1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* Additional copyright for this file:
* Copyright (C) 1994-1998 Revolution Software Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "common/memstream.h"
#include "common/textconsole.h"
#include "sword2/sword2.h"
#include "sword2/defs.h"
#include "sword2/header.h"
#include "sword2/logic.h"
#include "sword2/resman.h"
#include "sword2/router.h"
#include "sword2/screen.h"
namespace Sword2 {
// ---------------------------------------------------------------------------
// ROUTER.CPP by James
//
// A rehash of Jeremy's original jrouter.c, containing low-level system
// routines for calculating routes between points inside a walk-grid, and
// constructing walk animations from mega-sets.
//
// jrouter.c underwent 2 major reworks from the original:
// (1) Restructured to allow more flexibility in the mega-sets, ie. more info
// taken from the walk-data
// - the new George & Nico mega-sets & walk-data were then tested &
// tweaked in the Sword1 system
// (2) Updated for the new Sword2 system, ie. new object structures
// - now compatible with Sword2, the essential code already having been
// tested
//
// ---------------------------------------------------------------------------
/****************************************************************************
* JROUTER.C polygon router with modular walks
* using a tree of modules
* 21 july 94
* 3 november 94
* System currently works by scanning grid data and coming up with a ROUTE
* as a series of way points(nodes), the smoothest eight directional PATH
* through these nodes is then found, and a WALK created to fit the PATH.
*
* Two funtions are called by the user, RouteFinder creates a route as a
* module list, HardWalk creates an animation list from the module list.
* The split is only provided to allow the possibility of turning the
* autorouter over two game cycles.
****************************************************************************
*
* Routine timings on osborne 486
*
* Read floor resource (file already loaded) 112 pixels
*
* Read mega resource (file already loaded) 112 pixels
*
*
*
****************************************************************************
*
* Modified 12 Oct 95
*
* Target Points within 1 pixel of a line are ignored ???
*
* Modules split into Points within 1 pixel of a line are ignored ???
*
****************************************************************************
*
* TOTALLY REHASHED BY JAMES FOR NEW MEGAS USING OLD SYSTEM
* THEN REINCARNATED BY JAMES FOR NEW MEGAS USING NEW SYSTEM
*
****************************************************************************/
//----------------------------------------------------------
// (4) WALK-GRID FILES
//----------------------------------------------------------
// a walk-grid file consists of:
//
// standard file header
// walk-grid file header
// walk-grid data
// Walk-Grid Header - taken directly from old "header.h" in STD_INC
struct WalkGridHeader {
int32 numBars; // number of bars on the floor
int32 numNodes; // number of nodes
};
uint8 Router::returnSlotNo(uint32 megaId) {
if (_vm->_logic->readVar(ID) == CUR_PLAYER_ID) {
// George (8)
return 0;
} else {
// One of Nico's mega id's
return 1;
}
}
void Router::allocateRouteMem() {
uint8 slotNo;
// Player character always always slot 0, while the other mega
// (normally Nico) always uses slot 1
// Better this way, so that if mega object removed from memory while
// in middle of route, the old route will be safely cleared from
// memory just before they create a new one
slotNo = returnSlotNo(_vm->_logic->readVar(ID));
// if this slot is already used, then it can't be needed any more
// because this id is creating a new route!
if (_routeSlots[slotNo])
freeRouteMem();
_routeSlots[slotNo] = (WalkData *)malloc(sizeof(WalkData) * O_WALKANIM_SIZE);
// 12000 bytes were used for this in Sword1 mega compacts, based on
// 20 bytes per 'WalkData' frame
// ie. allowing for 600 frames including end-marker
// Now 'WalkData' is 8 bytes, so 8*600 = 4800 bytes.
// Note that a 600 frame walk lasts about 48 seconds!
// (600fps / 12.5s = 48s)
// mega keeps note of which slot contains the pointer to it's walk
// animation mem block
// +1 so that '0' can mean "not walking"
// megaObject->route_slot_id = slotNo + 1;
}
WalkData *Router::getRouteMem() {
uint8 slotNo = returnSlotNo(_vm->_logic->readVar(ID));
return (WalkData *)_routeSlots[slotNo];
}
void Router::freeRouteMem() {
uint8 slotNo = returnSlotNo(_vm->_logic->readVar(ID));
free(_routeSlots[slotNo]);
_routeSlots[slotNo] = NULL;
}
void Router::freeAllRouteMem() {
for (int i = 0; i < TOTAL_ROUTE_SLOTS; i++) {
free(_routeSlots[i]);
_routeSlots[i] = NULL;
}
}
int32 Router::routeFinder(byte *ob_mega, byte *ob_walkdata, int32 x, int32 y, int32 dir) {
/*********************************************************************
* RouteFinder.C polygon router with modular walks
* 21 august 94
* 3 november 94
* routeFinder creates a list of modules that enables HardWalk to
* create an animation list.
*
* routeFinder currently works by scanning grid data and coming up
* with a ROUTE as a series of way points(nodes), the smoothest eight
* directional PATH through these nodes is then found, this
* information is made available to HardWalk for a WALK to be created
* to fit the PATH.
*
* 30 november 94 return values modified
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
*********************************************************************/
int32 routeFlag = 0;
int32 solidFlag = 0;
WalkData *walkAnim;
// megaId = id;
setUpWalkGrid(ob_mega, x, y, dir);
loadWalkData(ob_walkdata);
walkAnim = getRouteMem();
// All route data now loaded start finding a route
// Check if we can get a route through the floor. changed 12 Oct95 JPS
routeFlag = getRoute();
switch (routeFlag) {
case 2:
// special case for zero length route
// if target direction specified as any
if (_targetDir > 7)
_targetDir = _startDir;
// just a turn on the spot is required set an end module for
// the route let the animator deal with it
// modularPath is normally set by extractRoute
_modularPath[0].dir = _startDir;
_modularPath[0].num = 0;
_modularPath[0].x = _startX;
_modularPath[0].y = _startY;
_modularPath[1].dir = _targetDir;
_modularPath[1].num = 0;
_modularPath[1].x = _startX;
_modularPath[1].y = _startY;
_modularPath[2].dir = 9;
_modularPath[2].num = ROUTE_END_FLAG;
slidyWalkAnimator(walkAnim);
routeFlag = 2;
break;
case 1:
// A normal route. Convert the route to an exact path
smoothestPath();
// The Route had waypoints and direction options
// The Path is an exact set of lines in 8 directions that
// reach the target.
// The path is in module format, but steps taken in each
// direction are not accurate
// if target dir = 8 then the walk isn't linked to an anim so
// we can create a route without sliding and miss the exact
// target
#ifndef FORCE_SLIDY
if (_targetDir == 8) {
// can end facing ANY direction (ie. exact end
// position not vital) - so use SOLID walk to
// avoid sliding to exact position
solidPath();
solidFlag = solidWalkAnimator(walkAnim);
}
#endif
if (!solidFlag) {
// if we failed to create a SOLID route, do a SLIDY
// one instead
slidyPath();
slidyWalkAnimator(walkAnim);
}
break;
default:
// Route didn't reach target so assume point was off the floor
// routeFlag = 0;
break;
}
return routeFlag; // send back null route
}
int32 Router::getRoute() {
/*********************************************************************
* GetRoute.C extract a path from walk grid
* 12 october 94
*
* GetRoute currently works by scanning grid data and coming up with
* a ROUTE as a series of way points(nodes).
*
* static routeData _route[O_ROUTE_SIZE];
*
* return 0 = failed to find a route
*
* 1 = found a route
*
* 2 = mega already at target
*
* 3 = failed to find a route because target was on a line
*
*********************************************************************/
int32 routeGot = 0;
if (_startX == _targetX && _startY == _targetY)
routeGot = 2;
else {
// 'else' added by JEL (23jan96) otherwise 'routeGot' affected
// even when already set to '2' above - causing some 'turns'
// to walk downwards on the spot
// returns 3 if target on a line ( +- 1 pixel )
routeGot = checkTarget(_targetX, _targetY);
}
if (routeGot == 0) {
// still looking for a route check if target is within a pixel
// of a line
// scan through the nodes linking each node to its nearest
// neighbor until no more nodes change
// This is the routine that finds a route using scan()
int32 level = 1;
while (scan(level))
level++;
// Check to see if the route reached the target
if (_node[_nNodes].dist < 9999) {
// it did so extract the route as nodes and the
// directions to go between each node
routeGot = 1;
extractRoute();
// route.X,route.Y and route.Dir now hold all the
// route infomation with the target dir or route
// continuation
}
}
return routeGot;
}
// THE SLIDY PATH ROUTINES
int32 Router::smoothestPath() {
// This is the second big part of the route finder and the the only
// bit that tries to be clever (the other bits are clever).
