1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H
#include "common/scummsys.h"
#include "common/algorithm.h"
#include "common/textconsole.h" // For error()
#include "common/memory.h"
namespace Common {
/**
* This class implements a dynamically sized container, which
* can be accessed similar to a regular C++ array. Accessing
* elements is performed in constant time (like with plain arrays).
* In addition, one can append, insert and remove entries (this
* is the 'dynamic' part). Doing that in general takes time
* proportional to the number of elements in the array.
*
* The container class closest to this in the C++ standard library is
* std::vector. However, there are some differences.
*/
template<class T>
class Array {
public:
typedef T *iterator;
typedef const T *const_iterator;
typedef T value_type;
typedef uint size_type;
protected:
size_type _capacity;
size_type _size;
T *_storage;
public:
Array() : _capacity(0), _size(0), _storage(0) {}
/**
* Constructs an array with `count` default-inserted instances of T. No
* copies are made.
*/
explicit Array(size_type count) : _size(count) {
allocCapacity(count);
for (size_type i = 0; i < count; ++i)
new ((void *)&_storage[i]) T();
}
/**
* Constructs an array with `count` copies of elements with value `value`.
*/
Array(size_type count, const T &value) : _size(count) {
allocCapacity(count);
uninitialized_fill_n(_storage, count, value);
}
Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(0) {
if (array._storage) {
allocCapacity(_size);
uninitialized_copy(array._storage, array._storage + _size, _storage);
}
}
/**
* Construct an array by copying data from a regular array.
*/
template<class T2>
Array(const T2 *array, size_type n) {
_size = n;
allocCapacity(n);
uninitialized_copy(array, array + _size, _storage);
}
~Array() {
freeStorage(_storage, _size);
_storage = 0;
_capacity = _size = 0;
}
/** Appends element to the end of the array. */
void push_back(const T &element) {
if (_size + 1 <= _capacity)
new ((void *)&_storage[_size++]) T(element);
else
insert_aux(end(), &element, &element + 1);
}
void push_back(const Array<T> &array) {
if (_size + array.size() <= _capacity) {
uninitialized_copy(array.begin(), array.end(), end());
_size += array.size();
} else
insert_aux(end(), array.begin(), array.end());
}
/** Removes the last element of the array. */
void pop_back() {
assert(_size > 0);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
}
/** Returns a pointer to the underlying memory serving as element storage. */
const T *data() const {
return _storage;
}
/** Returns a pointer to the underlying memory serving as element storage. */
T *data() {
return _storage;
}
/** Returns a reference to the first element of the array. */
T &front() {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the first element of the array. */
const T &front() const {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the last element of the array. */
T &back() {
assert(_size > 0);
return _storage[_size-1];
}
/** Returns a reference to the last element of the array. */
const T &back() const {
assert(_size > 0);
return _storage[_size-1];
}
void insert_at(size_type idx, const T &element) {
assert(idx <= _size);
insert_aux(_storage + idx, &element, &element + 1);
}
void insert_at(size_type idx, const Array<T> &array) {
assert(idx <= _size);
insert_aux(_storage + idx, array.begin(), array.end());
}
/**
* Inserts element before pos.
*/
void insert(iterator pos, const T &element) {
insert_aux(pos, &element, &element + 1);
}
T remove_at(size_type idx) {
assert(idx < _size);
T tmp = _storage[idx];
copy(_storage + idx + 1, _storage + _size, _storage + idx);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
return tmp;
}
// TODO: insert, remove, ...
T &operator[](size_type idx) {
assert(idx < _size);
return _storage[idx];
}
const T &operator[](size_type idx) const {
assert(idx < _size);
return _storage[idx];
}
Array<T> &operator=(const Array<T> &array) {
if (this == &array)
return *this;
freeStorage(_storage, _size);
_size = array._size;
allocCapacity(_size);
uninitialized_copy(array._storage, array._storage + _size, _storage);
return *this;
}
size_type size() const {
return _size;
}
void clear() {
freeStorage(_storage, _size);
_storage = 0;
_size = 0;
_capacity = 0;
}
iterator erase(iterator pos) {
copy(pos + 1, _storage + _size, pos);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
return pos;
}
bool empty() const {
return (_size == 0);
}
bool operator==(const Array<T> &other) const {
if (this == &other)
return true;
if (_size != other._size)
return false;
for (size_type i = 0; i < _size; ++i) {
if (_storage[i] != other._storage[i])
return false;
}
return true;
}
bool operator!=(const Array<T> &other) const {
return !(*this == other);
}
iterator begin() {
return _storage;
}
iterator end() {
return _storage + _size;
}
const_iterator begin() const {
return _storage;
}
const_iterator end() const {
return _storage + _size;
}
void reserve(size_type newCapacity) {
if (newCapacity <= _capacity)
return;
T *oldStorage = _storage;
allocCapacity(newCapacity);
if (oldStorage) {
// Copy old data
uninitialized_copy(oldStorage, oldStorage + _size, _storage);
freeStorage(oldStorage, _size);
}
}
void resize(size_type newSize) {
reserve(newSize);
for (size_type i = _size; i < newSize; ++i)
new ((void *)&_storage[i]) T();
_size = newSize;
}
void assign(const_iterator first, const_iterator last) {
resize(distance(first, last)); // FIXME: ineffective?
