1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*
* The bottom part of this is file is adapted from SDL_rotozoom.c. The
* relevant copyright notice for those specific functions can be found at the
* top of that section.
*
*/
#include "common/algorithm.h"
#include "common/endian.h"
#include "common/util.h"
#include "common/rect.h"
#include "common/math.h"
#include "common/textconsole.h"
#include "graphics/primitives.h"
#include "graphics/transparent_surface.h"
#include "graphics/transform_tools.h"
namespace Graphics {
static const int kBModShift = 0;//img->format.bShift;
static const int kGModShift = 8;//img->format.gShift;
static const int kRModShift = 16;//img->format.rShift;
static const int kAModShift = 24;//img->format.aShift;
#ifdef SCUMM_LITTLE_ENDIAN
static const int kAIndex = 0;
static const int kBIndex = 1;
static const int kGIndex = 2;
static const int kRIndex = 3;
#else
static const int kAIndex = 3;
static const int kBIndex = 2;
static const int kGIndex = 1;
static const int kRIndex = 0;
#endif
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep);
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color);
TransparentSurface::TransparentSurface() : Surface(), _alphaMode(ALPHA_FULL) {}
TransparentSurface::TransparentSurface(const Surface &surf, bool copyData) : Surface(), _alphaMode(ALPHA_FULL) {
if (copyData) {
copyFrom(surf);
} else {
w = surf.w;
h = surf.h;
pitch = surf.pitch;
format = surf.format;
// We need to cast the const qualifier away here because 'pixels'
// always needs to be writable. 'surf' however is a constant Surface,
// thus getPixels will always return const pixel data.
pixels = const_cast<void *>(surf.getPixels());
}
}
/**
* Optimized version of doBlit to be used w/opaque blitting (no alpha).
*/
void doBlitOpaqueFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
byte *in;
byte *out;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
memcpy(out, in, width * 4);
for (uint32 j = 0; j < width; j++) {
out[kAIndex] = 0xFF;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
/**
* Optimized version of doBlit to be used w/binary blitting (blit or no-blit, no blending).
*/
void doBlitBinaryFast(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) {
byte *in;
byte *out;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 pix = *(uint32 *)in;
int a = in[kAIndex];
if (a != 0) { // Full opacity (Any value not exactly 0 is Opaque here)
*(uint32 *)out = pix;
out[kAIndex] = 0xFF;
}
out += 4;
in += inStep;
}
outo += pitch;
ino += inoStep;
}
}
/**
* Optimized version of doBlit to be used with alpha blended blitting
* @param ino a pointer to the input surface
* @param outo a pointer to the output surface
* @param width width of the input surface
* @param height height of the input surface
* @param pitch pitch of the output surface - that is, width in bytes of every row, usually bpp * width of the TARGET surface (the area we are blitting to might be smaller, do the math)
* @inStep size in bytes to skip to address each pixel, usually bpp of the source surface
* @inoStep width in bytes of every row on the *input* surface / kind of like pitch
* @color colormod in 0xAARRGGBB format - 0xFFFFFFFF for no colormod
*/
void doBlitAlphaBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kAIndex] = 255;
out[kRIndex] = ((in[kRIndex] * in[kAIndex]) + out[kRIndex] * (255 - in[kAIndex])) >> 8;
out[kGIndex] = ((in[kGIndex] * in[kAIndex]) + out[kGIndex] * (255 - in[kAIndex])) >> 8;
out[kBIndex] = ((in[kBIndex] * in[kAIndex]) + out[kBIndex] * (255 - in[kAIndex])) >> 8;
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
out[kAIndex] = 255;
out[kBIndex] = (out[kBIndex] * (255 - ina) >> 8);
out[kGIndex] = (out[kGIndex] * (255 - ina) >> 8);
out[kRIndex] = (out[kRIndex] * (255 - ina) >> 8);
out[kBIndex] = out[kBIndex] + (in[kBIndex] * ina * cb >> 16);
out[kGIndex] = out[kGIndex] + (in[kGIndex] * ina * cg >> 16);
out[kRIndex] = out[kRIndex] + (in[kRIndex] * ina * cr >> 16);
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with additive blended blitting
*/
void doBlitAdditiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) + out[kRIndex], 255);
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) + out[kGIndex], 255);
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) + out[kBIndex], 255);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
if (cb != 255) {
out[kBIndex] = MIN<uint>(out[kBIndex] + ((in[kBIndex] * cb * ina) >> 16), 255u);
} else {
out[kBIndex] = MIN<uint>(out[kBIndex] + (in[kBIndex] * ina >> 8), 255u);
}
if (cg != 255) {
out[kGIndex] = MIN<uint>(out[kGIndex] + ((in[kGIndex] * cg * ina) >> 16), 255u);
} else {
out[kGIndex] = MIN<uint>(out[kGIndex] + (in[kGIndex] * ina >> 8), 255u);
}
if (cr != 255) {
out[kRIndex] = MIN<uint>(out[kRIndex] + ((in[kRIndex] * cr * ina) >> 16), 255u);
} else {
out[kRIndex] = MIN<uint>(out[kRIndex] + (in[kRIndex] * ina >> 8), 255u);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with subtractive blended blitting
*/
void doBlitSubtractiveBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * out[kRIndex]) * in[kAIndex] >> 16), 0);
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * out[kGIndex]) * in[kAIndex] >> 16), 0);
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * out[kBIndex]) * in[kAIndex] >> 16), 0);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
out[kAIndex] = 255;
if (cb != 255) {
out[kBIndex] = MAX(out[kBIndex] - ((in[kBIndex] * cb * (out[kBIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kBIndex] = MAX(out[kBIndex] - (in[kBIndex] * (out[kBIndex]) * in[kAIndex] >> 16), 0);
}
if (cg != 255) {
out[kGIndex] = MAX(out[kGIndex] - ((in[kGIndex] * cg * (out[kGIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kGIndex] = MAX(out[kGIndex] - (in[kGIndex] * (out[kGIndex]) * in[kAIndex] >> 16), 0);
}
if (cr != 255) {
out[kRIndex] = MAX(out[kRIndex] - ((in[kRIndex] * cr * (out[kRIndex]) * in[kAIndex]) >> 24), 0);
} else {
out[kRIndex] = MAX(out[kRIndex] - (in[kRIndex] * (out[kRIndex]) * in[kAIndex] >> 16), 0);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
/**
* Optimized version of doBlit to be used with multiply blended blitting
*/
void doBlitMultiplyBlend(byte *ino, byte *outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep, uint32 color) {
byte *in;
byte *out;
if (color == 0xffffffff) {
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
if (in[kAIndex] != 0) {
out[kRIndex] = MIN((in[kRIndex] * in[kAIndex] >> 8) * out[kRIndex] >> 8, 255);
out[kGIndex] = MIN((in[kGIndex] * in[kAIndex] >> 8) * out[kGIndex] >> 8, 255);
out[kBIndex] = MIN((in[kBIndex] * in[kAIndex] >> 8) * out[kBIndex] >> 8, 255);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
} else {
byte ca = (color >> kAModShift) & 0xFF;
byte cr = (color >> kRModShift) & 0xFF;
byte cg = (color >> kGModShift) & 0xFF;
byte cb = (color >> kBModShift) & 0xFF;
for (uint32 i = 0; i < height; i++) {
out = outo;
in = ino;
for (uint32 j = 0; j < width; j++) {
uint32 ina = in[kAIndex] * ca >> 8;
if (cb != 255) {
out[kBIndex] = MIN<uint>(out[kBIndex] * ((in[kBIndex] * cb * ina) >> 16) >> 8, 255u);
} else {
out[kBIndex] = MIN<uint>(out[kBIndex] * (in[kBIndex] * ina >> 8) >> 8, 255u);
}
if (cg != 255) {
out[kGIndex] = MIN<uint>(out[kGIndex] * ((in[kGIndex] * cg * ina) >> 16) >> 8, 255u);
} else {
out[kGIndex] = MIN<uint>(out[kGIndex] * (in[kGIndex] * ina >> 8) >> 8, 255u);
}
if (cr != 255) {
out[kRIndex] = MIN<uint>(out[kRIndex] * ((in[kRIndex] * cr * ina) >> 16) >> 8, 255u);
} else {
out[kRIndex] = MIN<uint>(out[kRIndex] * (in[kRIndex] * ina >> 8) >> 8, 255u);
}
in += inStep;
out += 4;
}
outo += pitch;
ino += inoStep;
}
}
}
Common::Rect TransparentSurface::blit(Graphics::Surface &target, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
Common::Rect retSize;
retSize.top = 0;
retSize.left = 0;
retSize.setWidth(0);
retSize.setHeight(0);
// Check if we need to draw anything at all
int ca = (color >> kAModShift) & 0xff;
if (ca == 0) {
return retSize;
}
// Create an encapsulating surface for the data
TransparentSurface srcImage(*this, false);
// TODO: Is the data really in the screen format?
