1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/system.h"
#include "audio/mixer.h"
#include "adl/sound.h"
namespace Adl {
// Generic PC-speaker synth
// This produces more accurate frequencies than Audio::PCSpeaker, but only
// does square waves.
class Speaker {
public:
Speaker(int sampleRate);
void startTone(double freq);
void stopTone();
void generateSamples(int16 *buffer, int numSamples);
private:
int _rate;
frac_t _halfWaveLen, _halfWaveRem;
int16 _curSample;
};
Speaker::Speaker(int sampleRate) :
_rate(sampleRate),
_halfWaveLen(0),
_halfWaveRem(0),
_curSample(32767) { }
void Speaker::startTone(double freq) {
_halfWaveLen = _halfWaveRem = doubleToFrac(_rate / freq / 2);
if (_halfWaveLen < (frac_t)FRAC_ONE) {
// Tone out of range at this sample rate
stopTone();
}
}
void Speaker::stopTone() {
_halfWaveLen = 0;
}
void Speaker::generateSamples(int16 *buffer, int numSamples) {
if (_halfWaveLen == 0) {
// Silence
memset(buffer, 0, numSamples * sizeof(int16));
return;
}
int offset = 0;
while (offset < numSamples) {
if (_halfWaveRem >= 0 && _halfWaveRem < (frac_t)FRAC_ONE) {
// Rising/falling edge
// Switch level
_curSample = ~_curSample;
// Use transition point fraction for current sample value
buffer[offset++] = _halfWaveRem ^ _curSample;
// Compute next transition point
_halfWaveRem += _halfWaveLen - FRAC_ONE;
} else {
// Low/high level
// Generate as many samples as we can
const int samples = MIN(numSamples - offset, (int)fracToInt(_halfWaveRem));
Common::fill(buffer + offset, buffer + offset + samples, _curSample);
offset += samples;
// Count down to level transition point
_halfWaveRem -= intToFrac(samples);
}
}
}
Sound::Sound(const Tones &tones) :
_tones(tones),
_toneIndex(0),
_samplesRem(0) {
_rate = g_system->getMixer()->getOutputRate();
_speaker = new Speaker(_rate);
}
Sound::~Sound() {
delete _speaker;
}
bool Sound::endOfData() const {
return _samplesRem == 0 && _toneIndex == _tones.size();
}
int Sound::readBuffer(int16 *buffer, const int numSamples) {
int offset = 0;
while (offset < numSamples) {
if (_samplesRem == 0) {
// Set up next tone
if (_toneIndex == _tones.size()) {
// No more tones
return offset;
}
if (_tones[_toneIndex].freq == 0.0)
_speaker->stopTone();
else
_speaker->startTone(_tones[_toneIndex].freq);
// Compute length of tone
_samplesRem = _rate * _tones[_toneIndex++].len / 1000;
}
// Generate as many samples as we can
const int samples = MIN(numSamples - offset, _samplesRem);
_speaker->generateSamples(buffer + offset, samples);
_samplesRem -= samples;
offset += samples;
}
return numSamples;
}
} // End of namespace Adl
|