//
// This part of the autorouter creates a list of modules from a set of
// lines running across the screen. The task is complicated by two
// things:
//
// Firstly in choosing a route through the maze of nodes the routine
// tries to minimise the amount of each individual turn avoiding 90
// degree and greater turns (where possible) and reduces the total
// number of turns (subject to two 45 degree turns being better than
// one 90 degree turn).
//
// Secondly when walking in a given direction the number of steps
// required to reach the end of that run is not calculated accurately.
// This is because I was unable to derive a function to relate number
// of steps taken between two points to the shrunken step size
int i;
int32 steps = 0;
int32 lastDir;
int32 tempturns[4];
int32 turns[4];
const int32 turntable[NO_DIRECTIONS] = { 0, 1, 3, 5, 7, 5, 3, 1 };
// route.X route.Y and route.Dir start at far end
_smoothPath[0].x = _startX;
_smoothPath[0].y = _startY;
_smoothPath[0].dir = _startDir;
_smoothPath[0].num = 0;
lastDir = _startDir;
// for each section of the route
for (int p = 0; p < _routeLength; p++) {
int32 dirS = _route[p].dirS;
int32 dirD = _route[p].dirD;
int32 nextDirS = _route[p + 1].dirS;
int32 nextDirD = _route[p + 1].dirD;
// Check directions into and out of a pair of nodes going in
int32 dS = dirS - lastDir;
if (dS < 0)
dS = dS + NO_DIRECTIONS;
int32 dD = dirD - lastDir;
if (dD < 0)
dD = dD + NO_DIRECTIONS;
// coming out
int32 dSS = dirS - nextDirS;
if (dSS < 0)
dSS = dSS + NO_DIRECTIONS;
int32 dDD = dirD - nextDirD;
if (dDD < 0)
dDD = dDD + NO_DIRECTIONS;
int32 dSD = dirS - nextDirD;
if (dSD < 0)
dSD = dSD + NO_DIRECTIONS;
int32 dDS = dirD - nextDirS;
if (dDS < 0)
dDS = dDS + NO_DIRECTIONS;
// Determine the amount of turning involved in each possible path
dS = turntable[dS];
dD = turntable[dD];
dSS = turntable[dSS];
dDD = turntable[dDD];
dSD = turntable[dSD];
dDS = turntable[dDS];
// get the best path out ie assume next section uses best direction
if (dSD < dSS)
dSS = dSD;
if (dDS < dDD)
dDD = dDS;
// Rate each option. Split routes look crap so weight against them
tempturns[0] = dS + dSS + 3;
turns[0] = 0;
tempturns[1] = dS + dDD;
turns[1] = 1;
tempturns[2] = dD + dSS;
turns[2] = 2;
tempturns[3] = dD + dDD + 3;
turns[3] = 3;
// set up turns as a sorted array of the turn values
for (i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (tempturns[j] > tempturns[j + 1]) {
SWAP(turns[j], turns[j + 1]);
SWAP(tempturns[j], tempturns[j + 1]);
}
}
}
// best option matched in order of the priority we would like
// to see on the screen but each option must be checked to see
// if it can be walked
int32 options = newCheck(1, _route[p].x, _route[p].y, _route[p + 1].x, _route[p + 1].y);
assert(options);
for (i = 0; i < 4; ++i) {
int32 opt = 1 << turns[i];
if (options & opt) {
smoothCheck(steps, turns[i], p, dirS, dirD);
break;
}
}
assert(i < 4);
// route.X route.Y route.dir and bestTurns start at far end
}
// best turns will end heading as near as possible to target dir rest
// is down to anim for now
_smoothPath[steps].dir = 9;
_smoothPath[steps].num = ROUTE_END_FLAG;
return 1;
}
void Router::smoothCheck(int32 &k, int32 best, int32 p, int32 dirS, int32 dirD) {
/*********************************************************************
* Slip sliding away
* This path checker checks to see if a walk that exactly follows the
* path would be valid. This should be inherently true for atleast one
* of the turn options.
* No longer checks the data it only creates the smoothPath array JPS
*********************************************************************/
int32 dsx, dsy;
int32 ddx, ddy;
int32 ss0, ss1, ss2;
int32 sd0, sd1, sd2;
if (p == 0)
k = 1;
int32 x = _route[p].x;
int32 y = _route[p].y;
int32 x2 = _route[p + 1].x;
int32 y2 = _route[p + 1].y;
int32 ldx = x2 - x;
int32 ldy = y2 - y;
int32 dirX = 1;
int32 dirY = 1;
if (ldx < 0) {
ldx = -ldx;
dirX = -1;
}
if (ldy < 0) {
ldy = -ldy;
dirY = -1;
}
// set up sd0-ss2 to reflect possible movement in each direction
if (dirS == 0 || dirS == 4) { // vert and diag
ddx = ldx;
ddy = (ldx * _diagonaly) / _diagonalx;
dsy = ldy - ddy;
ddx = ddx * dirX;
ddy = ddy * dirY;
dsy = dsy * dirY;
dsx = 0;
sd0 = (ddx + _modX[dirD] / 2) / _modX[dirD];
ss0 = (dsy + _modY[dirS] / 2) / _modY[dirS];
sd1 = sd0 / 2;
ss1 = ss0 / 2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
} else {
ddy = ldy;
ddx = (ldy * _diagonalx) / _diagonaly;
dsx = ldx - ddx;
ddy = ddy * dirY;
ddx = ddx * dirX;
dsx = dsx * dirX;
dsy = 0;
sd0 = (ddy + _modY[dirD] / 2) / _modY[dirD];
ss0 = (dsx + _modX[dirS] / 2) / _modX[dirS];
sd1 = sd0 / 2;
ss1 = ss0 / 2;
sd2 = sd0 - sd1;
ss2 = ss0 - ss1;
}
switch (best) {
case 0: // halfsquare, diagonal, halfsquare
_smoothPath[k].x = x + dsx / 2;
_smoothPath[k].y = y + dsy / 2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss1;
k++;
_smoothPath[k].x = x + dsx / 2 + ddx;
_smoothPath[k].y = y + dsy / 2 + ddy;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k++;
_smoothPath[k].x = x + dsx + ddx;
_smoothPath[k].y = y + dsy + ddy;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss2;
k++;
break;
case 1: // square, diagonal
_smoothPath[k].x = x + dsx;
_smoothPath[k].y = y + dsy;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k++;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k++;
break;
case 2: // diagonal square
_smoothPath[k].x = x + ddx;
_smoothPath[k].y = y + ddy;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd0;
k++;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k++;
break;
default: // halfdiagonal, square, halfdiagonal
_smoothPath[k].x = x + ddx / 2;
_smoothPath[k].y = y + ddy / 2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd1;
k++;
_smoothPath[k].x = x + dsx + ddx / 2;
_smoothPath[k].y = y + dsy + ddy / 2;
_smoothPath[k].dir = dirS;
_smoothPath[k].num = ss0;
k++;
_smoothPath[k].x = x2;
_smoothPath[k].y = y2;
_smoothPath[k].dir = dirD;
_smoothPath[k].num = sd2;
k++;
break;
}
}
void Router::slidyPath() {
/*********************************************************************
* slidyPath creates a path based on part steps with no sliding to get
* as near as possible to the target without any sliding this routine
* is intended for use when just clicking about.
