; k < run; k++)
if ((j + k) < 128)
_sbSamples[ch][j + k][sb] = (int32)(_toneLevel[ch][sb][(j + k)/2] * samples[k] + .5);
}
j += run;
} // j loop
} // channel loop
} // subband loop
}
/**
* Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
* This is similar to process_subpacket_9, but for a single channel and for element [0]
* same VLC tables as process_subpacket_9 are used.
*
* @param quantized_coeffs pointer to quantized_coeffs[ch][0]
* @param gb bitreader context
* @param length packet length in bits
*/
void QDM2Stream::init_quantized_coeffs_elem0(int8 *quantized_coeffs, Common::BitStreamMemory32LELSB *gb, int length) {
int i, k, run, level, diff;
if ((length - gb->pos()) < 16)
return;
level = qdm2_get_vlc(gb, &_vlcTabLevel, 0, 2);
quantized_coeffs[0] = level;
for (i = 0; i < 7; ) {
if ((length - gb->pos()) < 16)
break;
run = qdm2_get_vlc(gb, &_vlcTabRun, 0, 1) + 1;
if ((length - gb->pos()) < 16)
break;
diff = qdm2_get_se_vlc(&_vlcTabDiff, gb, 2);
for (k = 1; k <= run; k++)
quantized_coeffs[i + k] = (level + ((k * diff) / run));
level += diff;
i += run;
}
}
/**
* Related to synthesis filter, process data from packet 10
* Init part of quantized_coeffs via function init_quantized_coeffs_elem0
* Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
*
* @param gb bitreader context
* @param length packet length in bits
*/
void QDM2Stream::init_tone_level_dequantization(Common::BitStreamMemory32LELSB *gb, int length) {
int sb, j, k, n, ch;
for (ch = 0; ch < _channels; ch++) {
init_quantized_coeffs_elem0(_quantizedCoeffs[ch][0], gb, length);
if ((length - gb->pos()) < 16) {
memset(_quantizedCoeffs[ch][0], 0, 8);
break;
}
}
n = _subSampling + 1;
for (sb = 0; sb < n; sb++)
for (ch = 0; ch < _channels; ch++)
for (j = 0; j < 8; j++) {
if ((length - gb->pos()) < 1)
break;
if (gb->getBit()) {
for (k=0; k < 8; k++) {
if ((length - gb->pos()) < 16)
break;
_toneLevelIdxHi1[ch][sb][j][k] = qdm2_get_vlc(gb, &_vlcTabToneLevelIdxHi1, 0, 2);
}
} else {
for (k=0; k < 8; k++)
_toneLevelIdxHi1[ch][sb][j][k] = 0;
}
}
n = QDM2_SB_USED(_subSampling) - 4;
for (sb = 0; sb < n; sb++)
for (ch = 0; ch < _channels; ch++) {
if ((length - gb->pos()) < 16)
break;
_toneLevelIdxHi2[ch][sb] = qdm2_get_vlc(gb, &_vlcTabToneLevelIdxHi2, 0, 2);
if (sb > 19)
_toneLevelIdxHi2[ch][sb] -= 16;
else
for (j = 0; j < 8; j++)
_toneLevelIdxMid[ch][sb][j] = -16;
}
n = QDM2_SB_USED(_subSampling) - 5;
for (sb = 0; sb < n; sb++) {
for (ch = 0; ch < _channels; ch++) {
for (j = 0; j < 8; j++) {
if ((length - gb->pos()) < 16)
break;
_toneLevelIdxMid[ch][sb][j] = qdm2_get_vlc(gb, &_vlcTabToneLevelIdxMid, 0, 2) - 32;
}
}
}
}
/**
* Process subpacket 9, init quantized_coeffs with data from it
*
* @param node pointer to node with packet
*/
void QDM2Stream::process_subpacket_9(QDM2SubPNode *node) {
int i, j, k, n, ch, run, level, diff;
Common::BitStreamMemoryStream d(node->packet->data, node->packet->size + FF_INPUT_BUFFER_PADDING_SIZE);
Common::BitStreamMemory32LELSB gb(&d);