if (format.bytesPerPixel != 4) {
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
return retSize;
}
if (pPartRect) {
int xOffset = pPartRect->left;
int yOffset = pPartRect->top;
if (flipping & FLIP_V) {
yOffset = srcImage.h - pPartRect->bottom;
}
if (flipping & FLIP_H) {
xOffset = srcImage.w - pPartRect->right;
}
srcImage.pixels = getBasePtr(xOffset, yOffset);
srcImage.w = pPartRect->width();
srcImage.h = pPartRect->height();
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
} else {
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
srcImage.w, srcImage.h, color, width, height);
}
if (width == -1) {
width = srcImage.w;
}
if (height == -1) {
height = srcImage.h;
}
#ifdef SCALING_TESTING
// Hardcode scaling to 66% to test scaling
width = width * 2 / 3;
height = height * 2 / 3;
#endif
Graphics::Surface *img = nullptr;
Graphics::Surface *imgScaled = nullptr;
byte *savedPixels = nullptr;
if ((width != srcImage.w) || (height != srcImage.h)) {
// Scale the image
img = imgScaled = srcImage.scale(width, height);
savedPixels = (byte *)img->getPixels();
} else {
img = &srcImage;
}
// Handle off-screen clipping
if (posY < 0) {
img->h = MAX(0, (int)img->h - -posY);
if (!(flipping & FLIP_V))
img->setPixels((byte *)img->getBasePtr(0, -posY));
posY = 0;
}
if (posX < 0) {
img->w = MAX(0, (int)img->w - -posX);
if (!(flipping & FLIP_H))
img->setPixels((byte *)img->getBasePtr(-posX, 0));
posX = 0;
}
if (img->w > target.w - posX) {
if (flipping & FLIP_H)
img->setPixels((byte *)img->getBasePtr(img->w - target.w + posX, 0));
img->w = CLIP((int)img->w, 0, (int)MAX((int)target.w - posX, 0));
}
if (img->h > target.h - posY) {
if (flipping & FLIP_V)
img->setPixels((byte *)img->getBasePtr(0, img->h - target.h + posY));
img->h = CLIP((int)img->h, 0, (int)MAX((int)target.h - posY, 0));
}
// Flip surface
if ((img->w > 0) && (img->h > 0)) {
int xp = 0, yp = 0;
int inStep = 4;
int inoStep = img->pitch;
if (flipping & FLIP_H) {
inStep = -inStep;
xp = img->w - 1;
}
if (flipping & FLIP_V) {
inoStep = -inoStep;
yp = img->h - 1;
}
byte *ino = (byte *)img->getBasePtr(xp, yp);
byte *outo = (byte *)target.getBasePtr(posX, posY);
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else {
if (blendMode == BLEND_ADDITIVE) {
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_SUBTRACTIVE) {
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_MULTIPLY) {
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else {
assert(blendMode == BLEND_NORMAL);
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
}
}
}
retSize.setWidth(img->w);
retSize.setHeight(img->h);
if (imgScaled) {
imgScaled->setPixels(savedPixels);
imgScaled->free();
delete imgScaled;
}
return retSize;
}
Common::Rect TransparentSurface::blitClip(Graphics::Surface &target, Common::Rect clippingArea, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height, TSpriteBlendMode blendMode) {
Common::Rect retSize;
retSize.top = 0;
retSize.left = 0;
retSize.setWidth(0);
retSize.setHeight(0);
// Check if we need to draw anything at all
int ca = (color >> kAModShift) & 0xff;
if (ca == 0) {
return retSize;
}
// Create an encapsulating surface for the data
TransparentSurface srcImage(*this, false);
// TODO: Is the data really in the screen format?