*
* produce a module list from the line data
*********************************************************************/
int32 smooth = 1;
int32 slidy = 1;
// strip out the short sections
_modularPath[0].x = _smoothPath[0].x;
_modularPath[0].y = _smoothPath[0].y;
_modularPath[0].dir = _smoothPath[0].dir;
_modularPath[0].num = 0;
while (_smoothPath[smooth].num < ROUTE_END_FLAG) {
int32 scale = _scaleA * _smoothPath[smooth].y + _scaleB;
int32 deltaX = _smoothPath[smooth].x - _modularPath[slidy - 1].x;
int32 deltaY = _smoothPath[smooth].y - _modularPath[slidy - 1].y;
// quarter a step minimum
int32 stepX = (scale * _modX[_smoothPath[smooth].dir]) >> 19;
int32 stepY = (scale * _modY[_smoothPath[smooth].dir]) >> 19;
if (ABS(deltaX) >= ABS(stepX) && ABS(deltaY) >= ABS(stepY)) {
_modularPath[slidy].x = _smoothPath[smooth].x;
_modularPath[slidy].y = _smoothPath[smooth].y;
_modularPath[slidy].dir = _smoothPath[smooth].dir;
_modularPath[slidy].num = 1;
slidy++;
}
smooth++;
}
// in case the last bit had no steps
if (slidy > 1) {
_modularPath[slidy - 1].x = _smoothPath[smooth - 1].x;
_modularPath[slidy - 1].y = _smoothPath[smooth - 1].y;
}
// set up the end of the walk
_modularPath[slidy].x = _smoothPath[smooth - 1].x;
_modularPath[slidy].y = _smoothPath[smooth - 1].y;
_modularPath[slidy].dir = _targetDir;
_modularPath[slidy].num = 0;
slidy++;
_modularPath[slidy].x = _smoothPath[smooth - 1].x;
_modularPath[slidy].y = _smoothPath[smooth - 1].y;
_modularPath[slidy].dir = 9;
_modularPath[slidy].num = ROUTE_END_FLAG;
}
// SLOW IN
bool Router::addSlowInFrames(WalkData *walkAnim) {
if (_walkData.usingSlowInFrames && _modularPath[1].num > 0) {
for (int slowInFrameNo = 0; slowInFrameNo < _walkData.nSlowInFrames[_currentDir]; slowInFrameNo++) {
walkAnim[_stepCount].frame = _firstSlowInFrame[_currentDir] + slowInFrameNo;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = _currentDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
return true;
}
return false;
}
void Router::earlySlowOut(byte *ob_mega, byte *ob_walkdata) {
int32 slowOutFrameNo;
int32 walk_pc;
WalkData *walkAnim;
ObjectMega obMega(ob_mega);
debug(5, "EARLY SLOW-OUT");
loadWalkData(ob_walkdata);
debug(5, "********************************");
debug(5, "_framesPerStep = %d", _framesPerStep);
debug(5, "_numberOfSlowOutFrames = %d", _numberOfSlowOutFrames);
debug(5, "_firstWalkingTurnLeftFrame = %d", _firstWalkingTurnLeftFrame);
debug(5, "_firstWalkingTurnRightFrame = %d", _firstWalkingTurnRightFrame);
debug(5, "_firstSlowOutFrame = %d", _firstSlowOutFrame);
debug(5, "********************************");
walk_pc = obMega.getWalkPc();
walkAnim = getRouteMem();
// if this mega does actually have slow-out frames
if (_walkData.usingSlowOutFrames) {
// overwrite the next step (half a cycle) of the walk
// (ie .step - 0..5)
do {
debug(5, "STEP NUMBER: walkAnim[%d].step = %d", walk_pc, walkAnim[walk_pc].step);
debug(5, "ORIGINAL FRAME: walkAnim[%d].frame = %d", walk_pc, walkAnim[walk_pc].frame);
// map from existing walk frame across to correct
// frame number of slow-out - remember, there may be
// more slow-out frames than walk-frames!
if (walkAnim[walk_pc].frame >= _firstWalkingTurnRightFrame) {
// if it's a walking turn-right, rather than a
// normal step, then map it to a normal step
// frame first
walkAnim[walk_pc].frame -= _firstWalkingTurnRightFrame;
debug(5, "MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-right frame --> walk frame)", walk_pc, walkAnim[walk_pc].frame);
} else if (walkAnim[walk_pc].frame >= _firstWalkingTurnLeftFrame) {
// if it's a walking turn-left, rather than a
// normal step, then map it to a normal step
// frame first
walkAnim[walk_pc].frame -= _firstWalkingTurnLeftFrame;
debug(5, "MAPPED TO WALK: walkAnim[%d].frame = %d (walking turn-left frame --> walk frame)", walk_pc, walkAnim[walk_pc].frame);
}
walkAnim[walk_pc].frame += _firstSlowOutFrame + ((walkAnim[walk_pc].frame / _framesPerStep) * (_numberOfSlowOutFrames - _framesPerStep));
walkAnim[walk_pc].step = 0;
debug(5, "SLOW-OUT FRAME: walkAnim[%d].frame = %d",walk_pc, walkAnim[walk_pc].frame);
walk_pc++;
} while (walkAnim[walk_pc].step > 0);
// add stationary frame(s) (OPTIONAL)
for (slowOutFrameNo = _framesPerStep; slowOutFrameNo < _numberOfSlowOutFrames; slowOutFrameNo++) {
walkAnim[walk_pc].frame = walkAnim[walk_pc - 1].frame + 1;
debug(5, "EXTRA FRAME: walkAnim[%d].frame = %d", walk_pc, walkAnim[walk_pc].frame);
walkAnim[walk_pc].step = 0;
walkAnim[walk_pc].dir = walkAnim[walk_pc - 1].dir;
walkAnim[walk_pc].x = walkAnim[walk_pc - 1].x;
walkAnim[walk_pc].y = walkAnim[walk_pc - 1].y;
walk_pc++;
}
} else {
// this mega doesn't have slow-out frames
// stand in current direction
walkAnim[walk_pc].frame = _firstStandFrame + walkAnim[walk_pc - 1].dir;
walkAnim[walk_pc].step = 0;
walkAnim[walk_pc].dir = walkAnim[walk_pc - 1].dir;
walkAnim[walk_pc].x = walkAnim[walk_pc - 1].x;
walkAnim[walk_pc].y = walkAnim[walk_pc - 1].y;
walk_pc++;
}
// end of sequence
walkAnim[walk_pc].frame = 512;
// so that this doesn't happen again while 'george_walking' is still
// '2'
walkAnim[walk_pc].step = 99;
}
// SLOW OUT
void Router::addSlowOutFrames(WalkData *walkAnim) {
int32 slowOutFrameNo;
// if the mega did actually walk, we overwrite the last step (half a
// cycle) with slow-out frames + add any necessary stationary frames
if (_walkData.usingSlowOutFrames && _lastCount >= _framesPerStep) {
// place stop frames here
// slowdown at the end of the last walk
slowOutFrameNo = _lastCount - _framesPerStep;
debug(5, "SLOW OUT: slowOutFrameNo(%d) = _lastCount(%d) - _framesPerStep(%d)", slowOutFrameNo, _lastCount, _framesPerStep);
// overwrite the last step (half a cycle) of the walk
do {
// map from existing walk frame across to correct
// frame number of slow-out - remember, there may be
// more slow-out frames than walk-frames!