n = coeff_per_sb_for_avg[_coeffPerSbSelect][QDM2_SB_USED(_subSampling) - 1] + 1; // same as averagesomething function
for (i = 1; i < n; i++)
for (ch = 0; ch < _channels; ch++) {
level = qdm2_get_vlc(&gb, &_vlcTabLevel, 0, 2);
_quantizedCoeffs[ch][i][0] = level;
for (j = 0; j < (8 - 1); ) {
run = qdm2_get_vlc(&gb, &_vlcTabRun, 0, 1) + 1;
diff = qdm2_get_se_vlc(&_vlcTabDiff, &gb, 2);
for (k = 1; k <= run; k++)
_quantizedCoeffs[ch][i][j + k] = (level + ((k*diff) / run));
level += diff;
j += run;
}
}
for (ch = 0; ch < _channels; ch++)
for (i = 0; i < 8; i++)
_quantizedCoeffs[ch][0][i] = 0;
}
/**
* Process subpacket 10 if not null, else
*
* @param node pointer to node with packet
* @param length packet length in bits
*/
void QDM2Stream::process_subpacket_10(QDM2SubPNode *node, int length) {
Common::BitStreamMemoryStream d(((node == NULL) ? _emptyBuffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size + FF_INPUT_BUFFER_PADDING_SIZE));
Common::BitStreamMemory32LELSB gb(&d);
if (length != 0) {
init_tone_level_dequantization(&gb, length);
fill_tone_level_array(1);
} else {
fill_tone_level_array(0);
}
}
/**
* Process subpacket 11
*
* @param node pointer to node with packet
* @param length packet length in bit
*/
void QDM2Stream::process_subpacket_11(QDM2SubPNode *node, int length) {
Common::BitStreamMemoryStream d(((node == NULL) ? _emptyBuffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size + FF_INPUT_BUFFER_PADDING_SIZE));
Common::BitStreamMemory32LELSB gb(&d);
if (length >= 32) {
int c = gb.getBits(13);
if (c > 3)
fill_coding_method_array(_toneLevelIdx, _toneLevelIdxTemp, _codingMethod,
_channels, 8*c, _superblocktype_2_3, _cmTableSelect);
}
synthfilt_build_sb_samples(&gb, length, 0, 8);
}
/**
* Process subpacket 12
*
* @param node pointer to node with packet
* @param length packet length in bits
*/
void QDM2Stream::process_subpacket_12(QDM2SubPNode *node, int length) {
Common::BitStreamMemoryStream d(((node == NULL) ? _emptyBuffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size + FF_INPUT_BUFFER_PADDING_SIZE));
Common::BitStreamMemory32LELSB gb(&d);
synthfilt_build_sb_samples(&gb, length, 8, QDM2_SB_USED(_subSampling));
}
/*
* Process new subpackets for synthesis filter
*
* @param list list with synthesis filter packets (list D)
*/
void QDM2Stream::process_synthesis_subpackets(QDM2SubPNode *list) {
struct QDM2SubPNode *nodes[4];
nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
if (nodes[0] != NULL)
process_subpacket_9(nodes[0]);
nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
if (nodes[1] != NULL)
process_subpacket_10(nodes[1], nodes[1]->packet->size << 3);
else
process_subpacket_10(NULL, 0);
nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
process_subpacket_11(nodes[2], (nodes[2]->packet->size << 3));
else
process_subpacket_11(NULL, 0);
nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
process_subpacket_12(nodes[3], (nodes[3]->packet->size << 3));
else
process_subpacket_12(NULL, 0);
}
/*
* Decode superblock, fill packet lists.