if (format.bytesPerPixel != 4) {
warning("TransparentSurface can only blit 32bpp images, but got %d", format.bytesPerPixel * 8);
return retSize;
}
if (pPartRect) {
int xOffset = pPartRect->left;
int yOffset = pPartRect->top;
if (flipping & FLIP_V) {
yOffset = srcImage.h - pPartRect->bottom;
}
if (flipping & FLIP_H) {
xOffset = srcImage.w - pPartRect->right;
}
srcImage.pixels = getBasePtr(xOffset, yOffset);
srcImage.w = pPartRect->width();
srcImage.h = pPartRect->height();
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping,
pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height);
} else {
debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0,
srcImage.w, srcImage.h, color, width, height);
}
if (width == -1) {
width = srcImage.w;
}
if (height == -1) {
height = srcImage.h;
}
#ifdef SCALING_TESTING
// Hardcode scaling to 66% to test scaling
width = width * 2 / 3;
height = height * 2 / 3;
#endif
Graphics::Surface *img = nullptr;
Graphics::Surface *imgScaled = nullptr;
byte *savedPixels = nullptr;
if ((width != srcImage.w) || (height != srcImage.h)) {
// Scale the image
img = imgScaled = srcImage.scale(width, height);
savedPixels = (byte *)img->getPixels();
} else {
img = &srcImage;
}
// Handle off-screen clipping
if (posY < clippingArea.top) {
img->h = MAX(0, (int)img->h - (clippingArea.top - posY));
if (!(flipping & FLIP_V))
img->setPixels((byte *)img->getBasePtr(0, clippingArea.top - posY));
posY = clippingArea.top;
}
if (posX < clippingArea.left) {
img->w = MAX(0, (int)img->w - (clippingArea.left - posX));
if (!(flipping & FLIP_H))
img->setPixels((byte *)img->getBasePtr(clippingArea.left - posX, 0));
posX = clippingArea.left;
}
if (img->w > clippingArea.right - posX) {
if (flipping & FLIP_H)
img->setPixels((byte *)img->getBasePtr(img->w - clippingArea.right + posX, 0));
img->w = CLIP((int)img->w, 0, (int)MAX((int)clippingArea.right - posX, 0));
}
if (img->h > clippingArea.bottom - posY) {
if (flipping & FLIP_V)
img->setPixels((byte *)img->getBasePtr(0, img->h - clippingArea.bottom + posY));
img->h = CLIP((int)img->h, 0, (int)MAX((int)clippingArea.bottom - posY, 0));
}
// Flip surface
if ((img->w > 0) && (img->h > 0)) {
int xp = 0, yp = 0;
int inStep = 4;
int inoStep = img->pitch;
if (flipping & FLIP_H) {
inStep = -inStep;
xp = img->w - 1;
}
if (flipping & FLIP_V) {
inoStep = -inoStep;
yp = img->h - 1;
}
byte *ino = (byte *)img->getBasePtr(xp, yp);
byte *outo = (byte *)target.getBasePtr(posX, posY);
if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_OPAQUE) {
doBlitOpaqueFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else if (color == 0xFFFFFFFF && blendMode == BLEND_NORMAL && _alphaMode == ALPHA_BINARY) {
doBlitBinaryFast(ino, outo, img->w, img->h, target.pitch, inStep, inoStep);
} else {
if (blendMode == BLEND_ADDITIVE) {
doBlitAdditiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_SUBTRACTIVE) {
doBlitSubtractiveBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else if (blendMode == BLEND_MULTIPLY) {
doBlitMultiplyBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
} else {
assert(blendMode == BLEND_NORMAL);
doBlitAlphaBlend(ino, outo, img->w, img->h, target.pitch, inStep, inoStep, color);
}
}
}
retSize.setWidth(img->w);
retSize.setHeight(img->h);
if (imgScaled) {
imgScaled->setPixels(savedPixels);
imgScaled->free();
delete imgScaled;
}
return retSize;
}
/**
* Writes a color key to the alpha channel of the surface
* @param rKey the red component of the color key
* @param gKey the green component of the color key
* @param bKey the blue component of the color key
* @param overwriteAlpha if true, all other alpha will be set fully opaque
*/
void TransparentSurface::applyColorKey(uint8 rKey, uint8 gKey, uint8 bKey, bool overwriteAlpha) {
assert(format.bytesPerPixel == 4);
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
uint32 pix = ((uint32 *)pixels)[i * w + j];
uint8 r, g, b, a;
format.colorToARGB(pix, a, r, g, b);
if (r == rKey && g == gKey && b == bKey) {
a = 0;
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
} else if (overwriteAlpha) {
a = 255;
((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b);
}
}
}
}
AlphaType TransparentSurface::getAlphaMode() const {
return _alphaMode;
}
void TransparentSurface::setAlphaMode(AlphaType mode) {
_alphaMode = mode;
}
/*
The below two functions are adapted from SDL_rotozoom.c,
taken from SDL_gfx-2.0.18.
Its copyright notice:
=============================================================================
SDL_rotozoom.c: rotozoomer, zoomer and shrinker for 32bit or 8bit surfaces
Copyright (C) 2001-2012 Andreas Schiffler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
Andreas Schiffler -- aschiffler at ferzkopp dot net
=============================================================================
The functions have been adapted for different structures and coordinate
systems.
*/
struct tColorRGBA { byte r; byte g; byte b; byte a; };
template <TFilteringMode filteringMode>
TransparentSurface *TransparentSurface::rotoscaleT(const TransformStruct &transform) const {
assert(transform._angle != 0); // This would not be ideal; rotoscale() should never be called in conditional branches where angle = 0 anyway.
Common::Point newHotspot;
Common::Rect srcRect(0, 0, (int16)w, (int16)h);
Common::Rect rect = TransformTools::newRect(Common::Rect(srcRect), transform, &newHotspot);
Common::Rect dstRect(0, 0, (int16)(rect.right - rect.left), (int16)(rect.bottom - rect.top));
TransparentSurface *target = new TransparentSurface();
assert(format.bytesPerPixel == 4);
int srcW = w;
int srcH = h;
int dstW = dstRect.width();
int dstH = dstRect.height();
target->create((uint16)dstW, (uint16)dstH, this->format);
if (transform._zoom.x == 0 || transform._zoom.y == 0) {
return target;
}
uint32 invAngle = 360 - (transform._angle % 360);
float invCos = cos(invAngle * M_PI / 180.0);
float invSin = sin(invAngle * M_PI / 180.0);
int icosx = (int)(invCos * (65536.0f * kDefaultZoomX / transform._zoom.x));
