1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
/*
* This code is based on Broken Sword 2.5 engine
*
* Copyright (c) Malte Thiesen, Daniel Queteschiner and Michael Elsdoerfer
*
* Licensed under GNU GPL v2
*
*/
#include "sword25/kernel/kernel.h"
#include "sword25/kernel/inputpersistenceblock.h"
#include "sword25/kernel/outputpersistenceblock.h"
#include "sword25/math/walkregion.h"
#include "sword25/math/line.h"
namespace Sword25 {
static const int Infinity = 0x7fffffff;
WalkRegion::WalkRegion() {
_type = RT_WALKREGION;
}
WalkRegion::WalkRegion(InputPersistenceBlock &reader, uint handle) :
Region(reader, handle) {
_type = RT_WALKREGION;
unpersist(reader);
}
WalkRegion::~WalkRegion() {
}
bool WalkRegion::init(const Polygon &contour, const Common::Array<Polygon> *pHoles) {
// Default initialisation of the region
if (!Region::init(contour, pHoles)) return false;
// Prepare structures for pathfinding
initNodeVector();
computeVisibilityMatrix();
// Signal success
return true;
}
bool WalkRegion::queryPath(Vertex startPoint, Vertex endPoint, BS_Path &path) {
assert(path.empty());
// If the start and finish are identical, no path can be found trivially
if (startPoint == endPoint)
return true;
// Ensure that the start and finish are valid and find new start points if either
// are outside the polygon
if (!checkAndPrepareStartAndEnd(startPoint, endPoint)) return false;
// If between the start and point a line of sight exists, then it can be returned.
if (isLineOfSight(startPoint, endPoint)) {
path.push_back(startPoint);
path.push_back(endPoint);
return true;
}
return findPath(startPoint, endPoint, path);
}
struct DijkstraNode {
typedef Common::Array<DijkstraNode> Container;
typedef Container::iterator Iter;
typedef Container::const_iterator ConstIter;
DijkstraNode() : parentIter(), cost(Infinity), chosen(false) {}
ConstIter parentIter;
int cost;
bool chosen;
};
static void initDijkstraNodes(DijkstraNode::Container &dijkstraNodes, const Region ®ion,
const Vertex &start, const Common::Array<Vertex> &nodes) {
// Allocate sufficient space in the array
dijkstraNodes.resize(nodes.size());
// Initialize all the nodes which are visible from the starting node
DijkstraNode::Iter dijkstraIter = dijkstraNodes.begin();
for (Common::Array<Vertex>::const_iterator nodesIter = nodes.begin();
nodesIter != nodes.end(); nodesIter++, dijkstraIter++) {
(*dijkstraIter).parentIter = dijkstraNodes.end();
if (region.isLineOfSight(*nodesIter, start))(*dijkstraIter).cost = (*nodesIter).distance(start);
}
assert(dijkstraIter == dijkstraNodes.end());
}
static DijkstraNode::Iter chooseClosestNode(DijkstraNode::Container &nodes) {
DijkstraNode::Iter closestNodeInter = nodes.end();
int minCost = Infinity;
for (DijkstraNode::Iter iter = nodes.begin(); iter != nodes.end(); iter++) {
if (!(*iter).chosen && (*iter).cost < minCost) {
minCost = (*iter).cost;
closestNodeInter = iter;
}
}
return closestNodeInter;
}
static void relaxNodes(DijkstraNode::Container &nodes,
const Common::Array< Common::Array<int> > &visibilityMatrix,
const DijkstraNode::ConstIter &curNodeIter) {
// All the successors of the current node that have not been chosen will be
// inserted into the boundary node list, and the cost will be updated if
// a shorter path has been found to them.
