1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// Sorenson Video 1 Codec
// Based off FFmpeg's SVQ1 decoder (written by Arpi and Nick Kurshev)
#include "image/codecs/svq1.h"
#include "image/codecs/svq1_cb.h"
#include "image/codecs/svq1_vlc.h"
#include "common/stream.h"
#include "common/bitstream.h"
#include "common/rect.h"
#include "common/system.h"
#include "common/debug.h"
#include "common/textconsole.h"
#include "common/huffman.h"
#include "graphics/yuv_to_rgb.h"
namespace Image {
#define SVQ1_BLOCK_SKIP 0
#define SVQ1_BLOCK_INTER 1
#define SVQ1_BLOCK_INTER_4V 2
#define SVQ1_BLOCK_INTRA 3
SVQ1Decoder::SVQ1Decoder(uint16 width, uint16 height) {
debug(1, "SVQ1Decoder::SVQ1Decoder(width:%d, height:%d)", width, height);
_width = width;
_height = height;
_frameWidth = _frameHeight = 0;
_surface = 0;
_last[0] = 0;
_last[1] = 0;
_last[2] = 0;
// Setup Variable Length Code Tables
_blockType = new Common::Huffman(0, 4, s_svq1BlockTypeCodes, s_svq1BlockTypeLengths);
for (int i = 0; i < 6; i++) {
_intraMultistage[i] = new Common::Huffman(0, 8, s_svq1IntraMultistageCodes[i], s_svq1IntraMultistageLengths[i]);
_interMultistage[i] = new Common::Huffman(0, 8, s_svq1InterMultistageCodes[i], s_svq1InterMultistageLengths[i]);
}
_intraMean = new Common::Huffman(0, 256, s_svq1IntraMeanCodes, s_svq1IntraMeanLengths);
_interMean = new Common::Huffman(0, 512, s_svq1InterMeanCodes, s_svq1InterMeanLengths);
_motionComponent = new Common::Huffman(0, 33, s_svq1MotionComponentCodes, s_svq1MotionComponentLengths);
}
SVQ1Decoder::~SVQ1Decoder() {
if (_surface) {
_surface->free();
delete _surface;
}
delete[] _last[0];
delete[] _last[1];
delete[] _last[2];
delete _blockType;
delete _intraMean;
delete _interMean;
delete _motionComponent;
for (int i = 0; i < 6; i++) {
delete _intraMultistage[i];
delete _interMultistage[i];
}
}
#define ALIGN(x, a) (((x)+(a)-1)&~((a)-1))
const Graphics::Surface *SVQ1Decoder::decodeFrame(Common::SeekableReadStream &stream) {
debug(1, "SVQ1Decoder::decodeImage()");
Common::BitStream32BEMSB frameData(stream);
uint32 frameCode = frameData.getBits(22);
debug(1, " frameCode: %d", frameCode);
if ((frameCode & ~0x70) || !(frameCode & 0x60)) { // Invalid
warning("Invalid Image at frameCode");
return _surface;
}
byte temporalReference = frameData.getBits(8);
debug(1, " temporalReference: %d", temporalReference);
static const char *const types[4] = { "I (Key)", "P (Delta from Previous)", "B (Delta from Next)", "Invalid" };
byte frameType = frameData.getBits(2);
debug(1, " frameType: %d = %s Frame", frameType, types[frameType]);
if (frameType == 0) { // I Frame
// TODO: Validate checksum if present
if (frameCode == 0x50 || frameCode == 0x60) {
uint32 checksum = frameData.getBits(16);
debug(1, " checksum:0x%02x", checksum);
// We're currently just ignoring the checksum
}
if ((frameCode ^ 0x10) >= 0x50) {
// Skip embedded string
byte stringLen = frameData.getBits(8);
for (uint16 i = 0; i < stringLen-1; i++)
frameData.skip(8);
}
frameData.skip(5); // Unknown
static const struct { uint w, h; } standardFrameSizes[7] = {
{ 160, 120 }, // 0
{ 128, 96 }, // 1
{ 176, 144 }, // 2
{ 352, 288 }, // 3
{ 704, 576 }, // 4
{ 240, 180 }, // 5
{ 320, 240 } // 6
};
byte frameSizeCode = frameData.getBits(3);
debug(1, " frameSizeCode: %d", frameSizeCode);
if (frameSizeCode == 7) {
_frameWidth = frameData.getBits(12);
_frameHeight = frameData.getBits(12);
} else {
_frameWidth = standardFrameSizes[frameSizeCode].w;
_frameHeight = standardFrameSizes[frameSizeCode].h;
}
debug(1, " frameWidth: %d", _frameWidth);