walkAnim[slowOutFrameNo].frame += _firstSlowOutFrame + ((walkAnim[slowOutFrameNo].frame / _framesPerStep) * (_numberOfSlowOutFrames - _framesPerStep));
// because no longer a normal walk-step
walkAnim[slowOutFrameNo].step = 0;
debug(5, "walkAnim[%d].frame = %d",slowOutFrameNo,walkAnim[slowOutFrameNo].frame);
slowOutFrameNo++;
} while (slowOutFrameNo < _lastCount);
// add stationary frame(s) (OPTIONAL)
for (slowOutFrameNo = _framesPerStep; slowOutFrameNo < _numberOfSlowOutFrames; slowOutFrameNo++) {
walkAnim[_stepCount].frame = walkAnim[_stepCount - 1].frame + 1;
debug(5, "EXTRA FRAMES: walkAnim[%d].frame = %d", _stepCount, walkAnim[_stepCount].frame);
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = walkAnim[_stepCount - 1].dir;
walkAnim[_stepCount].x = walkAnim[_stepCount - 1].x;
walkAnim[_stepCount].y = walkAnim[_stepCount - 1].y;
_stepCount++;
}
}
}
void Router::slidyWalkAnimator(WalkData *walkAnim) {
/*********************************************************************
* Skidding every where HardWalk creates an animation that exactly
* fits the smoothPath and uses foot slipping to fit whole steps into
* the route
*
* Parameters: georgeg, mouseg
* Returns: rout
*
* produce a module list from the line data
*********************************************************************/
int32 left;
int32 p;
int32 lastDir;
int32 lastRealDir;
int32 turnDir;
int32 scale;
int32 step;
int32 module;
int32 moduleEnd;
int32 module16X;
int32 module16Y;
int32 stepX;
int32 stepY;
int32 errorX;
int32 errorY;
int32 lastErrorX;
int32 lastErrorY;
int32 frameCount;
int32 frames;
p = 0;
lastDir = _modularPath[0].dir;
_currentDir = _modularPath[1].dir;
if (_currentDir == NO_DIRECTIONS)
_currentDir = lastDir;
_moduleX = _startX;
_moduleY = _startY;
module16X = _moduleX << 16;
module16Y = _moduleY << 16;
_stepCount = 0;
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
debug(5, "SLIDY: STARTING THE WALK");
module = _framesPerChar + lastDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
// TURN TO START THE WALK
debug(5, "SLIDY: TURNING TO START THE WALK");
// rotate if we need to
if (lastDir != _currentDir) {
// get the direction to turn
turnDir = _currentDir - lastDir;
if (turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if (_walkData.usingStandingTurnFrames) {
// new frames for turn frames 29oct95jps
if (turnDir < 0)
module = _firstStandingTurnLeftFrame + lastDir;
else
module = _firstStandingTurnRightFrame + lastDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != _currentDir) {
lastDir += turnDir;
// new frames for turn frames 29oct95jps
if (turnDir < 0) {
if (lastDir < 0)
lastDir += NO_DIRECTIONS;
module = _firstStandingTurnLeftFrame + lastDir;
} else {
if (lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = _firstStandingTurnRightFrame + lastDir;
}
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
// the back 45 degrees bit
// step back one because new head turn for george takes us
// past the new dir
_stepCount--;
}
// his head is in the right direction
lastRealDir = _currentDir;
// SLIDY: THE SLOW IN
addSlowInFrames(walkAnim);
// THE WALK
debug(5, "SLIDY: THE WALK");
// start the walk on the left or right leg, depending on how the
// slow-in frames were drawn
// (0 = left; 1 = right)
if (_walkData.leadingLeg[_currentDir] == 0) {
// start the walk on the left leg (ie. at beginning of the
// first step of the walk cycle)
left = 0;
} else {
// start the walk on the right leg (ie. at beginning of the
// second step of the walk cycle)
left = 1;
}
_lastCount = _stepCount;
// this ensures that we don't put in turn frames for the start
lastDir = 99;
// this ensures that we don't put in turn frames for the start
_currentDir = 99;
do {
assert(_stepCount < O_WALKANIM_SIZE);
while (_modularPath[p].num == 0) {
p++;
if (_currentDir != 99)
lastRealDir = _currentDir;
lastDir = _currentDir;
_lastCount = _stepCount;
}
// calculate average amount to lose in each step on the way
// to the next node
_currentDir = _modularPath[p].dir;
if (_currentDir < NO_DIRECTIONS) {
module = _currentDir * _framesPerStep * 2 + left * _framesPerStep;
left = !left;
moduleEnd = module + _framesPerStep;
step = 0;
scale = (_scaleA * _moduleY + _scaleB);
do {
module16X += _walkData.dx[module] * scale;
module16Y += _walkData.dy[module] * scale;
_moduleX = module16X >> 16;
_moduleY = module16Y >> 16;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = step; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim[_stepCount].dir = _currentDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
step++;
module++;
} while (module < moduleEnd);
stepX = _modX[_modularPath[p].dir];
stepY = _modY[_modularPath[p].dir];
errorX = _modularPath[p].x - _moduleX;
errorX = errorX * stepX;
errorY = _modularPath[p].y - _moduleY;
errorY = errorY * stepY;
if (errorX < 0 || errorY < 0) {
_modularPath[p].num = 0; // the end of the path
// okay those last steps took us past our
// target but do we want to scoot or moonwalk
frames = _stepCount - _lastCount;
errorX = _modularPath[p].x - walkAnim[_stepCount - 1].x;
errorY = _modularPath[p].y - walkAnim[_stepCount - 1].y;
if (frames > _framesPerStep) {
lastErrorX = _modularPath[p].x - walkAnim[_stepCount - 7].x;
lastErrorY = _modularPath[p].y - walkAnim[_stepCount - 7].y;
if (stepX == 0) {
if (3 * ABS(lastErrorY) < ABS(errorY)) {
// the last stop was
// closest
_stepCount -= _framesPerStep;
left = !left;
}
} else {
if (3 * ABS(lastErrorX) < ABS(errorX)) {
//the last stop was
// closest
_stepCount -= _framesPerStep;
left = !left;
}
}
}
errorX = _modularPath[p].x - walkAnim[_stepCount-1].x;
errorY = _modularPath[p].y - walkAnim[_stepCount-1].y;
// okay we've reached the end but we still
// have an error
if (errorX != 0) {
frameCount = 0;
frames = _stepCount - _lastCount;
do {
frameCount++;
walkAnim[_lastCount + frameCount - 1].x += errorX * frameCount / frames;
} while (frameCount < frames);
}
if (errorY != 0) {
frameCount = 0;
frames = _stepCount - _lastCount;
do {
frameCount++;
walkAnim[_lastCount + frameCount - 1].y += errorY * frameCount / frames;
} while (frameCount < frames);
}
// Now is the time to put in the turn frames
// for the last turn
if (frames < _framesPerStep) {
// this ensures that we don't put in
// turn frames for this walk or the
// next
_currentDir = 99;
}
if (_currentDir != 99)
lastRealDir = _currentDir;
// check each turn condition in turn
// only for george
if (lastDir != 99 && _currentDir != 99 && _walkData.usingWalkingTurnFrames) {
// 1 and -7 going right -1 and 7 going
// left
lastDir = _currentDir - lastDir;
if (lastDir == -1 || lastDir == 7 || lastDir == -2 || lastDir == 6) {
// turn at the end of the last
// walk
_frame = _lastCount - _framesPerStep;
do {
// turning left
walkAnim[_frame].frame += _firstWalkingTurnLeftFrame;
_frame++;
} while (_frame < _lastCount);
} else if (lastDir == 1 || lastDir == -7 || lastDir == 2 || lastDir == -6) {
// turn at the end of the
// current walk
_frame = _lastCount - _framesPerStep;
do {
// turning right
walkAnim[_frame].frame += _firstWalkingTurnRightFrame;
_frame++;
} while (_frame < _lastCount);
}
lastDir = _currentDir;
}
// all turns checked
_lastCount = _stepCount;
_moduleX = walkAnim[_stepCount - 1].x;
_moduleY = walkAnim[_stepCount - 1].y;
module16X = _moduleX << 16;
module16Y = _moduleY << 16;
}
}
} while (_modularPath[p].dir < NO_DIRECTIONS);
#ifdef SWORD2_DEBUG
if (lastRealDir == 99)
error("slidyWalkAnimatorlast direction error");
#endif
// THE SLOW OUT
addSlowOutFrames(walkAnim);
// TURNS TO END THE WALK ?
