1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Based on eos' (I)FFT code which is in turn
// Based upon the (I)FFT code in FFmpeg
// Copyright (c) 2008 Loren Merritt
// Copyright (c) 2002 Fabrice Bellard
// Partly based on libdjbfft by D. J. Bernstein
#include "common/cosinetables.h"
#include "common/fft.h"
#include "common/util.h"
#include "common/textconsole.h"
namespace Common {
FFT::FFT(int bits, int inverse) : _bits(bits), _inverse(inverse) {
assert((_bits >= 2) && (_bits <= 16));
int n = 1 << bits;
_tmpBuf = new Complex[n];
_expTab = new Complex[n / 2];
_revTab = new uint16[n];
_splitRadix = 1;
for (int i = 0; i < n; i++)
_revTab[-splitRadixPermutation(i, n, _inverse) & (n - 1)] = i;
for (int i = 0; i < ARRAYSIZE(_cosTables); i++) {
if (i+4 <= _bits)
_cosTables[i] = new Common::CosineTable(i+4);
else
_cosTables[i] = 0;
}
}
FFT::~FFT() {
for (int i = 0; i < ARRAYSIZE(_cosTables); i++) {
delete _cosTables[i];
}
delete[] _revTab;
delete[] _expTab;
delete[] _tmpBuf;
}
const uint16 *FFT::getRevTab() const {
return _revTab;
}
void FFT::permute(Complex *z) {
int np = 1 << _bits;
if (_tmpBuf) {
for (int j = 0; j < np; j++)
_tmpBuf[_revTab[j]] = z[j];
memcpy(z, _tmpBuf, np * sizeof(Complex));
return;
}
// Reverse
for (int j = 0; j < np; j++) {
int k = _revTab[j];
if (k < j)
SWAP(z[k], z[j]);
}
}
int FFT::splitRadixPermutation(int i, int n, int inverse) {
if (n <= 2)
return i & 1;
int m = n >> 1;
if (!(i & m))
return splitRadixPermutation(i, m, inverse) * 2;
m >>= 1;
if (inverse == !(i & m))
return splitRadixPermutation(i, m, inverse) * 4 + 1;
return splitRadixPermutation(i, m, inverse) * 4 - 1;
}
#define sqrthalf (float)M_SQRT1_2
#define BF(x, y, a, b) { \
x = a - b; \
y = a + b; \
}
#define BUTTERFLIES(a0, a1, a2, a3) { \
BF(t3, t5, t5, t1); \
BF(a2.re, a0.re, a0.re, t5); \
BF(a3.im, a1.im, a1.im, t3); \
BF(t4, t6, t2, t6); \
BF(a3.re, a1.re, a1.re, t4); \
BF(a2.im, a0.im, a0.im, t6); \
}
// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0, a1, a2, a3) { \
float r0 = a0.re, i0 = a0.im, r1 = a1.re, i1 = a1.im; \
BF(t3, t5, t5, t1); \
BF(a2.re, a0.re, r0, t5); \
BF(a3.im, a1.im, i1, t3); \
BF(t4, t6, t2, t6); \
BF(a3.re, a1.re, r1, t4); \
BF(a2.im, a0.im, i0, t6); \
}
#define TRANSFORM(a0, a1, a2, a3, wre, wim) { \
t1 = a2.re * wre + a2.im * wim; \
t2 = a2.im * wre - a2.re * wim; \
t5 = a3.re * wre - a3.im * wim; \
t6 = a3.im * wre + a3.re * wim; \
BUTTERFLIES(a0, a1, a2, a3) \
}
#define TRANSFORM_ZERO(a0, a1, a2, a3) { \
t1 = a2.re; \
t2 = a2.im; \
t5 = a3.re; \
t6 = a3.im; \
BUTTERFLIES(a0, a1, a2, a3) \
}
/* z[0...8n-1], w[1...2n-1] */
#define PASS(name) \
static void name(Complex *z, const float *wre, unsigned int n) { \
float t1, t2, t3, t4, t5, t6; \
int o1 = 2 * n; \
int o2 = 4 * n; \
int o3 = 6 * n; \
const float *wim = wre + o1; \
n--; \
\
TRANSFORM_ZERO(z[0], z[o1], z[o2], z[o3]); \
TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], wre[1], wim[-1]); \
do { \
z += 2; \
wre += 2; \
wim -= 2; \
TRANSFORM(z[0], z[o1], z[o2], z[o3], wre[0], wim[0]);\
TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], wre[1], wim[-1]);\
} while(--n);\
}
PASS(pass)
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)
void FFT::fft4(Complex *z) {
float t1, t2, t3, t4, t5, t6, t7, t8;
BF(t3, t1, z[0].re, z[1].re);
BF(t8, t6, z[3].re, z[2].re);
BF(z[2].re, z[0].re, t1, t6);
BF(t4, t2, z[0].im, z[1].im);
BF(t7, t5, z[2].im, z[3].im);
BF(z[3].im, z[1].im, t4, t8);
BF(z[3].re, z[1].re, t3, t7);
BF(z[2].im, z[0].im, t2, t5);
}
void FFT::fft8(Complex *z) {
float t1, t2, t3, t4, t5, t6, t7, t8;
fft4(z);
BF(t1, z[5].re, z[4].re, -z[5].re);
BF(t2, z[5].im, z[4].im, -z[5].im);
BF(t3, z[7].re, z[6].re, -z[7].re);
BF(t4, z[7].im, z[6].im, -z[7].im);
BF(t8, t1, t3, t1);
BF(t7, t2, t2, t4);
BF(z[4].re, z[0].re, z[0].re, t1);
BF(z[4].im, z[0].im, z[0].im, t2);
BF(z[6].re, z[2].re, z[2].re, t7);
BF(z[6].im, z[2].im, z[2].im, t8);
TRANSFORM(z[1], z[3], z[5], z[7], sqrthalf, sqrthalf);
}
void FFT::fft16(Complex *z) {
float t1, t2, t3, t4, t5, t6;
fft8(z);
fft4(z + 8);
fft4(z + 12);
assert(_cosTables[0]);
const float * const cosTable = _cosTables[0]->getTable();
TRANSFORM_ZERO(z[0], z[4], z[8], z[12]);
TRANSFORM(z[2], z[6], z[10], z[14], sqrthalf, sqrthalf);
TRANSFORM(z[1], z[5], z[9], z[13], cosTable[1],cosTable[3]);
TRANSFORM(z[3], z[7], z[11], z[15], cosTable[3], cosTable[1]);
}
void FFT::fft(int n, int logn, Complex *z) {
switch (logn) {
case 2:
fft4(z);
break;
case 3:
fft8(z);
break;
case 4:
fft16(z);
break;
default:
fft((n / 2), logn - 1, z);
fft((n / 4), logn - 2, z + (n / 4) * 2);
fft((n / 4), logn - 2, z + (n / 4) * 3);
assert(_cosTables[logn - 4]);
if (n > 1024)
pass_big(z, _cosTables[logn - 4]->getTable(), (n / 4) / 2);
else
pass(z, _cosTables[logn - 4]->getTable(), (n / 4) / 2);
}
}
void FFT::calc(Complex *z) {
fft(1 << _bits, _bits, z);
}
} // End of namespace Common
|