debug(1, " frameHeight: %d", _frameHeight);
} else if (frameType == 2) { // B Frame
warning("B Frames not supported by SVQ1 decoder (yet)");
return _surface;
} else if (frameType == 3) { // Invalid
warning("Invalid Frame Type");
return _surface;
}
bool checksumPresent = frameData.getBit() != 0;
debug(1, " checksumPresent: %d", checksumPresent);
if (checksumPresent) {
bool usePacketChecksum = frameData.getBit() != 0;
debug(1, " usePacketChecksum: %d", usePacketChecksum);
bool componentChecksumsAfterImageData = frameData.getBit() != 0;
debug(1, " componentChecksumsAfterImageData: %d", componentChecksumsAfterImageData);
byte unk4 = frameData.getBits(2);
debug(1, " unk4: %d", unk4);
if (unk4 != 0)
warning("Invalid Frame Header in SVQ1 Frame Decode");
}
// Some more unknown data
bool unk5 = frameData.getBit() != 0;
if (unk5) {
frameData.skip(8);
while (frameData.getBit() != 0)
frameData.skip(8);
}
uint yWidth = ALIGN(_frameWidth, 16);
uint yHeight = ALIGN(_frameHeight, 16);
uint uvWidth = ALIGN(yWidth / 4, 16);
uint uvHeight = ALIGN(yHeight / 4, 16);
uint uvPitch = uvWidth + 4; // we need at least one extra column and pitch must be divisible by 4
byte *current[3];
// Decode Y, U and V component planes
for (int i = 0; i < 3; i++) {
uint width, height, pitch;
if (i == 0) {
width = yWidth;
height = yHeight;
pitch = width;
current[i] = new byte[width * height];
} else {
width = uvWidth;
height = uvHeight;
pitch = uvPitch;
// Add an extra row here. See below for more information.
current[i] = new byte[pitch * (height + 1)];
}
if (frameType == 0) { // I Frame
// Keyframe (I)
byte *currentP = current[i];
for (uint16 y = 0; y < height; y += 16) {
for (uint16 x = 0; x < width; x += 16) {
if (!svq1DecodeBlockIntra(&frameData, ¤tP[x], pitch)) {
warning("svq1DecodeBlockIntra decode failure");
return _surface;
}
}
currentP += 16 * pitch;
}
} else {
// Delta frame (P or B)
// Prediction Motion Vector
Common::Point *pmv = new Common::Point[(width / 8) + 3];
byte *previous = 0;
if (frameType == 2) { // B Frame
error("SVQ1 Video: B Frames not supported");
//previous = _next[i];
} else {
previous = _last[i];
}
byte *currentP = current[i];
for (uint16 y = 0; y < height; y += 16) {
for (uint16 x = 0; x < width; x += 16) {
if (!svq1DecodeDeltaBlock(&frameData, ¤tP[x], previous, pitch, pmv, x, y)) {
warning("svq1DecodeDeltaBlock decode failure");
return _surface;
}
}
pmv[0].x = pmv[0].y = 0;
currentP += 16 * pitch;
}
delete[] pmv;
}
}
// Now we'll create the surface
if (!_surface) {
_surface = new Graphics::Surface();
_surface->create(yWidth, yHeight, g_system->getScreenFormat());
_surface->w = _width;
_surface->h = _height;
}
// We need to massage the chrominance data a bit to be able to be used by the converter
// Since the thing peeks at values one column and one row beyond the data, we need to fill it in
// First, fill in the column-after-last with the last column's value
for (uint i = 0; i < uvHeight; i++) {
current[1][i * uvPitch + uvWidth] = current[1][i * uvPitch + uvWidth - 1];
current[2][i * uvPitch + uvWidth] = current[2][i * uvPitch + uvWidth - 1];
}
// Then, copy the last row to the one after the last row
memcpy(current[1] + uvHeight * uvPitch, current[1] + (uvHeight - 1) * uvPitch, uvWidth + 1);
memcpy(current[2] + uvHeight * uvPitch, current[2] + (uvHeight - 1) * uvPitch, uvWidth + 1);
// Finally, actually do the conversion ;)
YUVToRGBMan.convert410(_surface, Graphics::YUVToRGBManager::kScaleFull, current[0], current[1], current[2], yWidth, yHeight, yWidth, uvPitch);
