1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/*
* The code in this file is based on code with Copyright 1998 Fabrice Bellard
* Fabrice original code is part of SoX (http://sox.sourceforge.net).
* Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
* in the process removing any use of floating point arithmetic. Various other
* improvements over the original code were made.
*/
#include "audio/audiostream.h"
#include "audio/rate.h"
#include "audio/mixer.h"
#include "common/frac.h"
#include "common/textconsole.h"
#include "common/util.h"
namespace Audio {
/**
* The size of the intermediate input cache. Bigger values may increase
* performance, but only until some point (depends largely on cache size,
* target processor and various other factors), at which it will decrease
* again.
*/
#define INTERMEDIATE_BUFFER_SIZE 512
/**
* The default fractional type in frac.h (with 16 fractional bits) limits
* the rate conversion code to 65536Hz audio: we need to able to handle
* 96kHz audio, so we use fewer fractional bits in this code.
*/
enum {
FRAC_BITS_LOW = 15,
FRAC_ONE_LOW = (1L << FRAC_BITS_LOW),
FRAC_HALF_LOW = (1L << (FRAC_BITS_LOW-1))
};
/**
* Audio rate converter based on simple resampling. Used when no
* interpolation is required.
*
* Limited to sampling frequency <= 65535 Hz.
*/
template<bool stereo, bool reverseStereo>
class SimpleRateConverter : public RateConverter {
protected:
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
const st_sample_t *inPtr;
int inLen;
/** position of how far output is ahead of input */
/** Holds what would have been opos-ipos */
long opos;
/** fractional position increment in the output stream */
long opos_inc;
public:
SimpleRateConverter(st_rate_t inrate, st_rate_t outrate);
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r);
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
return ST_SUCCESS;
}
};
/*
* Prepare processing.
*/
template<bool stereo, bool reverseStereo>
SimpleRateConverter<stereo, reverseStereo>::SimpleRateConverter(st_rate_t inrate, st_rate_t outrate) {
if ((inrate % outrate) != 0) {
error("Input rate must be a multiple of output rate to use rate effect");
}
if (inrate >= 65536 || outrate >= 65536) {
error("rate effect can only handle rates < 65536");
}
opos = 1;
/* increment */
opos_inc = inrate / outrate;
inLen = 0;
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of sample pairs processed.
*/
template<bool stereo, bool reverseStereo>
int SimpleRateConverter<stereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
st_sample_t *ostart, *oend;
ostart = obuf;
oend = obuf + osamp * 2;
while (obuf < oend) {
// read enough input samples so that opos >= 0
do {
// Check if we have to refill the buffer
if (inLen == 0) {
inPtr = inBuf;
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
if (inLen <= 0)
return (obuf - ostart) / 2;
}
inLen -= (stereo ? 2 : 1);
opos--;
if (opos >= 0) {
inPtr += (stereo ? 2 : 1);
}
} while (opos >= 0);
st_sample_t out0, out1;
out0 = *inPtr++;
out1 = (stereo ? *inPtr++ : out0);
// Increment output position
opos += opos_inc;
// output left channel
clampedAdd(obuf[reverseStereo ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);
obuf += 2;
}
return (obuf - ostart) / 2;
}
/**
* Audio rate converter based on simple linear Interpolation.
*
* The use of fractional increment allows us to use no buffer. It
* avoid the problems at the end of the buffer we had with the old
* method which stored a possibly big buffer of size
* lcm(in_rate,out_rate).
*
* Limited to sampling frequency <= 65535 Hz.
*/
template<bool stereo, bool reverseStereo>
class LinearRateConverter : public RateConverter {
protected:
st_sample_t inBuf[INTERMEDIATE_BUFFER_SIZE];
const st_sample_t *inPtr;
int inLen;
/** fractional position of the output stream in input stream unit */
frac_t opos;
/** fractional position increment in the output stream */
frac_t opos_inc;
/** last sample(s) in the input stream (left/right channel) */
st_sample_t ilast0, ilast1;
/** current sample(s) in the input stream (left/right channel) */
st_sample_t icur0, icur1;
public:
LinearRateConverter(st_rate_t inrate, st_rate_t outrate);
int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r);
int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
return ST_SUCCESS;
}
};
/*
* Prepare processing.
*/
template<bool stereo, bool reverseStereo>
LinearRateConverter<stereo, reverseStereo>::LinearRateConverter(st_rate_t inrate, st_rate_t outrate) {
if (inrate >= 131072 || outrate >= 131072) {
error("rate effect can only handle rates < 131072");
}
opos = FRAC_ONE_LOW;
// Compute the linear interpolation increment.
// This will overflow if inrate >= 2^17, and underflow if outrate >= 2^17.