int curNodeIndex = curNodeIter - nodes.begin();
for (uint i = 0; i < nodes.size(); i++) {
int cost = visibilityMatrix[curNodeIndex][i];
if (!nodes[i].chosen && cost != Infinity) {
int totalCost = (*curNodeIter).cost + cost;
if (totalCost < nodes[i].cost) {
nodes[i].parentIter = curNodeIter;
nodes[i].cost = totalCost;
}
}
}
}
static void relaxEndPoint(const Vertex &curNodePos,
const DijkstraNode::ConstIter &curNodeIter,
const Vertex &endPointPos,
DijkstraNode &endPoint,
const Region ®ion) {
if (region.isLineOfSight(curNodePos, endPointPos)) {
int totalCost = (*curNodeIter).cost + curNodePos.distance(endPointPos);
if (totalCost < endPoint.cost) {
endPoint.parentIter = curNodeIter;
endPoint.cost = totalCost;
}
}
}
template<class T>
void reverseArray(Common::Array<T> &arr) {
const uint size = arr.size();
if (size < 2)
return;
for (uint i = 0; i <= (size / 2 - 1); ++i) {
SWAP(arr[i], arr[size - i - 1]);
}
}
bool WalkRegion::findPath(const Vertex &start, const Vertex &end, BS_Path &path) const {
// This is an implementation of Dijkstra's algorithm
// Initialize edge node list
DijkstraNode::Container dijkstraNodes;
initDijkstraNodes(dijkstraNodes, *this, start, _nodes);
// The end point is treated separately, since it does not exist in the visibility graph
DijkstraNode endPoint;
// Since a node is selected each round from the node list, and can never be selected again
// after that, the maximum number of loop iterations is limited by the number of nodes
for (uint i = 0; i < _nodes.size(); i++) {
// Determine the nearest edge node in the node list
DijkstraNode::Iter nodeInter = chooseClosestNode(dijkstraNodes);
// If no free nodes are absent from the edge node list, there is no path from start
// to end node. This case should never occur, since the number of loop passes is
// limited, but etter safe than sorry
if (nodeInter == dijkstraNodes.end())
return false;
// If the destination point is closer than the point cost, scan can stop
(*nodeInter).chosen = true;
if (endPoint.cost <= (*nodeInter).cost) {
// Insert the end point in the list
path.push_back(end);
// The list is done in reverse order and inserted into the path
DijkstraNode::ConstIter curNode = endPoint.parentIter;
while (curNode != dijkstraNodes.end()) {
assert((*curNode).chosen);
path.push_back(_nodes[curNode - dijkstraNodes.begin()]);
curNode = (*curNode).parentIter;
}
// The starting point is inserted into the path
path.push_back(start);
// The nodes of the path must be untwisted, as they were extracted in reverse order.
// This step could be saved if the path from end to the beginning was desired
reverseArray<Vertex>(path);
return true;
}
// Relaxation step for nodes of the graph, and perform the end nodes
relaxNodes(dijkstraNodes, _visibilityMatrix, nodeInter);
relaxEndPoint(_nodes[nodeInter - dijkstraNodes.begin()], nodeInter, end, endPoint, *this);
}
// If the loop has been completely run through, all the nodes have been chosen, and still
// no path was found. There is therefore no path available
return false;
}
void WalkRegion::initNodeVector() {
// Empty the Node list
_nodes.clear();
// Determine the number of nodes
int nodeCount = 0;
{
for (uint i = 0; i < _polygons.size(); i++)
nodeCount += _polygons[i].vertexCount;
}
// Knoten-Vector fllen
_nodes.reserve(nodeCount);
{
for (uint j = 0; j < _polygons.size(); j++)
for (int i = 0; i < _polygons[j].vertexCount; i++)
_nodes.push_back(_polygons[j].vertices[i]);
}
}
void WalkRegion::computeVisibilityMatrix() {
// Initialize visibility matrix
_visibilityMatrix = Common::Array< Common::Array <int> >();
for (uint idx = 0; idx < _nodes.size(); ++idx) {