*
*/
void QDM2Stream::qdm2_decode_super_block(void) {
struct QDM2SubPacket header, *packet;
int i, packet_bytes, sub_packet_size, subPacketsD;
unsigned int next_index = 0;
memset(_toneLevelIdxHi1, 0, sizeof(_toneLevelIdxHi1));
memset(_toneLevelIdxMid, 0, sizeof(_toneLevelIdxMid));
memset(_toneLevelIdxHi2, 0, sizeof(_toneLevelIdxHi2));
_subPacketsB = 0;
subPacketsD = 0;
average_quantized_coeffs(); // average elements in quantized_coeffs[max_ch][10][8]
Common::BitStreamMemoryStream packetStream(_compressedData, _packetSize + FF_INPUT_BUFFER_PADDING_SIZE);
Common::BitStreamMemory32LELSB packetBitStream(packetStream);
//qdm2_decode_sub_packet_header
header.type = packetBitStream.getBits(8);
if (header.type == 0) {
header.size = 0;
header.data = NULL;
} else {
header.size = packetBitStream.getBits(8);
if (header.type & 0x80) {
header.size <<= 8;
header.size |= packetBitStream.getBits(8);
header.type &= 0x7f;
}
if (header.type == 0x7f)
header.type |= (packetBitStream.getBits(8) << 8);
header.data = &_compressedData[packetBitStream.pos() / 8];
}
if (header.type < 2 || header.type >= 8) {
_hasErrors = true;
error("QDM2 : bad superblock type");
return;
}
_superblocktype_2_3 = (header.type == 2 || header.type == 3);
packet_bytes = (_packetSize - packetBitStream.pos() / 8);
Common::BitStreamMemoryStream headerStream(header.data, header.size + FF_INPUT_BUFFER_PADDING_SIZE);
Common::BitStreamMemory32LELSB headerBitStream(headerStream);
if (header.type == 2 || header.type == 4 || header.type == 5) {
int csum = 257 * headerBitStream.getBits(8) + 2 * headerBitStream.getBits(8);
csum = qdm2_packet_checksum(_compressedData, _packetSize, csum);
if (csum != 0) {
_hasErrors = true;
error("QDM2 : bad packet checksum");
return;
}
}
_subPacketListB[0].packet = NULL;
_subPacketListD[0].packet = NULL;
for (i = 0; i < 6; i++)
if (--_fftLevelExp[i] < 0)
_fftLevelExp[i] = 0;
for (i = 0; packet_bytes > 0; i++) {
int j;
_subPacketListA[i].next = NULL;
if (i > 0) {
_subPacketListA[i - 1].next = &_subPacketListA[i];
if (next_index >= header.size)
break;
// seek to next block
headerBitStream.skip(next_index * 8 - headerBitStream.pos());
}
// decode subpacket
packet = &_subPackets[i];
//qdm2_decode_sub_packet_header
packet->type = headerBitStream.getBits(8);
if (packet->type == 0) {
packet->size = 0;
packet->data = NULL;
} else {
packet->size = headerBitStream.getBits(8);
if (packet->type & 0x80) {
packet->size <<= 8;
packet->size |= headerBitStream.getBits(8);
packet->type &= 0x7f;
}
if (packet->type == 0x7f)
packet->type |= (headerBitStream.getBits(8) << 8);
packet->data = &header.data[headerBitStream.pos() / 8];
}
next_index = packet->size + headerBitStream.pos() / 8;
sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
if (packet->type == 0)
break;
if (sub_packet_size > packet_bytes) {
if (packet->type != 10 && packet->type != 11 && packet->type != 12)
break;
packet->size += packet_bytes - sub_packet_size;
}
packet_bytes -= sub_packet_size;
// add subpacket to 'all subpackets' list
_subPacketListA[i].packet = packet;
// add subpacket to related list
if (packet->type == 8) {
error("Unsupported packet type 8");
return;
} else if (packet->type >= 9 && packet->type <= 12) {
// packets for MPEG Audio like Synthesis Filter
QDM2_LIST_ADD(_subPacketListD, subPacketsD, packet);
} else if (packet->type == 13) {
for (j = 0; j < 6; j++)
_fftLevelExp[j] = headerBitStream.getBits(6);
} else if (packet->type == 14) {
for (j = 0; j < 6; j++)
_fftLevelExp[j] = qdm2_get_vlc(&headerBitStream, &_fftLevelExpVlc, 0, 2);