int isinx = (int)(invSin * (65536.0f * kDefaultZoomX / transform._zoom.x));
int icosy = (int)(invCos * (65536.0f * kDefaultZoomY / transform._zoom.y));
int isiny = (int)(invSin * (65536.0f * kDefaultZoomY / transform._zoom.y));
bool flipx = false, flipy = false; // TODO: See mirroring comment in RenderTicket ctor
int xd = (srcRect.left + transform._hotspot.x) << 16;
int yd = (srcRect.top + transform._hotspot.y) << 16;
int cx = newHotspot.x;
int cy = newHotspot.y;
int ax = -icosx * cx;
int ay = -isiny * cx;
int sw = srcW - 1;
int sh = srcH - 1;
tColorRGBA *pc = (tColorRGBA*)target->getBasePtr(0, 0);
for (int y = 0; y < dstH; y++) {
int t = cy - y;
int sdx = ax + (isinx * t) + xd;
int sdy = ay - (icosy * t) + yd;
for (int x = 0; x < dstW; x++) {
int dx = (sdx >> 16);
int dy = (sdy >> 16);
if (flipx) {
dx = sw - dx;
}
if (flipy) {
dy = sh - dy;
}
if (filteringMode == FILTER_BILINEAR) {
if ((dx > -1) && (dy > -1) && (dx < sw) && (dy < sh)) {
const tColorRGBA *sp = (const tColorRGBA *)getBasePtr(dx, dy);
tColorRGBA c00, c01, c10, c11, cswap;
c00 = *sp;
sp += 1;
c01 = *sp;
sp += (this->pitch / 4);
c11 = *sp;
sp -= 1;
c10 = *sp;
if (flipx) {
cswap = c00; c00=c01; c01=cswap;
cswap = c10; c10=c11; c11=cswap;
}
if (flipy) {
cswap = c00; c00=c10; c10=cswap;
cswap = c01; c01=c11; c11=cswap;
}
/*
* Interpolate colors
*/
int ex = (sdx & 0xffff);
int ey = (sdy & 0xffff);
int t1, t2;
t1 = ((((c01.r - c00.r) * ex) >> 16) + c00.r) & 0xff;
t2 = ((((c11.r - c10.r) * ex) >> 16) + c10.r) & 0xff;
pc->r = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01.g - c00.g) * ex) >> 16) + c00.g) & 0xff;
t2 = ((((c11.g - c10.g) * ex) >> 16) + c10.g) & 0xff;
pc->g = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01.b - c00.b) * ex) >> 16) + c00.b) & 0xff;
t2 = ((((c11.b - c10.b) * ex) >> 16) + c10.b) & 0xff;
pc->b = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01.a - c00.a) * ex) >> 16) + c00.a) & 0xff;
t2 = ((((c11.a - c10.a) * ex) >> 16) + c10.a) & 0xff;
pc->a = (((t2 - t1) * ey) >> 16) + t1;
}
} else {
if ((dx >= 0) && (dy >= 0) && (dx < srcW) && (dy < srcH)) {
const tColorRGBA *sp = (const tColorRGBA *)getBasePtr(dx, dy);
*pc = *sp;
}
}
sdx += icosx;
sdy += isiny;
pc++;
}
}
return target;
}
template <TFilteringMode filteringMode>
TransparentSurface *TransparentSurface::scaleT(uint16 newWidth, uint16 newHeight) const {
TransparentSurface *target = new TransparentSurface();
int srcW = w;
int srcH = h;
int dstW = newWidth;
int dstH = newHeight;
target->create((uint16)dstW, (uint16)dstH, format);
if (filteringMode == FILTER_BILINEAR) {
assert(format.bytesPerPixel == 4);
bool flipx = false, flipy = false; // TODO: See mirroring comment in RenderTicket ctor
int *sax = new int[dstW + 1];
int *say = new int[dstH + 1];
assert(sax && say);
/*
* Precalculate row increments
*/
int spixelw = (srcW - 1);
int spixelh = (srcH - 1);
int sx = (int) (65536.0f * (float) spixelw / (float) (dstW - 1));
int sy = (int) (65536.0f * (float) spixelh / (float) (dstH - 1));
/* Maximum scaled source size */