T *dst = _storage;
while (first != last)
*dst++ = *first++;
}
protected:
static size_type roundUpCapacity(size_type capacity) {
// Round up capacity to the next power of 2;
// we use a minimal capacity of 8.
size_type capa = 8;
while (capa < capacity)
capa <<= 1;
return capa;
}
void allocCapacity(size_type capacity) {
_capacity = capacity;
if (capacity) {
_storage = (T *)malloc(sizeof(T) * capacity);
if (!_storage)
::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
} else {
_storage = 0;
}
}
void freeStorage(T *storage, const size_type elements) {
for (size_type i = 0; i < elements; ++i)
storage[i].~T();
free(storage);
}
/**
* Insert a range of elements coming from this or another array.
* Unlike std::vector::insert, this method does not accept
* arbitrary iterators, mainly because our iterator system is
* seriously limited and does not distinguish between input iterators,
* output iterators, forward iterators or random access iterators.
*
* So, we simply restrict to Array iterators. Extending this to arbitrary
* random access iterators would be trivial.
*
* Moreover, this method does not handle all cases of inserting a subrange
* of an array into itself; this is why it is private for now.
*/
iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
assert(_storage <= pos && pos <= _storage + _size);
assert(first <= last);
const size_type n = last - first;
if (n) {
const size_type idx = pos - _storage;
if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
T *const oldStorage = _storage;
// If there is not enough space, allocate more.
// Likewise, if this is a self-insert, we allocate new
// storage to avoid conflicts.
allocCapacity(roundUpCapacity(_size + n));
// Copy the data from the old storage till the position where
// we insert new data
uninitialized_copy(oldStorage, oldStorage + idx, _storage);
// Copy the data we insert
uninitialized_copy(first, last, _storage + idx);
// Afterwards copy the old data from the position where we
// insert.
uninitialized_copy(oldStorage + idx, oldStorage + _size, _storage + idx + n);
freeStorage(oldStorage, _size);
} else if (idx + n <= _size) {
// Make room for the new elements by shifting back
// existing ones.
// 1. Move a part of the data to the uninitialized area
uninitialized_copy(_storage + _size - n, _storage + _size, _storage + _size);
// 2. Move a part of the data to the initialized area
copy_backward(pos, _storage + _size - n, _storage + _size);
// Insert the new elements.
copy(first, last, pos);
} else {
// Copy the old data from the position till the end to the new
// place.
uninitialized_copy(pos, _storage + _size, _storage + idx + n);
// Copy a part of the new data to the position inside the
// initialized space.
copy(first, first + (_size - idx), pos);
// Copy a part of the new data to the position inside the
// uninitialized space.
uninitialized_copy(first + (_size - idx), last, _storage + _size);
}
// Finally, update the internal state
_size += n;
}
return pos;
}
};
/**
* Double linked list with sorted nodes.
*/
template<class T>
class SortedArray : public Array<T> {
public:
typedef T *iterator;
typedef uint size_type;
SortedArray(int (*comparator)(const void *, const void *)) {
_comparator = comparator;
}
/**
* Inserts element at the sorted position.
*/
void insert(const T &element) {
if (!this->_size) {
this->insert_aux(this->_storage, &element, &element + 1);
return;
}
T *where = bsearchMin(element);
if (where > this->_storage + this->_size)
Array<T>::push_back(element);
else
Array<T>::insert(where, element);
}
private:
T &operator[](size_type idx);
void insert_at(size_type idx, const T &element);
void insert_at(size_type idx, const Array<T> &array);
void insert(iterator pos, const T &element);
void push_back(const T &element);
void push_back(const Array<T> &array);
// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
// Author: Tim Abbott <tabbott@ksplice.com>
// Licensed under GPLv2+
T *bsearchMin(void *key) {
uint start_ = 0, end_ = this->_size;
int result;
while (start_ < end_) {
uint mid = start_ + (end_ - start_) / 2;
result = this->_comparator(key, this->_storage[mid]);
if (result < 0)
end_ = mid;
else if (result > 0)
start_ = mid + 1;
else
return &this->_storage[mid];
}
return &this->_storage[start_];
}
int (*_comparator)(const void *, const void *);
};
} // End of namespace Common
#endif
|