} else if (packet->type == 15) {
error("Unsupported packet type 15");
return;
} else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
// packets for FFT
QDM2_LIST_ADD(_subPacketListB, _subPacketsB, packet);
}
} // Packet bytes loop
// ****************************************************************
if (_subPacketListD[0].packet != NULL) {
process_synthesis_subpackets(_subPacketListD);
_doSynthFilter = 1;
} else if (_doSynthFilter) {
process_subpacket_10(NULL, 0);
process_subpacket_11(NULL, 0);
process_subpacket_12(NULL, 0);
}
// ****************************************************************
}
void QDM2Stream::qdm2_fft_init_coefficient(int sub_packet, int offset, int duration,
int channel, int exp, int phase) {
if (_fftCoefsMinIndex[duration] < 0)
_fftCoefsMinIndex[duration] = _fftCoefsIndex;
_fftCoefs[_fftCoefsIndex].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
_fftCoefs[_fftCoefsIndex].channel = channel;
_fftCoefs[_fftCoefsIndex].offset = offset;
_fftCoefs[_fftCoefsIndex].exp = exp;
_fftCoefs[_fftCoefsIndex].phase = phase;
_fftCoefsIndex++;
}
void QDM2Stream::qdm2_fft_decode_tones(int duration, Common::BitStreamMemory32LELSB *gb, int b) {
int channel, stereo, phase, exp;
int local_int_4, local_int_8, stereo_phase, local_int_10;
int local_int_14, stereo_exp, local_int_20, local_int_28;
int n, offset;
local_int_4 = 0;
local_int_28 = 0;
local_int_20 = 2;
local_int_8 = (4 - duration);
local_int_10 = 1 << (_groupOrder - duration - 1);
offset = 1;
while (1) {
if (_superblocktype_2_3) {
while ((n = qdm2_get_vlc(gb, &_vlcTabFftToneOffset[local_int_8], 1, 2)) < 2) {
offset = 1;
if (n == 0) {
local_int_4 += local_int_10;
local_int_28 += (1 << local_int_8);
} else {
local_int_4 += 8*local_int_10;
local_int_28 += (8 << local_int_8);
}
}
offset += (n - 2);
} else {
offset += qdm2_get_vlc(gb, &_vlcTabFftToneOffset[local_int_8], 1, 2);
while (offset >= (local_int_10 - 1)) {
offset += (1 - (local_int_10 - 1));
local_int_4 += local_int_10;
local_int_28 += (1 << local_int_8);
}
}
if (local_int_4 >= _blockSize)
return;
local_int_14 = (offset >> local_int_8);
if (_channels > 1) {
channel = gb->getBit();
stereo = gb->getBit();
} else {
channel = 0;
stereo = 0;
}
exp = qdm2_get_vlc(gb, (b ? &_fftLevelExpVlc : &_fftLevelExpAltVlc), 0, 2);
exp += _fftLevelExp[fft_level_index_table[local_int_14]];
exp = (exp < 0) ? 0 : exp;
phase = gb->getBits(3);
stereo_exp = 0;
stereo_phase = 0;
if (stereo) {
stereo_exp = (exp - qdm2_get_vlc(gb, &_fftStereoExpVlc, 0, 1));
stereo_phase = (phase - qdm2_get_vlc(gb, &_fftStereoPhaseVlc, 0, 1));
if (stereo_phase < 0)
stereo_phase += 8;
}
if (_frequencyRange > (local_int_14 + 1)) {
int sub_packet = (local_int_20 + local_int_28);
qdm2_fft_init_coefficient(sub_packet, offset, duration, channel, exp, phase);
if (stereo)
qdm2_fft_init_coefficient(sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
}
offset++;
}
}
void QDM2Stream::qdm2_decode_fft_packets(void) {
int i, j, min, max, value, type, unknown_flag;
if (_subPacketListB[0].packet == NULL)
return;
// reset minimum indexes for FFT coefficients
_fftCoefsIndex = 0;
for (i=0; i < 5; i++)
_fftCoefsMinIndex[i] = -1;
// process subpackets ordered by type, largest type first
for (i = 0, max = 256; i < _subPacketsB; i++) {
QDM2SubPacket *packet= NULL;
// find subpacket with largest type less than max
for (j = 0, min = 0; j < _subPacketsB; j++) {
value = _subPacketListB[j].packet->type;
if (value > min && value < max) {
min = value;
packet = _subPacketListB[j].packet;
}
}
max = min;
// check for errors (?)