// We've done the walk now put in any turns at the end
if (_targetDir == 8) {
// ANY direction -> stand in the last direction
module = _firstStandFrame + lastRealDir;
_targetDir = lastRealDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastRealDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
if (_targetDir == 9) {
// 'stance' was non-zero
if (_stepCount == 0) {
module = _framesPerChar + lastRealDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastRealDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
} else if (_targetDir != lastRealDir) {
// rotate to target direction
turnDir = _targetDir - lastRealDir;
if (turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to target direction
// for george and nico put in a head turn at the start
if (_walkData.usingStandingTurnFrames) {
// new frames for turn frames 29oct95jps
if (turnDir < 0)
module = _firstStandingTurnLeftFrame + lastDir;
else
module = _firstStandingTurnRightFrame + lastDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastRealDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
// rotate if we need to
while (lastRealDir != _targetDir) {
lastRealDir += turnDir;
// new frames for turn frames 29oct95jps
if (turnDir < 0) {
if (lastRealDir < 0)
lastRealDir += NO_DIRECTIONS;
module = _firstStandingTurnLeftFrame + lastRealDir;
} else {
if (lastRealDir > 7)
lastRealDir -= NO_DIRECTIONS;
module = _firstStandingTurnRightFrame + lastRealDir;
}
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastRealDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
module = _firstStandFrame + lastRealDir;
walkAnim[_stepCount - 1].frame = module;
} else {
// just stand at the end
module = _firstStandFrame + lastRealDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastRealDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
_stepCount++;
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
_stepCount++;
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
// write all the frames to "debug.txt"
debug(5, "THE WALKDATA:");
for (_frame = 0; _frame <= _stepCount; _frame++)
debug(5, "walkAnim[%d].frame=%d", _frame, walkAnim[_frame].frame);
debug(5, "routeFinder RouteSize is %d", _stepCount);
return;
}
#ifndef FORCE_SLIDY
// THE SOLID PATH ROUTINES
void Router::solidPath() {
/*********************************************************************
* SolidPath creates a path based on whole steps with no sliding to
* get as near as possible to the target without any sliding this
* routine is currently unused, but is intended for use when just
* clicking about.
*
* produce a module list from the line data
*********************************************************************/
int32 smooth;
int32 solid;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;
// strip out the short sections
solid = 1;
smooth = 1;
_modularPath[0].x = _smoothPath[0].x;
_modularPath[0].y = _smoothPath[0].y;
_modularPath[0].dir = _smoothPath[0].dir;
_modularPath[0].num = 0;
do {
scale = _scaleA * _smoothPath[smooth].y + _scaleB;
deltaX = _smoothPath[smooth].x - _modularPath[solid - 1].x;
deltaY = _smoothPath[smooth].y - _modularPath[solid - 1].y;
stepX = _modX[_smoothPath[smooth].dir];
stepY = _modY[_smoothPath[smooth].dir];
stepX = stepX * scale;
stepY = stepY * scale;
stepX = stepX >> 16;
stepY = stepY >> 16;
if (ABS(deltaX) >= ABS(stepX) && ABS(deltaY) >= ABS(stepY)) {
_modularPath[solid].x = _smoothPath[smooth].x;
_modularPath[solid].y = _smoothPath[smooth].y;
_modularPath[solid].dir = _smoothPath[smooth].dir;
_modularPath[solid].num = 1;
solid++;
}
smooth++;
} while (_smoothPath[smooth].num < ROUTE_END_FLAG);
// in case the last bit had no steps
if (solid == 1) {
// there were no paths so put in a dummy end
solid = 2;
_modularPath[1].dir = _smoothPath[0].dir;
_modularPath[1].num = 0;
}
_modularPath[solid - 1].x = _smoothPath[smooth - 1].x;
_modularPath[solid - 1].y = _smoothPath[smooth - 1].y;
// set up the end of the walk
_modularPath[solid].x = _smoothPath[smooth - 1].x;
_modularPath[solid].y = _smoothPath[smooth - 1].y;
_modularPath[solid].dir = 9;
_modularPath[solid].num = ROUTE_END_FLAG;
}
int32 Router::solidWalkAnimator(WalkData *walkAnim) {
/*********************************************************************
* SolidWalk creates an animation based on whole steps with no sliding
* to get as near as possible to the target without any sliding. This
* routine is is intended for use when just clicking about.
*
* produce a module list from the line data
*
* returns 0 if solid route not found
*********************************************************************/
int32 left;
int32 turnDir;
int32 scale;
int32 step;
int32 errorX;
int32 errorY;
int32 moduleEnd;
bool slowStart = false;
// start at the beginning for a change
int32 lastDir = _modularPath[0].dir;
int32 module = _framesPerChar + lastDir;
_currentDir = _modularPath[1].dir;
_moduleX = _startX;
_moduleY = _startY;
_stepCount = 0;
int32 module16X = _moduleX << 16;
int32 module16Y = _moduleY << 16;
// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
debug(5, "SOLID: STARTING THE WALK");
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
// TURN TO START THE WALK
debug(5, "SOLID: TURNING TO START THE WALK");
// rotate if we need to
if (lastDir != _currentDir) {
// get the direction to turn
turnDir = _currentDir - lastDir;
if (turnDir < 0)
turnDir += NO_DIRECTIONS;
if (turnDir > 4)
turnDir = -1;
else if (turnDir > 0)
turnDir = 1;
// rotate to new walk direction
// for george and nico put in a head turn at the start
if (_walkData.usingStandingTurnFrames) {
// new frames for turn frames 29oct95jps
if (turnDir < 0)
module = _firstStandingTurnLeftFrame + lastDir;
else
module = _firstStandingTurnRightFrame + lastDir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
// rotate till were facing new dir then go back 45 degrees
while (lastDir != _currentDir) {
lastDir += turnDir;
// new frames for turn frames
if (turnDir < 0) {
if (lastDir < 0)
lastDir += NO_DIRECTIONS;
module = _firstStandingTurnLeftFrame + lastDir;
} else {
if (lastDir > 7)
lastDir -= NO_DIRECTIONS;
module = _firstStandingTurnRightFrame + lastDir;
}
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = lastDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
}
// the back 45 degrees bit
// step back one because new head turn for george takes us
// past the new dir
_stepCount--;
}
// THE SLOW IN
slowStart = addSlowInFrames(walkAnim);
// THE WALK
debug(5, "SOLID: THE WALK");
// start the walk on the left or right leg, depending on how the
// slow-in frames were drawn
// (0 = left; 1 = right)
if (_walkData.leadingLeg[_currentDir] == 0) {
// start the walk on the left leg (ie. at beginning of the
// first step of the walk cycle)
left = 0;
} else {
// start the walk on the right leg (ie. at beginning of the
// second step of the walk cycle)
left = 1;
}
_lastCount = _stepCount;
// this ensures that we don't put in turn frames for the start
lastDir = 99;
// this ensures that we don't put in turn frames for the start
_currentDir = 99;
int32 p;
for (p = 1; _modularPath[p].dir < NO_DIRECTIONS; ++p) {
while (_modularPath[p].num > 0) {
_currentDir = _modularPath[p].dir;
if (_currentDir < NO_DIRECTIONS) {
module = _currentDir * _framesPerStep * 2 + left * _framesPerStep;
left = !left;
moduleEnd = module + _framesPerStep;
step = 0;
scale = (_scaleA * _moduleY + _scaleB);
do {
module16X += _walkData.dx[module] * scale;
module16Y += _walkData.dy[module] * scale;
_moduleX = module16X >> 16;