int ssx = (srcW << 16) - 1;
int ssy = (srcH << 16) - 1;
/* Precalculate horizontal row increments */
int csx = 0;
int *csax = sax;
for (int x = 0; x <= dstW; x++) {
*csax = csx;
csax++;
csx += sx;
/* Guard from overflows */
if (csx > ssx) {
csx = ssx;
}
}
/* Precalculate vertical row increments */
int csy = 0;
int *csay = say;
for (int y = 0; y <= dstH; y++) {
*csay = csy;
csay++;
csy += sy;
/* Guard from overflows */
if (csy > ssy) {
csy = ssy;
}
}
const tColorRGBA *sp = (const tColorRGBA *) getBasePtr(0, 0);
tColorRGBA *dp = (tColorRGBA *) target->getBasePtr(0, 0);
int spixelgap = srcW;
if (flipx) {
sp += spixelw;
}
if (flipy) {
sp += spixelgap * spixelh;
}
csay = say;
for (int y = 0; y < dstH; y++) {
const tColorRGBA *csp = sp;
csax = sax;
for (int x = 0; x < dstW; x++) {
/*
* Setup color source pointers
*/
int ex = (*csax & 0xffff);
int ey = (*csay & 0xffff);
int cx = (*csax >> 16);
int cy = (*csay >> 16);
const tColorRGBA *c00, *c01, *c10, *c11;
c00 = sp;
c01 = sp;
c10 = sp;
if (cy < spixelh) {
if (flipy) {
c10 -= spixelgap;
} else {
c10 += spixelgap;
}
}
c11 = c10;
if (cx < spixelw) {
if (flipx) {
c01--;
c11--;
} else {
c01++;
c11++;
}
}
/*
* Draw and interpolate colors
*/
int t1, t2;
t1 = ((((c01->r - c00->r) * ex) >> 16) + c00->r) & 0xff;
t2 = ((((c11->r - c10->r) * ex) >> 16) + c10->r) & 0xff;
dp->r = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01->g - c00->g) * ex) >> 16) + c00->g) & 0xff;
t2 = ((((c11->g - c10->g) * ex) >> 16) + c10->g) & 0xff;
dp->g = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01->b - c00->b) * ex) >> 16) + c00->b) & 0xff;
t2 = ((((c11->b - c10->b) * ex) >> 16) + c10->b) & 0xff;
dp->b = (((t2 - t1) * ey) >> 16) + t1;
t1 = ((((c01->a - c00->a) * ex) >> 16) + c00->a) & 0xff;
t2 = ((((c11->a - c10->a) * ex) >> 16) + c10->a) & 0xff;
dp->a = (((t2 - t1) * ey) >> 16) + t1;
/*
* Advance source pointer x
*/
int *salastx = csax;
csax++;
int sstepx = (*csax >> 16) - (*salastx >> 16);
if (flipx) {
sp -= sstepx;
} else {
sp += sstepx;
}
/*
* Advance destination pointer x
*/
dp++;
}
/*
* Advance source pointer y
*/
int *salasty = csay;
csay++;
int sstepy = (*csay >> 16) - (*salasty >> 16);
sstepy *= spixelgap;
if (flipy) {
sp = csp - sstepy;
} else {
sp = csp + sstepy;
}
}
delete[] sax;
delete[] say;
} else {
int *scaleCacheX = new int[dstW];
for (int x = 0; x < dstW; x++) {
scaleCacheX[x] = (x * srcW) / dstW;
}
switch (format.bytesPerPixel) {
case 1:
scaleNN<uint8>(scaleCacheX, target);
break;
case 2:
scaleNN<uint16>(scaleCacheX, target);
break;
case 4:
scaleNN<uint32>(scaleCacheX, target);
break;
default:
error("Can only scale 8bpp, 16bpp, and 32bpp");
}
delete[] scaleCacheX;
}
return target;
}
TransparentSurface *TransparentSurface::convertTo(const PixelFormat &dstFormat, const byte *palette) const {
assert(pixels);
TransparentSurface *surface = new TransparentSurface();
// If the target format is the same, just copy
if (format == dstFormat) {
surface->copyFrom(*this);
return surface;
}
if (format.bytesPerPixel == 0 || format.bytesPerPixel > 4)
