1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
/*
io_efa2.c by CyteX
Based on io_mpfc.c by chishm (Michael Chisholm)
Hardware Routines for reading the NAND flash located on
EFA2 flash carts
This software is completely free. No warranty is provided.
If you use it, please give me credit and email me about your
project at cytex <at> gmx <dot> de and do not forget to also
drop chishm <at> hotmail <dot> com a line
See gba_nds_fat.txt for help and license details.
*/
#include "io_efa2.h"
#ifdef SUPPORT_EFA2
//
// EFA2 register addresses
//
// RTC registers
#define REG_RTC_CLK *(vu16*)0x080000c4
#define REG_RTC_EN *(vu16*)0x080000c8
// "Magic" registers used for unlock/lock sequences
#define REG_EFA2_MAGIC_A *(vu16*)0x09fe0000
#define REG_EFA2_MAGIC_B *(vu16*)0x08000000
#define REG_EFA2_MAGIC_C *(vu16*)0x08020000
#define REG_EFA2_MAGIC_D *(vu16*)0x08040000
#define REG_EFA2_MAGIC_E *(vu16*)0x09fc0000
// NAND flash lock/unlock register
#define REG_EFA2_NAND_LOCK *(vu16*)0x09c40000
// NAND flash enable register
#define REG_EFA2_NAND_EN *(vu16*)0x09400000
// NAND flash command write register
#define REG_EFA2_NAND_CMD *(vu8*)0x09ffffe2
// NAND flash address/data write register
#define REG_EFA2_NAND_WR *(vu8*)0x09ffffe0
// NAND flash data read register
#define REG_EFA2_NAND_RD *(vu8*)0x09ffc000
// ID of Samsung K9K1G NAND flash chip
#define EFA2_NAND_ID 0xEC79A5C0
// first sector of udisk
#define EFA2_UDSK_START 0x40
//
// EFA2 access functions
//
// deactivate RTC ports
inline void efa2_rtc_deactivate(void) {
REG_RTC_EN = 0;
}
// unlock register access
void efa2_reg_unlock(void) {
REG_EFA2_MAGIC_A = 0x0d200;
REG_EFA2_MAGIC_B = 0x01500;
REG_EFA2_MAGIC_C = 0x0d200;
REG_EFA2_MAGIC_D = 0x01500;
}
// finish/lock register access
inline void efa2_reg_lock(void) {
REG_EFA2_MAGIC_E = 0x1500;
}
// global reset/init/enable/unlock ?
void efa2_global_unlock(void) {
efa2_reg_unlock();
*(vu16*)0x09880000 = 0x08000;
efa2_reg_lock();
}
// global lock, stealth mode
void efa2_global_lock(void) {
// quite sure there is such a sequence, but haven't had
// a look for it upto now
}
// unlock NAND Flash
void efa2_nand_unlock(void) {
efa2_reg_unlock();
REG_EFA2_NAND_LOCK = 0x01500;
efa2_reg_lock();
}
// lock NAND Flash
void efa2_nand_lock(void) {
efa2_reg_unlock();
REG_EFA2_NAND_LOCK = 0x0d200;
efa2_reg_lock();
}
//
// Set NAND Flash chip enable and write protection bits ?