_moduleY = module16Y >> 16;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = step; // normally 0,1,2,3,4,5,0,1,2,etc
walkAnim[_stepCount].dir = _currentDir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
module++;
step++;
} while (module < moduleEnd);
errorX = _modularPath[p].x - _moduleX;
errorX = errorX * _modX[_modularPath[p].dir];
errorY = _modularPath[p].y - _moduleY;
errorY = errorY * _modY[_modularPath[p].dir];
if (errorX < 0 || errorY < 0) {
_modularPath[p].num = 0;
_stepCount -= _framesPerStep;
left = !left;
// Okay this is the end of a section
_moduleX = walkAnim[_stepCount - 1].x;
_moduleY = walkAnim[_stepCount - 1].y;
module16X = _moduleX << 16;
module16Y = _moduleY << 16;
_modularPath[p].x = _moduleX;
_modularPath[p].y = _moduleY;
// Now is the time to put in the turn
// frames for the last turn
if (_stepCount - _lastCount < _framesPerStep) {
// no step taken
// clean up if a slow in but no
// walk
if (slowStart) {
_stepCount -= _walkData.nSlowInFrames[_currentDir];
_lastCount -= _walkData.nSlowInFrames[_currentDir];
slowStart = false;
}
// this ensures that we don't
// put in turn frames for this
// walk or the next
_currentDir = 99;
}
// check each turn condition in turn
if (lastDir != 99 && _currentDir != 99 && _walkData.usingWalkingTurnFrames) {
// only for george
// 1 and -7 going right -1 and
// 7 going left
lastDir = _currentDir - lastDir;
if (lastDir == -1 || lastDir == 7 || lastDir == -2 || lastDir == 6) {
// turn at the end of
// the last walk
_frame = _lastCount - _framesPerStep;
do {
// turning left
walkAnim[_frame].frame += _firstWalkingTurnLeftFrame;
_frame++;
} while (_frame < _lastCount);
} else if (lastDir == 1 || lastDir == -7 || lastDir == 2 || lastDir == -6) {
// turn at the end of
// the current walk
_frame = _lastCount - _framesPerStep;
do {
// turning right
walkAnim[_frame].frame += _firstWalkingTurnRightFrame;
_frame++;
} while (_frame < _lastCount);
}
}
// all turns checked
_lastCount = _stepCount;
}
}
}
lastDir = _currentDir;
// can only be valid first time round
slowStart = false;
}
// THE SLOW OUT
addSlowOutFrames(walkAnim);
module = _framesPerChar + _modularPath[p - 1].dir;
walkAnim[_stepCount].frame = module;
walkAnim[_stepCount].step = 0;
walkAnim[_stepCount].dir = _modularPath[p - 1].dir;
walkAnim[_stepCount].x = _moduleX;
walkAnim[_stepCount].y = _moduleY;
_stepCount++;
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
_stepCount++;
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
_stepCount++;
walkAnim[_stepCount].frame = 512;
walkAnim[_stepCount].step = 99;
debug(5, "THE WALKDATA:");
for (_frame = 0; _frame <= _stepCount; _frame++)
debug(5, "walkAnim[%d].frame=%d", _frame, walkAnim[_frame].frame);
// NO END TURNS
debug(5, "routeFinder RouteSize is %d", _stepCount);
// now check the route
for (int i = 0; i < p - 1; ++i) {
if (!check(_modularPath[i].x, _modularPath[i].y, _modularPath[i + 1].x, _modularPath[i + 1].y))
p = 0;
}
if (p != 0) {
_targetDir = _modularPath[p - 1].dir;
if (checkTarget(_moduleX, _moduleY) == 3) {
// new target on a line
p = 0;
debug(5, "Solid walk target was on a line %d %d", _moduleX, _moduleY);
}
}
return p;
}
#endif
// THE SCAN ROUTINES
bool Router::scan(int32 level) {
/*********************************************************************
* Called successively from routeFinder until no more changes take
* place in the grid array, ie he best path has been found
*
* Scans through every point in the node array and checks if there is
* a route between each point and if this route gives a new route.
*
* This routine could probably halve its processing time if it doubled
* up on the checks after each route check
*
*********************************************************************/
int32 x1, y1, x2, y2;
int32 distance;
bool changed = false;
// For all the nodes that have new values and a distance less than
// enddist, ie dont check for new routes from a point we checked
// before or from a point that is already further away than the best
// route so far.
for (int i = 0; i < _nNodes; i++) {
if (_node[i].dist < _node[_nNodes].dist && _node[i].level == level) {
x1 = _node[i].x;
y1 = _node[i].y;
for (int j = _nNodes; j > 0; j--) {
if (_node[j].dist > _node[i].dist) {
x2 = _node[j].x;
y2 = _node[j].y;
if (ABS(x2 - x1) > 4.5 * ABS(y2 - y1))
distance = (8 * ABS(x2 - x1) + 18 * ABS(y2 - y1)) / (54 * 8) + 1;
else
distance = (6 * ABS(x2 - x1) + 36 * ABS(y2 - y1)) / (36 * 14) + 1;
if (distance + _node[i].dist < _node[_nNodes].dist && distance + _node[i].dist < _node[j].dist) {
if (newCheck(0, x1, y1, x2, y2)) {
_node[j].level = level + 1;
_node[j].dist = distance + _node[i].dist;
_node[j].prev = i;
changed = true;
}
}
}
}
}
}
return changed;
}
int32 Router::newCheck(int32 status, int32 x1, int32 y1, int32 x2, int32 y2) {
/*********************************************************************
* newCheck routine checks if the route between two points can be
* achieved without crossing any of the bars in the Bars array.
*
* newCheck differs from check in that that 4 route options are
* considered corresponding to actual walked routes.
*
* Note distance doesn't take account of shrinking ???
*
* Note Bars array must be properly calculated ie min max dx dy co
*********************************************************************/
int32 ldx;
int32 ldy;
int32 dlx;
int32 dly;
int32 dirX;
int32 dirY;
int32 step1;
int32 step2;
int32 step3;
int32 steps;
int32 options;
steps = 0;
options = 0;
ldx = x2 - x1;
ldy = y2 - y1;
dirX = 1;
dirY = 1;
if (ldx < 0) {
ldx = -ldx;
dirX = -1;
}
if (ldy < 0) {
ldy = -ldy;
dirY = -1;
}
// make the route options
if (_diagonaly * ldx > _diagonalx * ldy) {
// dir = 1,2 or 2,3 or 5,6 or 6,7
dly = ldy;
dlx = (ldy * _diagonalx) / _diagonaly;
ldx = ldx - dlx;
dlx = dlx * dirX;
dly = dly * dirY;
ldx = ldx * dirX;
ldy = 0;
// options are square, diagonal a code 1 route
step1 = check(x1, y1, x1 + ldx, y1);
if (step1 != 0) {
step2 = check(x1 + ldx, y1, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options |= 2;
}
}
// diagonal, square a code 2 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx, y1 + dly);
if (step1 != 0) {
step2 = check(x1 + dlx, y2, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options |= 4;
}
}
}
// halfsquare, diagonal, halfsquare a code 0 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + ldx / 2, y1);
if (step1 != 0) {
step2 = check(x1 + ldx / 2, y1, x1 + ldx / 2 + dlx, y2);
if (step2 != 0) {
step3 = check(x1 + ldx / 2 + dlx, y2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options |= 1;
}
}
}
}
// halfdiagonal, square, halfdiagonal a code 3 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
if (step1 != 0) {
step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + ldx + dlx / 2, y1 + dly / 2);
if (step2 != 0) {
step3 = check(x1 + ldx + dlx / 2, y1 + dly / 2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options |= 8;
}
}
}
}
} else {
// dir = 7,0 or 0,1 or 3,4 or 4,5
dlx = ldx;
dly = (ldx * _diagonaly) / _diagonalx;
ldy = ldy - dly;
dlx = dlx * dirX;
dly = dly * dirY;
ldy = ldy * dirY;
ldx = 0;
// options are square, diagonal a code 1 route
step1 = check(x1 ,y1, x1, y1 + ldy);
if (step1 != 0) {
step2 = check(x1, y1 + ldy, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options |= 2;
}
}
// diagonal, square a code 2 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x2, y1 + dly);
if (step1 != 0) {
step2 = check(x2, y1 + dly, x2, y2);
if (step2 != 0) {
steps = step1 + step2;