error("Surface::convertTo(): Can only convert from 1Bpp, 2Bpp, 3Bpp, and 4Bpp");
if (dstFormat.bytesPerPixel != 2 && dstFormat.bytesPerPixel != 4)
error("Surface::convertTo(): Can only convert to 2Bpp and 4Bpp");
surface->create(w, h, dstFormat);
if (format.bytesPerPixel == 1) {
// Converting from paletted to high color
assert(palette);
for (int y = 0; y < h; y++) {
const byte *srcRow = (const byte *)getBasePtr(0, y);
byte *dstRow = (byte *)surface->getBasePtr(0, y);
for (int x = 0; x < w; x++) {
byte index = *srcRow++;
byte r = palette[index * 3];
byte g = palette[index * 3 + 1];
byte b = palette[index * 3 + 2];
uint32 color = dstFormat.RGBToColor(r, g, b);
if (dstFormat.bytesPerPixel == 2)
*((uint16 *)dstRow) = color;
else
*((uint32 *)dstRow) = color;
dstRow += dstFormat.bytesPerPixel;
}
}
} else {
// Converting from high color to high color
for (int y = 0; y < h; y++) {
const byte *srcRow = (const byte *)getBasePtr(0, y);
byte *dstRow = (byte *)surface->getBasePtr(0, y);
for (int x = 0; x < w; x++) {
uint32 srcColor;
if (format.bytesPerPixel == 2)
srcColor = READ_UINT16(srcRow);
else if (format.bytesPerPixel == 3)
srcColor = READ_UINT24(srcRow);
else
srcColor = READ_UINT32(srcRow);
srcRow += format.bytesPerPixel;
// Convert that color to the new format
byte r, g, b, a;
format.colorToARGB(srcColor, a, r, g, b);
uint32 color = dstFormat.ARGBToColor(a, r, g, b);
if (dstFormat.bytesPerPixel == 2)
*((uint16 *)dstRow) = color;
else
*((uint32 *)dstRow) = color;
dstRow += dstFormat.bytesPerPixel;
}
}
}
return surface;
}
template <typename Size>
void TransparentSurface::scaleNN(int *scaleCacheX, TransparentSurface *target) const {
for (int y = 0; y < target->h; y++) {
Size *destP = (Size *)target->getBasePtr(0, y);
const Size *srcP = (const Size *)getBasePtr(0, (y * h) / target->h);
for (int x = 0; x < target->w; x++) {
*destP++ = srcP[scaleCacheX[x]];
}
}
}
template TransparentSurface *TransparentSurface::rotoscaleT<FILTER_NEAREST>(const TransformStruct &transform) const;
template TransparentSurface *TransparentSurface::rotoscaleT<FILTER_BILINEAR>(const TransformStruct &transform) const;
template TransparentSurface *TransparentSurface::scaleT<FILTER_NEAREST>(uint16 newWidth, uint16 newHeight) const;
template TransparentSurface *TransparentSurface::scaleT<FILTER_BILINEAR>(uint16 newWidth, uint16 newHeight) const;
template void TransparentSurface::scaleNN<uint8>(int *scaleCacheX, TransparentSurface *target) const;
template void TransparentSurface::scaleNN<uint16>(int *scaleCacheX, TransparentSurface *target) const;
template void TransparentSurface::scaleNN<uint32>(int *scaleCacheX, TransparentSurface *target) const;
TransparentSurface *TransparentSurface::rotoscale(const TransformStruct &transform) const {
return rotoscaleT<FILTER_BILINEAR>(transform);
}
TransparentSurface *TransparentSurface::scale(uint16 newWidth, uint16 newHeight) const {
return scaleT<FILTER_NEAREST>(newWidth, newHeight);
}
} // End of namespace Graphics
|