//
// val | ~CE | ~WP |
// -----+-----+-----+
// 0 | 0 | 0 |
// 1 | 1 | 0 |
// 3 | 1 | 1 |
// -----+-----+-----+
//
void efa2_nand_enable(u16 val) {
efa2_reg_unlock();
REG_EFA2_NAND_EN = val;
efa2_reg_lock();
}
//
// Perform NAND reset
// NAND has to be unlocked and enabled when called
//
inline void efa2_nand_reset(void) {
REG_EFA2_NAND_CMD = 0xff; // write reset command
}
//
// Read out NAND ID information, could be used for card detection
//
// | EFA2 1GBit |
// ------------------+------------+
// maker code | 0xEC |
// device code | 0x79 |
// don't care | 0xA5 |
// multi plane code | 0xC0 |
// ------------------+------------+
//
u32 efa2_nand_id(void) {
u8 byte;
u32 id;
efa2_nand_unlock();
efa2_nand_enable(1);
REG_EFA2_NAND_CMD = 0x90; // write id command
REG_EFA2_NAND_WR = 0x00; // (dummy) address cycle
byte = REG_EFA2_NAND_RD; // read maker code
id = byte;
byte = REG_EFA2_NAND_RD; // read device code
id = (id << 8) | byte;
byte = REG_EFA2_NAND_RD; // read don't care
id = (id << 8) | byte;
byte = REG_EFA2_NAND_RD; // read multi plane code
id = (id << 8) | byte;
efa2_nand_enable(0);
efa2_nand_lock();
return (id);
}
//
// Start of gba_nds_fat block device description
//
/*-----------------------------------------------------------------
EFA2_ClearStatus
Reads and checks NAND status information
bool return OUT: true if NAND is idle
-----------------------------------------------------------------*/
bool EFA2_ClearStatus (void)
{
// tbd: currently there is no write support, so always return
// true, there is no possibility for pending operations
return true;
}
/*-----------------------------------------------------------------
EFA2_IsInserted
Checks to see if the NAND chip used by the EFA2 is present
bool return OUT: true if the correct NAND chip is found
-----------------------------------------------------------------*/
bool EFA2_IsInserted (void)
{
EFA2_ClearStatus();
return (efa2_nand_id() == EFA2_NAND_ID);
}
/*-----------------------------------------------------------------
EFA2_ReadSectors
Read "numSecs" 512 byte sectors starting from "sector" into "buffer"
No error correction, no use of spare cells, no use of R/~B signal
u32 sector IN: number of first 512 byte sector to be read
u8 numSecs IN: number of 512 byte sectors to read,
1 to 256 sectors can be read, 0 = 256
void* buffer OUT: pointer to 512 byte buffer to store data in
bool return OUT: true if successful
-----------------------------------------------------------------*/
bool EFA2_ReadSectors (u32 sector, u8 numSecs, void* buffer)
{
int i;
int j = (numSecs > 0 ? numSecs : 256);
#ifndef _CF_ALLOW_UNALIGNED
u8 byte;
u16 word;
#endif
// NAND page 0x40 (EFA2_UDSK_START) contains the MBR of the
// udisk and thus is sector 0. The original EFA2 firmware
// does never look at this, it only watches page 0x60, which
// contains the boot block of the FAT16 partition. That is
// fixed, so the EFA2 udisk must not be reformated, else
// the ARK Octopus and also the original Firmware won't be
// able to access the udisk anymore and I have to write a
// recovery tool.
u32 page = EFA2_UDSK_START + sector;
// future enhancement: wait for possible write operations to
// be finisched
if (!EFA2_ClearStatus()) return false;
efa2_nand_unlock();
efa2_nand_enable(1);
efa2_nand_reset();
// set NAND to READ1 operation mode and transfer page address
REG_EFA2_NAND_CMD = 0x00; // write READ1 command
REG_EFA2_NAND_WR = 0x00; // write address [7:0]
REG_EFA2_NAND_WR = (page ) & 0xff; // write address [15:8]
REG_EFA2_NAND_WR = (page >> 8 ) & 0xff; // write address[23:16]
REG_EFA2_NAND_WR = (page >> 16) & 0xff; // write address[26:24]
// Due to a bug in EFA2 design there is need to waste some cycles
// "by hand" instead the possibility to check the R/~B port of
// the NAND flash via a register. The RTC deactivation is only
// there to make sure the loop won't be optimized by the compiler
for (i=0 ; i < 3 ; i++) efa2_rtc_deactivate();
while (j--)
{
// read page data
#ifdef _CF_ALLOW_UNALIGNED
// slow byte access to RAM, but works in principle
for (i=0 ; i < 512 ; i++)