options |= 4;
}
}
}
// halfsquare, diagonal, halfsquare a code 0 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1, y1 + ldy / 2);
if (step1 != 0) {
step2 = check(x1, y1 + ldy / 2, x2, y1 + ldy / 2 + dly);
if (step2 != 0) {
step3 = check(x2, y1 + ldy / 2 + dly, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options |= 1;
}
}
}
}
// halfdiagonal, square, halfdiagonal a code 3 route
if (steps == 0 || status == 1) {
step1 = check(x1, y1, x1 + dlx / 2, y1 + dly / 2);
if (step1 != 0) {
step2 = check(x1 + dlx / 2, y1 + dly / 2, x1 + dlx / 2, y1 + ldy + dly / 2);
if (step2 != 0) {
step3 = check(x1 + dlx / 2, y1 + ldy + dly / 2, x2, y2);
if (step3 != 0) {
steps = step1 + step2 + step3;
options |= 8;
}
}
}
}
}
if (status == 0)
status = steps;
else
status = options;
return status;
}
// CHECK ROUTINES
bool Router::check(int32 x1, int32 y1, int32 x2, int32 y2) {
// call the fastest line check for the given line
// returns true if line didn't cross any bars
if (x1 == x2 && y1 == y2)
return true;
if (x1 == x2)
return vertCheck(x1, y1, y2);
if (y1 == y2)
return horizCheck(x1, y1, x2);
return lineCheck(x1, y1, x2, y2);
}
bool Router::lineCheck(int32 x1, int32 y1, int32 x2, int32 y2) {
bool linesCrossed = true;
int32 xmin = MIN(x1, x2);
int32 xmax = MAX(x1, x2);
int32 ymin = MIN(y1, y2);
int32 ymax = MAX(y1, y2);
// Line set to go one step in chosen direction so ignore if it hits
// anything
int32 dirx = x2 - x1;
int32 diry = y2 - y1;
int32 co = (y1 * dirx) - (x1 * diry); // new line equation
for (int i = 0; i < _nBars && linesCrossed; i++) {
// skip if not on module
if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
// Okay, it's a valid line. Calculate an intercept. Wow
// but all this arithmetic we must have loads of time
// slope it he slope between the two lines
int32 slope = (_bars[i].dx * diry) - (_bars[i].dy *dirx);
// assuming parallel lines don't cross
if (slope != 0) {
// calculate x intercept and check its on both
// lines
int32 xc = ((_bars[i].co * dirx) - (co * _bars[i].dx)) / slope;
// skip if not on module
if (xc >= xmin - 1 && xc <= xmax + 1) {
// skip if not on line
if (xc >= _bars[i].xmin - 1 && xc <= _bars[i].xmax + 1) {
int32 yc = ((_bars[i].co * diry) - (co * _bars[i].dy)) / slope;
// skip if not on module
if (yc >= ymin - 1 && yc <= ymax + 1) {
// skip if not on line
if (yc >= _bars[i].ymin - 1 && yc <= _bars[i].ymax + 1) {
linesCrossed = false;
}
}
}
}
}
}
}
return linesCrossed;
}
bool Router::horizCheck(int32 x1, int32 y, int32 x2) {
bool linesCrossed = true;
int32 xmin = MIN(x1, x2);
int32 xmax = MAX(x1, x2);
// line set to go one step in chosen direction so ignore if it hits
// anything
for (int i = 0; i < _nBars && linesCrossed; i++) {
// skip if not on module
if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && y >= _bars[i].ymin && y <= _bars[i].ymax) {
// Okay, it's a valid line calculate an intercept. Wow
// but all this arithmetic we must have loads of time
if (_bars[i].dy == 0)
linesCrossed = false;
else {
int32 ldy = y - _bars[i].y1;
int32 xc = _bars[i].x1 + (_bars[i].dx * ldy) / _bars[i].dy;
// skip if not on module
if (xc >= xmin - 1 && xc <= xmax + 1)
linesCrossed = false;
}
}
}
return linesCrossed;
}
bool Router::vertCheck(int32 x, int32 y1, int32 y2) {
bool linesCrossed = true;
int32 ymin = MIN(y1, y2);
int32 ymax = MAX(y1, y2);
// Line set to go one step in chosen direction so ignore if it hits
// anything
for (int i = 0; i < _nBars && linesCrossed; i++) {
// skip if not on module
if (x >= _bars[i].xmin && x <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
// Okay, it's a valid line calculate an intercept. Wow
// but all this arithmetic we must have loads of time
// both lines vertical and overlap in x and y so they
// cross
if (_bars[i].dx == 0)
linesCrossed = false;
else {
int32 ldx = x - _bars[i].x1;
int32 yc = _bars[i].y1 + (_bars[i].dy * ldx) / _bars[i].dx;
// the intercept overlaps
if (yc >= ymin - 1 && yc <= ymax + 1)
linesCrossed = false;
}
}
}
return linesCrossed;
}
int32 Router::checkTarget(int32 x, int32 y) {
int32 onLine = 0;
int32 xmin = x - 1;
int32 xmax = x + 1;
int32 ymin = y - 1;
int32 ymax = y + 1;
// check if point +- 1 is on the line
// so ignore if it hits anything
for (int i = 0; i < _nBars && onLine == 0; i++) {
// overlapping line
if (xmax >= _bars[i].xmin && xmin <= _bars[i].xmax && ymax >= _bars[i].ymin && ymin <= _bars[i].ymax) {
int32 xc, yc;
// okay this line overlaps the target calculate an y intercept for x
// vertical line so we know it overlaps y
if (_bars[i].dx == 0)
yc = 0;
else {
int ldx = x - _bars[i].x1;
yc = _bars[i].y1 + (_bars[i].dy * ldx) / _bars[i].dx;
}
// overlapping point for y
if (yc >= ymin && yc <= ymax) {
// target on a line so drop out
onLine = 3;
debug(5, "RouteFail due to target on a line %d %d", x, y);
} else {
// vertical line so we know it overlaps y
if (_bars[i].dy == 0)
xc = 0;
else {
int32 ldy = y - _bars[i].y1;
xc = _bars[i].x1 + (_bars[i].dx * ldy) / _bars[i].dy;
}
// skip if not on module
if (xc >= xmin && xc <= xmax) {
// target on a line so drop out
onLine = 3;
debug(5, "RouteFail due to target on a line %d %d", x, y);
}
}
}
}
return onLine;
}
// THE SETUP ROUTINES
void Router::loadWalkData(byte *ob_walkdata) {
uint16 firstFrameOfDirection;
uint16 walkFrameNo;
uint32 frameCounter = 0; // starts at frame 0 of mega set
int i;
_walkData.read(ob_walkdata);
// 0 = not using slow out frames; non-zero = using that many frames
// for each leading leg for each direction
_numberOfSlowOutFrames = _walkData.usingSlowOutFrames;
for (i = 0; i < NO_DIRECTIONS; i++) {
firstFrameOfDirection = i * _walkData.nWalkFrames;
_modX[i] = 0;
_modY[i] = 0;
for (walkFrameNo = firstFrameOfDirection; walkFrameNo < firstFrameOfDirection + _walkData.nWalkFrames / 2; walkFrameNo++) {
// eg. _modX[0] is the sum of the x-step sizes for the
// first half of the walk cycle for direction 0
_modX[i] += _walkData.dx[walkFrameNo];
_modY[i] += _walkData.dy[walkFrameNo];
}
}
_diagonalx = _modX[3];
_diagonaly = _modY[3];
// interpret the walk data
_framesPerStep = _walkData.nWalkFrames / 2;
_framesPerChar = _walkData.nWalkFrames * NO_DIRECTIONS;
// offset pointers added Oct 30 95 JPS
// mega id references removed 16sep96 by JEL
// WALK FRAMES
// start on frame 0
frameCounter += _framesPerChar;
// STAND FRAMES
// stand frames come after the walk frames
// one stand frame for each direction
_firstStandFrame = frameCounter;
frameCounter += NO_DIRECTIONS;
// STANDING TURN FRAMES - OPTIONAL!
// standing turn-left frames come after the slow-out frames
// one for each direction
// standing turn-left frames come after the standing turn-right frames
// one for each direction
if (_walkData.usingStandingTurnFrames) {
_firstStandingTurnLeftFrame = frameCounter;
frameCounter += NO_DIRECTIONS;
_firstStandingTurnRightFrame = frameCounter;
frameCounter += NO_DIRECTIONS;
} else {
// refer instead to the normal stand frames
_firstStandingTurnLeftFrame = _firstStandFrame;
_firstStandingTurnRightFrame = _firstStandFrame;
}
// WALKING TURN FRAMES - OPTIONAL!
// walking left-turn frames come after the stand frames
// walking right-turn frames come after the walking left-turn frames
if (_walkData.usingWalkingTurnFrames) {
_firstWalkingTurnLeftFrame = frameCounter;
frameCounter += _framesPerChar;
_firstWalkingTurnRightFrame = frameCounter;
frameCounter += _framesPerChar;
} else {
_firstWalkingTurnLeftFrame = 0;
_firstWalkingTurnRightFrame = 0;
}
// SLOW-IN FRAMES - OPTIONAL!