if (!packet)
return;
if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
return;
// decode FFT tones
Common::BitStreamMemoryStream d(packet->data, packet->size + FF_INPUT_BUFFER_PADDING_SIZE);
Common::BitStreamMemory32LELSB gb(&d);
if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
unknown_flag = 1;
else
unknown_flag = 0;
type = packet->type;
if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
int duration = _subSampling + 5 - (type & 15);
if (duration >= 0 && duration < 4) { // TODO: Should be <= 4?
qdm2_fft_decode_tones(duration, &gb, unknown_flag);
}
} else if (type == 31) {
for (j=0; j < 4; j++) {
qdm2_fft_decode_tones(j, &gb, unknown_flag);
}
} else if (type == 46) {
for (j=0; j < 6; j++)
_fftLevelExp[j] = gb.getBits(6);
for (j=0; j < 4; j++) {
qdm2_fft_decode_tones(j, &gb, unknown_flag);
}
}
} // Loop on B packets
// calculate maximum indexes for FFT coefficients
for (i = 0, j = -1; i < 5; i++)
if (_fftCoefsMinIndex[i] >= 0) {
if (j >= 0)
_fftCoefsMaxIndex[j] = _fftCoefsMinIndex[i];
j = i;
}
if (j >= 0)
_fftCoefsMaxIndex[j] = _fftCoefsIndex;
}
void QDM2Stream::qdm2_fft_generate_tone(FFTTone *tone)
{
float level, f[6];
int i;
QDM2Complex c;
const double iscale = 2.0 * M_PI / 512.0;
tone->phase += tone->phase_shift;
// calculate current level (maximum amplitude) of tone
level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
c.im = level * sin(tone->phase*iscale);
c.re = level * cos(tone->phase*iscale);
// generate FFT coefficients for tone
if (tone->duration >= 3 || tone->cutoff >= 3) {
tone->complex[0].im += c.im;
tone->complex[0].re += c.re;
tone->complex[1].im -= c.im;
tone->complex[1].re -= c.re;
} else {
f[1] = -tone->table[4];
f[0] = tone->table[3] - tone->table[0];
f[2] = 1.0 - tone->table[2] - tone->table[3];
f[3] = tone->table[1] + tone->table[4] - 1.0;
f[4] = tone->table[0] - tone->table[1];
f[5] = tone->table[2];
for (i = 0; i < 2; i++) {
tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re += c.re * f[i];
tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
}
for (i = 0; i < 4; i++) {
tone->complex[i].re += c.re * f[i+2];
tone->complex[i].im += c.im * f[i+2];
}
}
// copy the tone if it has not yet died out
if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
memcpy(&_fftTones[_fftToneEnd], tone, sizeof(FFTTone));
_fftToneEnd = (_fftToneEnd + 1) % 1000;
}
}
void QDM2Stream::qdm2_fft_tone_synthesizer(uint8 sub_packet) {
int i, j, ch;
const double iscale = 0.25 * M_PI;
for (ch = 0; ch < _channels; ch++) {
memset(_fft.complex[ch], 0, _frameSize * sizeof(QDM2Complex));
}
// apply FFT tones with duration 4 (1 FFT period)
if (_fftCoefsMinIndex[4] >= 0)
for (i = _fftCoefsMinIndex[4]; i < _fftCoefsMaxIndex[4]; i++) {
float level;
QDM2Complex c;
if (_fftCoefs[i].sub_packet != sub_packet)
break;
ch = (_channels == 1) ? 0 : _fftCoefs[i].channel;
level = (_fftCoefs[i].exp < 0) ? 0.0 : fft_tone_level_table[_superblocktype_2_3 ? 0 : 1][_fftCoefs[i].exp & 63];
c.re = level * cos(_fftCoefs[i].phase * iscale);
c.im = level * sin(_fftCoefs[i].phase * iscale);
_fft.complex[ch][_fftCoefs[i].offset + 0].re += c.re;
_fft.complex[ch][_fftCoefs[i].offset + 0].im += c.im;