((u8*)buffer)[i] = REG_EFA2_NAND_RD;
#else
// a bit faster, but DMA is not possible
for (i=0 ; i < 256 ; i++) {
byte = REG_EFA2_NAND_RD; // read lo-byte
word = byte;
byte = REG_EFA2_NAND_RD; // read hi-byte
word = word | (byte << 8);
((u16*)buffer)[i] = word;
}
#endif
}
efa2_nand_enable(0);
efa2_nand_lock();
return true;
}
/*-----------------------------------------------------------------
EFA2_WriteSectors
Write "numSecs" 512 byte sectors starting at "sector" from "buffer"
u32 sector IN: address of 512 byte sector on card to write
u8 numSecs IN: number of 512 byte sectors to write
1 to 256 sectors can be written, 0 = 256
void* buffer IN: pointer to 512 byte buffer to read data from
bool return OUT: true if successful
-----------------------------------------------------------------*/
bool EFA2_WriteSectors (u32 sector, u8 numSecs, void* buffer)
{
// Upto now I focused on reading NAND, write operations
// will follow
return false;
}
/*-----------------------------------------------------------------
EFA2_Shutdown
unload the EFA2 interface
-----------------------------------------------------------------*/
bool EFA2_Shutdown(void)
{
return EFA2_ClearStatus();
}
/*-----------------------------------------------------------------
EFA2_StartUp
initializes the EFA2 card, returns true if successful,
otherwise returns false
-----------------------------------------------------------------*/
bool EFA2_StartUp(void)
{
efa2_global_unlock();
return (efa2_nand_id() == EFA2_NAND_ID);
}
/*-----------------------------------------------------------------
the actual interface structure
-----------------------------------------------------------------*/
IO_INTERFACE io_efa2 = {
DEVICE_TYPE_EFA2,
FEATURE_MEDIUM_CANREAD | FEATURE_SLOT_GBA,
(FN_MEDIUM_STARTUP)&EFA2_StartUp,
(FN_MEDIUM_ISINSERTED)&EFA2_IsInserted,
(FN_MEDIUM_READSECTORS)&EFA2_ReadSectors,
(FN_MEDIUM_WRITESECTORS)&EFA2_WriteSectors,
(FN_MEDIUM_CLEARSTATUS)&EFA2_ClearStatus,
(FN_MEDIUM_SHUTDOWN)&EFA2_Shutdown
};
/*-----------------------------------------------------------------
EFA2_GetInterface
returns the interface structure to host
-----------------------------------------------------------------*/
LPIO_INTERFACE EFA2_GetInterface(void) {
return &io_efa2;
}
#endif // SUPPORT_EFA2
/*
io_efa2.c by CyteX
Based on io_mpfc.c by chishm (Michael Chisholm)
Hardware Routines for reading the NAND flash located on
EFA2 flash carts
This software is completely free. No warranty is provided.
If you use it, please give me credit and email me about your
project at cytex <at> gmx <dot> de and do not forget to also
drop chishm <at> hotmail <dot> com a line
See gba_nds_fat.txt for help and license details.
*/
#include "io_efa2.h"
#ifdef SUPPORT_EFA2
//
// EFA2 register addresses
//
// RTC registers
#define REG_RTC_CLK *(vu16*)0x080000c4
#define REG_RTC_EN *(vu16*)0x080000c8
// "Magic" registers used for unlock/lock sequences
#define REG_EFA2_MAGIC_A *(vu16*)0x09fe0000
#define REG_EFA2_MAGIC_B *(vu16*)0x08000000
#define REG_EFA2_MAGIC_C *(vu16*)0x08020000
#define REG_EFA2_MAGIC_D *(vu16*)0x08040000
#define REG_EFA2_MAGIC_E *(vu16*)0x09fc0000
// NAND flash lock/unlock register
#define REG_EFA2_NAND_LOCK *(vu16*)0x09c40000
// NAND flash enable register
#define REG_EFA2_NAND_EN *(vu16*)0x09400000
// NAND flash command write register
#define REG_EFA2_NAND_CMD *(vu8*)0x09ffffe2
// NAND flash address/data write register
#define REG_EFA2_NAND_WR *(vu8*)0x09ffffe0
// NAND flash data read register
#define REG_EFA2_NAND_RD *(vu8*)0x09ffc000
// ID of Samsung K9K1G NAND flash chip
#define EFA2_NAND_ID 0xEC79A5C0
// first sector of udisk
#define EFA2_UDSK_START 0x40
//
// EFA2 access functions
//
// deactivate RTC ports
inline void efa2_rtc_deactivate(void) {
REG_RTC_EN = 0;
}
// unlock register access
void efa2_reg_unlock(void) {
REG_EFA2_MAGIC_A = 0x0d200;
REG_EFA2_MAGIC_B = 0x01500;
REG_EFA2_MAGIC_C = 0x0d200;
REG_EFA2_MAGIC_D = 0x01500;
}
// finish/lock register access
inline void efa2_reg_lock(void) {
REG_EFA2_MAGIC_E = 0x1500;
}
// global reset/init/enable/unlock ?