// slow-in frames come after the walking right-turn frames
if (_walkData.usingSlowInFrames) {
// Make note of frame number of first slow-in frame for each
// direction. There may be a different number of slow-in
// frames in each direction
for (i = 0; i < NO_DIRECTIONS; i++) {
_firstSlowInFrame[i] = frameCounter;
frameCounter += _walkData.nSlowInFrames[i];
}
}
// SLOW-OUT FRAMES - OPTIONAL!
// slow-out frames come after the slow-in frames
if (_walkData.usingSlowOutFrames)
_firstSlowOutFrame = frameCounter;
}
// THE ROUTE EXTRACTOR
void Router::extractRoute() {
/*********************************************************************
* extractRoute gets route from the node data after a full scan, route
* is written with just the basic way points and direction options for
* heading to the next point.
*********************************************************************/
int32 prev;
int32 prevx;
int32 prevy;
int32 last;
int32 point;
int32 dirx;
int32 diry;
int32 dir;
int32 ldx;
int32 ldy;
int32 p;
// extract the route from the node data
prev = _nNodes;
last = prev;
point = O_ROUTE_SIZE - 1;
_route[point].x = _node[last].x;
_route[point].y = _node[last].y;
do {
point--;
prev = _node[last].prev;
prevx = _node[prev].x;
prevy = _node[prev].y;
_route[point].x = prevx;
_route[point].y = prevy;
last = prev;
} while (prev > 0);
// now shuffle route down in the buffer
_routeLength = 0;
do {
_route[_routeLength].x = _route[point].x;
_route[_routeLength].y = _route[point].y;
point++;
_routeLength++;
} while (point < O_ROUTE_SIZE);
_routeLength--;
// okay the route exists as a series point now put in some directions
for (p = 0; p < _routeLength; ++p) {
ldx = _route[p + 1].x - _route[p].x;
ldy = _route[p + 1].y - _route[p].y;
dirx = 1;
diry = 1;
if (ldx < 0) {
ldx = -ldx;
dirx = -1;
}
if (ldy < 0) {
ldy = -ldy;
diry = -1;
}
if (_diagonaly * ldx > _diagonalx * ldy) {
// dir = 1,2 or 2,3 or 5,6 or 6,7
// 2 or 6
dir = 4 - 2 * dirx;
_route[p].dirS = dir;
// 1, 3, 5 or 7
dir = dir + diry * dirx;
_route[p].dirD = dir;
} else {
// dir = 7,0 or 0,1 or 3,4 or 4,5
// 0 or 4
dir = 2 + 2 * diry;
_route[p].dirS = dir;
// 2 or 6
dir = 4 - 2 * dirx;
// 1, 3, 5 or 7
dir = dir + diry * dirx;
_route[p].dirD = dir;
}
}
// set the last dir to continue previous route unless specified
if (_targetDir == NO_DIRECTIONS) {
// ANY direction
_route[p].dirS = _route[p - 1].dirS;
_route[p].dirD = _route[p - 1].dirD;
} else {
_route[p].dirS = _targetDir;
_route[p].dirD = _targetDir;
}
return;
}
void Router::setUpWalkGrid(byte *ob_mega, int32 x, int32 y, int32 dir) {
ObjectMega obMega(ob_mega);
// get walk grid file + extra grid into 'bars' & 'node' arrays
loadWalkGrid();
// copy the mega structure into the local variables for use in all
// subroutines
_startX = obMega.getFeetX();
_startY = obMega.getFeetY();
_startDir = obMega.getCurDir();
_targetX = x;
_targetY = y;
_targetDir = dir;
_scaleA = obMega.getScaleA();
_scaleB = obMega.getScaleB();
// mega's current position goes into first node
_node[0].x = _startX;
_node[0].y = _startY;
_node[0].level = 1;
_node[0].prev = 0;
_node[0].dist = 0;
// reset other nodes
for (int i = 1; i < _nNodes; i++) {
_node[i].level = 0;
_node[i].prev = 0;
_node[i].dist = 9999;
}
// target position goes into final node
_node[_nNodes].x = _targetX;
_node[_nNodes].y = _targetY;
_node[_nNodes].level = 0;
_node[_nNodes].prev = 0;
_node[_nNodes].dist = 9999;
}
void Router::plotWalkGrid() {
int32 i;
// get walk grid file + extra grid into 'bars' & 'node' arrays
loadWalkGrid();
// lines
for (i = 0; i < _nBars; i++)
_vm->_screen->drawLine(_bars[i].x1, _bars[i].y1, _bars[i].x2, _bars[i].y2, 254);
// nodes
// leave node 0 for start node
for (i = 1; i < _nNodes; i++)
plotCross(_node[i].x, _node[i].y, 184);
}
void Router::plotCross(int16 x, int16 y, uint8 color) {
_vm->_screen->drawLine(x - 1, y - 1, x + 1, y + 1, color);
_vm->_screen->drawLine(x + 1, y - 1, x - 1, y + 1, color);
}
void Router::loadWalkGrid() {
WalkGridHeader floorHeader;
byte *fPolygrid;
uint16 fPolygridLen;
_nBars = 0; // reset counts
_nNodes = 1; // leave node 0 for start-node
// STATIC GRIDS (added/removed by object logics)
// go through walkgrid list
for (int i = 0; i < MAX_WALKGRIDS; i++) {
if (_walkGridList[i]) {
int j;
// open walk grid file
fPolygrid = _vm->_resman->openResource(_walkGridList[i]);
fPolygridLen = _vm->_resman->fetchLen(_walkGridList[i]);
Common::MemoryReadStream readS(fPolygrid, fPolygridLen);
readS.seek(ResHeader::size());
floorHeader.numBars = readS.readSint32LE();
floorHeader.numNodes = readS.readSint32LE();
// check that we're not going to exceed the max
// allowed in the complete walkgrid arrays
assert(_nBars + floorHeader.numBars < O_GRID_SIZE);
assert(_nNodes + floorHeader.numNodes < O_GRID_SIZE);
// lines
for (j = 0; j < floorHeader.numBars; j++) {
_bars[_nBars + j].x1 = readS.readSint16LE();
_bars[_nBars + j].y1 = readS.readSint16LE();
_bars[_nBars + j].x2 = readS.readSint16LE();
_bars[_nBars + j].y2 = readS.readSint16LE();
_bars[_nBars + j].xmin = readS.readSint16LE();
_bars[_nBars + j].ymin = readS.readSint16LE();
_bars[_nBars + j].xmax = readS.readSint16LE();
_bars[_nBars + j].ymax = readS.readSint16LE();
_bars[_nBars + j].dx = readS.readSint16LE();
_bars[_nBars + j].dy = readS.readSint16LE();
_bars[_nBars + j].co = readS.readSint32LE();
}
// nodes
// leave node 0 for start node
for (j = 0; j < floorHeader.numNodes; j++) {
_node[_nNodes + j].x = readS.readSint16LE();
_node[_nNodes + j].y = readS.readSint16LE();
}
// close walk grid file
_vm->_resman->closeResource(_walkGridList[i]);
// increment counts of total bars & nodes in whole
// walkgrid
_nBars += floorHeader.numBars;
_nNodes += floorHeader.numNodes;
}
}
}
void Router::clearWalkGridList() {
memset(_walkGridList, 0, sizeof(_walkGridList));
}
// called from fnAddWalkGrid
void Router::addWalkGrid(int32 gridResource) {
int i;
// First, scan the list to see if this grid is already included
for (i = 0; i < MAX_WALKGRIDS; i++) {
if (_walkGridList[i] == gridResource)
return;
}
// Scan the list for a free slot
for (i = 0; i < MAX_WALKGRIDS; i++) {
if (_walkGridList[i] == 0) {
_walkGridList[i] = gridResource;
return;
}
}
error("_walkGridList[] full");
}
// called from fnRemoveWalkGrid
void Router::removeWalkGrid(int32 gridResource) {
for (int i = 0; i < MAX_WALKGRIDS; i++) {
if (_walkGridList[i] == gridResource) {
// If we've found it in the list, reset entry to zero.
// Otherwise just ignore the request.
_walkGridList[i] = 0;
break;
}
}
}
} // End of namespace Sword2
|