_fft.complex[ch][_fftCoefs[i].offset + 1].re -= c.re;
_fft.complex[ch][_fftCoefs[i].offset + 1].im -= c.im;
}
// generate existing FFT tones
for (i = _fftToneEnd; i != _fftToneStart; ) {
qdm2_fft_generate_tone(&_fftTones[_fftToneStart]);
_fftToneStart = (_fftToneStart + 1) % 1000;
}
// create and generate new FFT tones with duration 0 (long) to 3 (short)
for (i = 0; i < 4; i++)
if (_fftCoefsMinIndex[i] >= 0) {
for (j = _fftCoefsMinIndex[i]; j < _fftCoefsMaxIndex[i]; j++) {
int offset, four_i;
FFTTone tone;
if (_fftCoefs[j].sub_packet != sub_packet)
break;
four_i = (4 - i);
offset = _fftCoefs[j].offset >> four_i;
ch = (_channels == 1) ? 0 : _fftCoefs[j].channel;
if (offset < _frequencyRange) {
if (offset < 2)
tone.cutoff = offset;
else
tone.cutoff = (offset >= 60) ? 3 : 2;
tone.level = (_fftCoefs[j].exp < 0) ? 0.0 : fft_tone_level_table[_superblocktype_2_3 ? 0 : 1][_fftCoefs[j].exp & 63];
tone.complex = &_fft.complex[ch][offset];
tone.table = fft_tone_sample_table[i][_fftCoefs[j].offset - (offset << four_i)];
tone.phase = 64 * _fftCoefs[j].phase - (offset << 8) - 128;
tone.phase_shift = (2 * _fftCoefs[j].offset + 1) << (7 - four_i);
tone.duration = i;
tone.time_index = 0;
qdm2_fft_generate_tone(&tone);
}
}
_fftCoefsMinIndex[i] = j;
}
}
void QDM2Stream::qdm2_calculate_fft(int channel) {
_fft.complex[channel][0].re *= 2.0f;
_fft.complex[channel][0].im = 0.0f;
_rdft->calc((float *)_fft.complex[channel]);
// add samples to output buffer
for (int i = 0; i < ((_fftFrameSize + 15) & ~15); i++)
_outputBuffer[_channels * i + channel] += ((float *) _fft.complex[channel])[i];
}
/**
* @param index subpacket number
*/
void QDM2Stream::qdm2_synthesis_filter(uint8 index)
{
int16 samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
int i, k, ch, sb_used, sub_sampling, dither_state = 0;
// copy sb_samples
sb_used = QDM2_SB_USED(_subSampling);
for (ch = 0; ch < _channels; ch++)
for (i = 0; i < 8; i++)
for (k = sb_used; k < 32; k++)
_sbSamples[ch][(8 * index) + i][k] = 0;
for (ch = 0; ch < _channels; ch++) {
int16 *samples_ptr = samples + ch;
for (i = 0; i < 8; i++) {
ff_mpa_synth_filter(_synthBuf[ch], &(_synthBufOffset[ch]),
ff_mpa_synth_window, &dither_state,
samples_ptr, _channels,
_sbSamples[ch][(8 * index) + i]);
samples_ptr += 32 * _channels;
}
}
// add samples to output buffer
sub_sampling = (4 >> _subSampling);
for (ch = 0; ch < _channels; ch++)
for (i = 0; i < _sFrameSize; i++)
_outputBuffer[_channels * i + ch] += (float)(samples[_channels * sub_sampling * i + ch] >> (sizeof(int16)*8-16));
}
bool QDM2Stream::qdm2_decodeFrame(Common::SeekableReadStream &in, QueuingAudioStream *audioStream) {
debug(1, "QDM2Stream::qdm2_decodeFrame in.pos(): %d in.size(): %d", in.pos(), in.size());
int ch, i;
const int frame_size = (_sFrameSize * _channels);
// If we're in any packet but the first, seek back to the first
if (_subPacket == 0)
_superBlockStart = in.pos();
else
in.seek(_superBlockStart);
// select input buffer
if (in.eos() || in.pos() >= in.size()) {
debug(1, "QDM2Stream::qdm2_decodeFrame End of Input Stream");
return false;
}
if ((in.size() - in.pos()) < _packetSize) {
debug(1, "QDM2Stream::qdm2_decodeFrame Insufficient Packet Data in Input Stream Found: %d Need: %d", in.size() - in.pos(), _packetSize);
