1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "common/scummsys.h"
#include "zvision/graphics/render_table.h"
#include "common/rect.h"
#include "graphics/colormasks.h"
namespace ZVision {
RenderTable::RenderTable(uint numColumns, uint numRows)
: _numRows(numRows),
_numColumns(numColumns),
_renderState(FLAT) {
assert(numRows != 0 && numColumns != 0);
_internalBuffer = new Common::Point[numRows * numColumns];
memset(&_panoramaOptions, 0, sizeof(_panoramaOptions));
memset(&_tiltOptions, 0, sizeof(_tiltOptions));
}
RenderTable::~RenderTable() {
delete[] _internalBuffer;
}
void RenderTable::setRenderState(RenderState newState) {
_renderState = newState;
switch (newState) {
case PANORAMA:
_panoramaOptions.fieldOfView = 27.0f;
_panoramaOptions.linearScale = 0.55f;
_panoramaOptions.reverse = false;
_panoramaOptions.zeroPoint = 0;
break;
case TILT:
_tiltOptions.fieldOfView = 27.0f;
_tiltOptions.linearScale = 0.65f;
_tiltOptions.reverse = false;
break;
case FLAT:
// Intentionally left empty
break;
}
}
const Common::Point RenderTable::convertWarpedCoordToFlatCoord(const Common::Point &point) {
// If we're outside the range of the RenderTable, no warping is happening. Return the maximum image coords
if (point.x >= (int16)_numColumns || point.y >= (int16)_numRows || point.x < 0 || point.y < 0) {
int16 x = CLIP<int16>(point.x, 0, (int16)_numColumns);
int16 y = CLIP<int16>(point.y, 0, (int16)_numRows);
return Common::Point(x, y);
}
uint32 index = point.y * _numColumns + point.x;
Common::Point newPoint(point);
newPoint.x += _internalBuffer[index].x;
newPoint.y += _internalBuffer[index].y;
return newPoint;
}
void RenderTable::mutateImage(uint16 *sourceBuffer, uint16 *destBuffer, uint32 destWidth, const Common::Rect &subRect) {
uint32 destOffset = 0;
for (int16 y = subRect.top; y < subRect.bottom; ++y) {
uint32 sourceOffset = y * _numColumns;
for (int16 x = subRect.left; x < subRect.right; ++x) {
uint32 normalizedX = x - subRect.left;
uint32 index = sourceOffset + x;
// RenderTable only stores offsets from the original coordinates
uint32 sourceYIndex = y + _internalBuffer[index].y;
uint32 sourceXIndex = x + _internalBuffer[index].x;
destBuffer[destOffset + normalizedX] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex];
}
destOffset += destWidth;
}
}
void RenderTable::mutateImage(Graphics::Surface *dstBuf, Graphics::Surface *srcBuf) {
uint32 destOffset = 0;
uint16 *sourceBuffer = (uint16 *)srcBuf->getPixels();
uint16 *destBuffer = (uint16 *)dstBuf->getPixels();
for (int16 y = 0; y < srcBuf->h; ++y) {
uint32 sourceOffset = y * _numColumns;
for (int16 x = 0; x < srcBuf->w; ++x) {
uint32 index = sourceOffset + x;
// RenderTable only stores offsets from the original coordinates
uint32 sourceYIndex = y + _internalBuffer[index].y;
uint32 sourceXIndex = x + _internalBuffer[index].x;
destBuffer[destOffset] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex];
destOffset++;
}
}
}
void RenderTable::generateRenderTable() {
switch (_renderState) {
case ZVision::RenderTable::PANORAMA:
generatePanoramaLookupTable();
break;
case ZVision::RenderTable::TILT:
generateTiltLookupTable();
break;
case ZVision::RenderTable::FLAT:
// Intentionally left empty
break;
}
}
void RenderTable::generatePanoramaLookupTable() {
memset(_internalBuffer, 0, _numRows * _numColumns * sizeof(uint16));
float halfWidth = (float)_numColumns / 2.0f;
float halfHeight = (float)_numRows / 2.0f;
float fovInRadians = (_panoramaOptions.fieldOfView * M_PI / 180.0f);
float cylinderRadius = halfHeight / tan(fovInRadians);
for (uint x = 0; x < _numColumns; ++x) {
// Add an offset of 0.01 to overcome zero tan/atan issue (vertical line on half of screen)