Common::Array<int> arr;
for (uint idx2 = 0; idx2 < _nodes.size(); ++idx2)
arr.push_back(Infinity);
_visibilityMatrix.push_back(arr);
}
// Calculate visibility been vertecies
for (uint j = 0; j < _nodes.size(); ++j) {
for (uint i = j; i < _nodes.size(); ++i) {
if (isLineOfSight(_nodes[i], _nodes[j])) {
// There is a line of sight, so save the distance between the two
int distance = _nodes[i].distance(_nodes[j]);
_visibilityMatrix[i][j] = distance;
_visibilityMatrix[j][i] = distance;
} else {
// There is no line of sight, so save Infinity as the distance
_visibilityMatrix[i][j] = Infinity;
_visibilityMatrix[j][i] = Infinity;
}
}
}
}
bool WalkRegion::checkAndPrepareStartAndEnd(Vertex &start, Vertex &end) const {
if (!isPointInRegion(start)) {
Vertex newStart = findClosestRegionPoint(start);
// Check to make sure the point is really in the region. If not, stop with an error
if (!isPointInRegion(newStart)) {
error("Constructed startpoint ((%d,%d) from (%d,%d)) is not inside the region.",
newStart.x, newStart.y,
start.x, start.y);
return false;
}
start = newStart;
}
// If the destination is outside the region, a point is determined that is within the region,
// and that is used as an endpoint instead
if (!isPointInRegion(end)) {
Vertex newEnd = findClosestRegionPoint(end);
// Make sure that the determined point is really within the region
if (!isPointInRegion(newEnd)) {
error("Constructed endpoint ((%d,%d) from (%d,%d)) is not inside the region.",
newEnd.x, newEnd.y,
end.x, end.y);
return false;
}
end = newEnd;
}
// Signal success
return true;
}
void WalkRegion::setPos(int x, int y) {
// Calculate the difference between old and new position
Vertex Delta(x - _position.x, y - _position.y);
// Move all the nodes
for (uint i = 0; i < _nodes.size(); i++)
_nodes[i] += Delta;
// Move regions
Region::setPos(x, y);
}
bool WalkRegion::persist(OutputPersistenceBlock &writer) {
bool result = true;
// Persist the parent region
result &= Region::persist(writer);
// Persist the nodes
writer.write((uint32)_nodes.size());
Common::Array<Vertex>::const_iterator it = _nodes.begin();
while (it != _nodes.end()) {
writer.write((int32)it->x);
writer.write((int32)it->y);
++it;
}
// Persist the visibility matrix
writer.write((uint32)_visibilityMatrix.size());
Common::Array< Common::Array<int> >::const_iterator rowIter = _visibilityMatrix.begin();
while (rowIter != _visibilityMatrix.end()) {
writer.write((uint32)rowIter->size());
Common::Array<int>::const_iterator colIter = rowIter->begin();
while (colIter != rowIter->end()) {
writer.write((int32)*colIter);
++colIter;
}
++rowIter;
}
return result;
}
bool WalkRegion::unpersist(InputPersistenceBlock &reader) {
bool result = true;
// The parent object was already loaded in the constructor of BS_Region, so at
// this point only the additional data from BS_WalkRegion needs to be loaded
// Node load
uint32 nodeCount;
reader.read(nodeCount);
_nodes.clear();
_nodes.resize(nodeCount);
Common::Array<Vertex>::iterator it = _nodes.begin();
while (it != _nodes.end()) {
reader.read(it->x);
reader.read(it->y);
++it;
}
// Visibility matrix load
uint32 rowCount;
reader.read(rowCount);
_visibilityMatrix.clear();
_visibilityMatrix.resize(rowCount);
Common::Array< Common::Array<int> >::iterator rowIter = _visibilityMatrix.begin();
while (rowIter != _visibilityMatrix.end()) {
uint32 colCount;
reader.read(colCount);
rowIter->resize(colCount);
Common::Array<int>::iterator colIter = rowIter->begin();
while (colIter != rowIter->end()) {
int32 t;
reader.read(t);
*colIter = t;
++colIter;
}
++rowIter;
}
return result && reader.isGood();
}
} // End of namespace Sword25
|