return false;
}
if (!in.eos()) {
in.read(_compressedData, _packetSize);
memset(_compressedData + _packetSize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
debug(1, "QDM2Stream::qdm2_decodeFrame constructed input data");
}
// copy old block, clear new block of output samples
memmove(_outputBuffer, &_outputBuffer[frame_size], frame_size * sizeof(float));
memset(&_outputBuffer[frame_size], 0, frame_size * sizeof(float));
debug(1, "QDM2Stream::qdm2_decodeFrame cleared outputBuffer");
if (!in.eos()) {
// decode block of QDM2 compressed data
debug(1, "QDM2Stream::qdm2_decodeFrame decode block of QDM2 compressed data");
if (_subPacket == 0) {
_hasErrors = false; // reset it for a new super block
debug(1, "QDM2 : Superblock follows");
qdm2_decode_super_block();
}
// parse subpackets
debug(1, "QDM2Stream::qdm2_decodeFrame parse subpackets");
if (!_hasErrors) {
if (_subPacket == 2) {
debug(1, "QDM2Stream::qdm2_decodeFrame qdm2_decode_fft_packets()");
qdm2_decode_fft_packets();
}
debug(1, "QDM2Stream::qdm2_decodeFrame qdm2_fft_tone_synthesizer(%d)", _subPacket);
qdm2_fft_tone_synthesizer(_subPacket);
}
// sound synthesis stage 1 (FFT)
debug(1, "QDM2Stream::qdm2_decodeFrame sound synthesis stage 1 (FFT)");
for (ch = 0; ch < _channels; ch++) {
qdm2_calculate_fft(ch);
if (!_hasErrors && _subPacketListC[0].packet != NULL) {
error("QDM2 : has errors, and C list is not empty");
return false;
}
}
// sound synthesis stage 2 (MPEG audio like synthesis filter)
debug(1, "QDM2Stream::qdm2_decodeFrame sound synthesis stage 2 (MPEG audio like synthesis filter)");
if (!_hasErrors && _doSynthFilter)
qdm2_synthesis_filter(_subPacket);
_subPacket = (_subPacket + 1) % 16;
if(_hasErrors)
warning("QDM2 Packet error...");
// clip and convert output float[] to 16bit signed samples
debug(1, "QDM2Stream::qdm2_decodeFrame clip and convert output float[] to 16bit signed samples");
}
if (frame_size == 0)
return false;
// Prepare a buffer for queuing
uint16 *outputBuffer = (uint16 *)malloc(frame_size * 2);
for (i = 0; i < frame_size; i++) {
int value = (int)_outputBuffer[i];
if (value > SOFTCLIP_THRESHOLD)
value = (value > HARDCLIP_THRESHOLD) ? 32767 : _softclipTable[ value - SOFTCLIP_THRESHOLD];
else if (value < -SOFTCLIP_THRESHOLD)
value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -_softclipTable[-value - SOFTCLIP_THRESHOLD];
outputBuffer[i] = value;
}
// Queue the translated buffer to our stream
byte flags = FLAG_16BITS;
if (_channels == 2)
flags |= FLAG_STEREO;
#ifdef SCUMM_LITTLE_ENDIAN
flags |= FLAG_LITTLE_ENDIAN;
#endif
audioStream->queueBuffer((byte *)outputBuffer, frame_size * 2, DisposeAfterUse::YES, flags);
return true;
}
AudioStream *QDM2Stream::decodeFrame(Common::SeekableReadStream &stream) {
QueuingAudioStream *audioStream = makeQueuingAudioStream(_sampleRate, _channels == 2);
while (qdm2_decodeFrame(stream, audioStream))
;
audioStream->finish();
return audioStream;
}
Codec *makeQDM2Decoder(Common::SeekableReadStream *extraData, DisposeAfterUse::Flag disposeExtraData) {
return new QDM2Stream(extraData, disposeExtraData);
}
} // End of namespace Audio
#endif
|