void efa2_global_unlock(void) {
efa2_reg_unlock();
*(vu16*)0x09880000 = 0x08000;
efa2_reg_lock();
}
// global lock, stealth mode
void efa2_global_lock(void) {
// quite sure there is such a sequence, but haven't had
// a look for it upto now
}
// unlock NAND Flash
void efa2_nand_unlock(void) {
efa2_reg_unlock();
REG_EFA2_NAND_LOCK = 0x01500;
efa2_reg_lock();
}
// lock NAND Flash
void efa2_nand_lock(void) {
efa2_reg_unlock();
REG_EFA2_NAND_LOCK = 0x0d200;
efa2_reg_lock();
}
//
// Set NAND Flash chip enable and write protection bits ?
//
// val | ~CE | ~WP |
// -----+-----+-----+
// 0 | 0 | 0 |
// 1 | 1 | 0 |
// 3 | 1 | 1 |
// -----+-----+-----+
//
void efa2_nand_enable(u16 val) {
efa2_reg_unlock();
REG_EFA2_NAND_EN = val;
efa2_reg_lock();
}
//
// Perform NAND reset
// NAND has to be unlocked and enabled when called
//
inline void efa2_nand_reset(void) {
REG_EFA2_NAND_CMD = 0xff; // write reset command
}
//
// Read out NAND ID information, could be used for card detection
//
// | EFA2 1GBit |
// ------------------+------------+
// maker code | 0xEC |
// device code | 0x79 |
// don't care | 0xA5 |
// multi plane code | 0xC0 |
// ------------------+------------+
//
u32 efa2_nand_id(void) {
u8 byte;
u32 id;
efa2_nand_unlock();
efa2_nand_enable(1);
REG_EFA2_NAND_CMD = 0x90; // write id command
REG_EFA2_NAND_WR = 0x00; // (dummy) address cycle
byte = REG_EFA2_NAND_RD; // read maker code
id = byte;
byte = REG_EFA2_NAND_RD; // read device code
id = (id << 8) | byte;
byte = REG_EFA2_NAND_RD; // read don't care
id = (id << 8) | byte;
byte = REG_EFA2_NAND_RD; // read multi plane code
id = (id << 8) | byte;
efa2_nand_enable(0);
efa2_nand_lock();
return (id);
}
//
// Start of gba_nds_fat block device description
//
/*-----------------------------------------------------------------
EFA2_ClearStatus
Reads and checks NAND status information
bool return OUT: true if NAND is idle
-----------------------------------------------------------------*/
bool EFA2_ClearStatus (void)
{
// tbd: currently there is no write support, so always return
// true, there is no possibility for pending operations
return true;
}
/*-----------------------------------------------------------------
EFA2_IsInserted
Checks to see if the NAND chip used by the EFA2 is present
bool return OUT: true if the correct NAND chip is found
-----------------------------------------------------------------*/
bool EFA2_IsInserted (void)
{
EFA2_ClearStatus();
return (efa2_nand_id() == EFA2_NAND_ID);
}
/*-----------------------------------------------------------------
EFA2_ReadSectors
Read "numSecs" 512 byte sectors starting from "sector" into "buffer"
No error correction, no use of spare cells, no use of R/~B signal
u32 sector IN: number of first 512 byte sector to be read
u8 numSecs IN: number of 512 byte sectors to read,
1 to 256 sectors can be read, 0 = 256
void* buffer OUT: pointer to 512 byte buffer to store data in
bool return OUT: true if successful
-----------------------------------------------------------------*/
bool EFA2_ReadSectors (u32 sector, u8 numSecs, void* buffer)
{
int i;
int j = (numSecs > 0 ? numSecs : 256);
#ifndef _CF_ALLOW_UNALIGNED
u8 byte;
u16 word;
#endif
// NAND page 0x40 (EFA2_UDSK_START) contains the MBR of the
// udisk and thus is sector 0. The original EFA2 firmware
// does never look at this, it only watches page 0x60, which
// contains the boot block of the FAT16 partition. That is
// fixed, so the EFA2 udisk must not be reformated, else
// the ARK Octopus and also the original Firmware won't be
// able to access the udisk anymore and I have to write a
// recovery tool.