// Also, if the quotient of the two rate becomes too small / too big, that
// would cause problems, but since we rarely scale from 1 to 65536 Hz or vice
// versa, I think we can live with that limitation ;-).
opos_inc = (inrate << FRAC_BITS_LOW) / outrate;
ilast0 = ilast1 = 0;
icur0 = icur1 = 0;
inLen = 0;
}
/*
* Processed signed long samples from ibuf to obuf.
* Return number of sample pairs processed.
*/
template<bool stereo, bool reverseStereo>
int LinearRateConverter<stereo, reverseStereo>::flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
st_sample_t *ostart, *oend;
ostart = obuf;
oend = obuf + osamp * 2;
while (obuf < oend) {
// read enough input samples so that opos < 0
while ((frac_t)FRAC_ONE_LOW <= opos) {
// Check if we have to refill the buffer
if (inLen == 0) {
inPtr = inBuf;
inLen = input.readBuffer(inBuf, ARRAYSIZE(inBuf));
if (inLen <= 0)
return (obuf - ostart) / 2;
}
inLen -= (stereo ? 2 : 1);
ilast0 = icur0;
icur0 = *inPtr++;
if (stereo) {
ilast1 = icur1;
icur1 = *inPtr++;
}
opos -= FRAC_ONE_LOW;
}
// Loop as long as the outpos trails behind, and as long as there is
// still space in the output buffer.
while (opos < (frac_t)FRAC_ONE_LOW && obuf < oend) {
// interpolate
st_sample_t out0, out1;
out0 = (st_sample_t)(ilast0 + (((icur0 - ilast0) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW));
out1 = (stereo ?
(st_sample_t)(ilast1 + (((icur1 - ilast1) * opos + FRAC_HALF_LOW) >> FRAC_BITS_LOW)) :
out0);
// output left channel
clampedAdd(obuf[reverseStereo ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);
obuf += 2;
// Increment output position
opos += opos_inc;
}
}
return (obuf - ostart) / 2;
}
#pragma mark -
/**
* Simple audio rate converter for the case that the inrate equals the outrate.
*/
template<bool stereo, bool reverseStereo>
class CopyRateConverter : public RateConverter {
st_sample_t *_buffer;
st_size_t _bufferSize;
public:
CopyRateConverter() : _buffer(0), _bufferSize(0) {}
~CopyRateConverter() {
free(_buffer);
}
virtual int flow(AudioStream &input, st_sample_t *obuf, st_size_t osamp, st_volume_t vol_l, st_volume_t vol_r) {
assert(input.isStereo() == stereo);
st_sample_t *ptr;
st_size_t len;
st_sample_t *ostart = obuf;
if (stereo)
osamp *= 2;
// Reallocate temp buffer, if necessary
if (osamp > _bufferSize) {
free(_buffer);
_buffer = (st_sample_t *)malloc(osamp * 2);
_bufferSize = osamp;
}
if (!_buffer)
error("[CopyRateConverter::flow] Cannot allocate memory for temp buffer");
// Read up to 'osamp' samples into our temporary buffer
len = input.readBuffer(_buffer, osamp);
// Mix the data into the output buffer
ptr = _buffer;
for (; len > 0; len -= (stereo ? 2 : 1)) {
st_sample_t out0, out1;
out0 = *ptr++;
out1 = (stereo ? *ptr++ : out0);
// output left channel
clampedAdd(obuf[reverseStereo ], (out0 * (int)vol_l) / Audio::Mixer::kMaxMixerVolume);
// output right channel
clampedAdd(obuf[reverseStereo ^ 1], (out1 * (int)vol_r) / Audio::Mixer::kMaxMixerVolume);
obuf += 2;
}
return (obuf - ostart) / 2;
}
virtual int drain(st_sample_t *obuf, st_size_t osamp, st_volume_t vol) {
return ST_SUCCESS;
}
};
#pragma mark -
template<bool stereo, bool reverseStereo>
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate) {
if (inrate != outrate) {
if ((inrate % outrate) == 0 && (inrate < 65536)) {
return new SimpleRateConverter<stereo, reverseStereo>(inrate, outrate);
} else {
return new LinearRateConverter<stereo, reverseStereo>(inrate, outrate);
}
} else {
return new CopyRateConverter<stereo, reverseStereo>();
}
}
/**
* Create and return a RateConverter object for the specified input and output rates.
*/
RateConverter *makeRateConverter(st_rate_t inrate, st_rate_t outrate, bool stereo, bool reverseStereo) {
if (stereo) {
if (reverseStereo)
return makeRateConverter<true, true>(inrate, outrate);
else
return makeRateConverter<true, false>(inrate, outrate);
} else
return makeRateConverter<false, false>(inrate, outrate);
}
} // End of namespace Audio
|