// Alpha represents the horizontal angle between the viewer at the center of a cylinder and x
float alpha = atan(((float)x - halfWidth + 0.01f) / cylinderRadius);
// To get x in cylinder coordinates, we just need to calculate the arc length
// We also scale it by _panoramaOptions.linearScale
int32 xInCylinderCoords = int32(floor((cylinderRadius * _panoramaOptions.linearScale * alpha) + halfWidth));
float cosAlpha = cos(alpha);
for (uint y = 0; y < _numRows; ++y) {
// To calculate y in cylinder coordinates, we can do similar triangles comparison,
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
int32 yInCylinderCoords = int32(floor(halfHeight + ((float)y - halfHeight) * cosAlpha));
uint32 index = y * _numColumns + x;
// Only store the (x,y) offsets instead of the absolute positions
_internalBuffer[index].x = xInCylinderCoords - x;
_internalBuffer[index].y = yInCylinderCoords - y;
}
}
}
void RenderTable::generateTiltLookupTable() {
float halfWidth = (float)_numColumns / 2.0f;
float halfHeight = (float)_numRows / 2.0f;
float fovInRadians = (_tiltOptions.fieldOfView * M_PI / 180.0f);
float cylinderRadius = halfWidth / tan(fovInRadians);
_tiltOptions.gap = cylinderRadius * atan2((float)(halfHeight / cylinderRadius), 1.0f) * _tiltOptions.linearScale;
for (uint y = 0; y < _numRows; ++y) {
// Add an offset of 0.01 to overcome zero tan/atan issue (horizontal line on half of screen)
// Alpha represents the vertical angle between the viewer at the center of a cylinder and y
float alpha = atan(((float)y - halfHeight + 0.01f) / cylinderRadius);
// To get y in cylinder coordinates, we just need to calculate the arc length
// We also scale it by _tiltOptions.linearScale
int32 yInCylinderCoords = int32(floor((cylinderRadius * _tiltOptions.linearScale * alpha) + halfHeight));
float cosAlpha = cos(alpha);
uint32 columnIndex = y * _numColumns;
for (uint x = 0; x < _numColumns; ++x) {
// To calculate x in cylinder coordinates, we can do similar triangles comparison,
// comparing the triangle from the center to the screen and from the center to the edge of the cylinder
int32 xInCylinderCoords = int32(floor(halfWidth + ((float)x - halfWidth) * cosAlpha));
uint32 index = columnIndex + x;
// Only store the (x,y) offsets instead of the absolute positions
_internalBuffer[index].x = xInCylinderCoords - x;
_internalBuffer[index].y = yInCylinderCoords - y;
}
}
}
void RenderTable::setPanoramaFoV(float fov) {
assert(fov > 0.0f);
_panoramaOptions.fieldOfView = fov;
}
void RenderTable::setPanoramaScale(float scale) {
assert(scale > 0.0f);
_panoramaOptions.linearScale = scale;
}
void RenderTable::setPanoramaReverse(bool reverse) {
_panoramaOptions.reverse = reverse;
}
bool RenderTable::getPanoramaReverse() {
return _panoramaOptions.reverse;
}
void RenderTable::setPanoramaZeroPoint(uint16 point) {
_panoramaOptions.zeroPoint = point;
}
uint16 RenderTable::getPanoramaZeroPoint() {
return _panoramaOptions.zeroPoint;
}
void RenderTable::setTiltFoV(float fov) {
assert(fov > 0.0f);
_tiltOptions.fieldOfView = fov;
}
void RenderTable::setTiltScale(float scale) {
assert(scale > 0.0f);
_tiltOptions.linearScale = scale;
}
void RenderTable::setTiltReverse(bool reverse) {
_tiltOptions.reverse = reverse;
}
float RenderTable::getTiltGap() {
return _tiltOptions.gap;
}
float RenderTable::getAngle() {
if (_renderState == TILT)
return _tiltOptions.fieldOfView;
else if (_renderState == PANORAMA)
return _panoramaOptions.fieldOfView;
else
return 1.0;
}
float RenderTable::getLinscale() {
if (_renderState == TILT)
return _tiltOptions.linearScale;
else if (_renderState == PANORAMA)
return _panoramaOptions.linearScale;
else
return 1.0;
}
} // End of namespace ZVision
|