u32 page = EFA2_UDSK_START + sector;
// future enhancement: wait for possible write operations to
// be finisched
if (!EFA2_ClearStatus()) return false;
efa2_nand_unlock();
efa2_nand_enable(1);
efa2_nand_reset();
// set NAND to READ1 operation mode and transfer page address
REG_EFA2_NAND_CMD = 0x00; // write READ1 command
REG_EFA2_NAND_WR = 0x00; // write address [7:0]
REG_EFA2_NAND_WR = (page ) & 0xff; // write address [15:8]
REG_EFA2_NAND_WR = (page >> 8 ) & 0xff; // write address[23:16]
REG_EFA2_NAND_WR = (page >> 16) & 0xff; // write address[26:24]
// Due to a bug in EFA2 design there is need to waste some cycles
// "by hand" instead the possibility to check the R/~B port of
// the NAND flash via a register. The RTC deactivation is only
// there to make sure the loop won't be optimized by the compiler
for (i=0 ; i < 3 ; i++) efa2_rtc_deactivate();
while (j--)
{
// read page data
#ifdef _CF_ALLOW_UNALIGNED
// slow byte access to RAM, but works in principle
for (i=0 ; i < 512 ; i++)
((u8*)buffer)[i] = REG_EFA2_NAND_RD;
#else
// a bit faster, but DMA is not possible
for (i=0 ; i < 256 ; i++) {
byte = REG_EFA2_NAND_RD; // read lo-byte
word = byte;
byte = REG_EFA2_NAND_RD; // read hi-byte
word = word | (byte << 8);
((u16*)buffer)[i] = word;
}
#endif
}
efa2_nand_enable(0);
efa2_nand_lock();
return true;
}
/*-----------------------------------------------------------------
EFA2_WriteSectors
Write "numSecs" 512 byte sectors starting at "sector" from "buffer"
u32 sector IN: address of 512 byte sector on card to write
u8 numSecs IN: number of 512 byte sectors to write
1 to 256 sectors can be written, 0 = 256
void* buffer IN: pointer to 512 byte buffer to read data from
bool return OUT: true if successful
-----------------------------------------------------------------*/
bool EFA2_WriteSectors (u32 sector, u8 numSecs, void* buffer)
{
// Upto now I focused on reading NAND, write operations
// will follow
return false;
}
/*-----------------------------------------------------------------
EFA2_Shutdown
unload the EFA2 interface
-----------------------------------------------------------------*/
bool EFA2_Shutdown(void)
{
return EFA2_ClearStatus();
}
/*-----------------------------------------------------------------
EFA2_StartUp
initializes the EFA2 card, returns true if successful,
otherwise returns false
-----------------------------------------------------------------*/
bool EFA2_StartUp(void)
{
efa2_global_unlock();
return (efa2_nand_id() == EFA2_NAND_ID);
}
/*-----------------------------------------------------------------
the actual interface structure
-----------------------------------------------------------------*/
IO_INTERFACE io_efa2 = {
DEVICE_TYPE_EFA2,
FEATURE_MEDIUM_CANREAD | FEATURE_SLOT_GBA,
(FN_MEDIUM_STARTUP)&EFA2_StartUp,
(FN_MEDIUM_ISINSERTED)&EFA2_IsInserted,
(FN_MEDIUM_READSECTORS)&EFA2_ReadSectors,
(FN_MEDIUM_WRITESECTORS)&EFA2_WriteSectors,
(FN_MEDIUM_CLEARSTATUS)&EFA2_ClearStatus,
(FN_MEDIUM_SHUTDOWN)&EFA2_Shutdown
};
/*-----------------------------------------------------------------
EFA2_GetInterface
returns the interface structure to host
-----------------------------------------------------------------*/
LPIO_INTERFACE EFA2_GetInterface(void) {
return &io_efa2;
}
#endif // SUPPORT_EFA2
|