// Store the current surfaces for later and free the old ones
for (int i = 0; i < 3; i++) {
delete[] _last[i];
_last[i] = current[i];
}
return _surface;
}
bool SVQ1Decoder::svq1DecodeBlockIntra(Common::BitStream32BEMSB *s, byte *pixels, int pitch) {
// initialize list for breadth first processing of vectors
byte *list[63];
list[0] = pixels;
// recursively process vector
for (int i = 0, m = 1, n = 1, level = 5; i < n; i++) {
for (; level > 0; i++) {
// process next depth
if (i == m) {
m = n;
if (--level == 0)
break;
}
// divide block if next bit set
if (s->getBit() == 0)
break;
// add child nodes
list[n++] = list[i];
list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));
}
// destination address and vector size
uint32 *dst = (uint32 *)list[i];
uint width = 1 << ((level + 4) / 2);
uint height = 1 << ((level + 3) / 2);
// get number of stages (-1 skips vector, 0 for mean only)
int stages = _intraMultistage[level]->getSymbol(*s) - 1;
if (stages == -1) {
for (uint y = 0; y < height; y++)
memset(&dst[y * (pitch / 4)], 0, width);
continue; // skip vector
}
if (stages > 0 && level >= 4) {
warning("Error (svq1_decode_block_intra): invalid vector: stages = %d, level = %d", stages, level);
return false; // error - invalid vector
}
int mean = _intraMean->getSymbol(*s);
if (stages == 0) {
for (uint y = 0; y < height; y++)
memset(&dst[y * (pitch / 4)], mean, width);
} else {
const uint32 *codebook = (const uint32 *)s_svq1IntraCodebooks[level];
uint32 bitCache = s->getBits(stages * 4);
// calculate codebook entries for this vector
int entries[6];
for (int j = 0; j < stages; j++)
entries[j] = (((bitCache >> ((stages - j - 1) * 4)) & 0xF) + j * 16) << (level + 1);
mean -= stages * 128;
uint32 n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
for (uint y = 0; y < height; y++) {
for (uint x = 0; x < (width / 4); x++, codebook++) {
uint32 n1 = n4;
uint32 n2 = n4;
uint32 n3;
// add codebook entries to vector
for (int j = 0; j < stages; j++) {
n3 = READ_UINT32(&codebook[entries[j]]) ^ 0x80808080;
n1 += (n3 & 0xFF00FF00) >> 8;
n2 += n3 & 0x00FF00FF;
}
// clip to [0..255]
if (n1 & 0xFF00FF00) {
n3 = (((n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 += 0x7F007F00;
n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 &= n3 & 0x00FF00FF;
}
if (n2 & 0xFF00FF00) {
n3 = (((n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 += 0x7F007F00;
n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 &= n3 & 0x00FF00FF;
}
// store result
dst[x] = (n1 << 8) | n2;
}
dst += pitch / 4;
}
}
}
return true;
}
bool SVQ1Decoder::svq1DecodeBlockNonIntra(Common::BitStream32BEMSB *s, byte *pixels, int pitch) {
// initialize list for breadth first processing of vectors
byte *list[63];
list[0] = pixels;
// recursively process vector
for (int i = 0, m = 1, n = 1, level = 5; i < n; i++) {
for (; level > 0; i++) {
// process next depth
if (i == m) {
m = n;
if (--level == 0)
break;
}
// divide block if next bit set
if (s->getBit() == 0)
break;
// add child nodes
list[n++] = list[i];
list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1));
}
// destination address and vector size
uint32 *dst = (uint32 *)list[i];
int width = 1 << ((level + 4) / 2);
int height = 1 << ((level + 3) / 2);
// get number of stages (-1 skips vector, 0 for mean only)
int stages = _interMultistage[level]->getSymbol(*s) - 1;
if (stages == -1)
continue; // skip vector
if (stages > 0 && level >= 4) {
warning("Error (svq1_decode_block_non_intra): invalid vector: stages = %d, level = %d", stages, level);
return false; // error - invalid vector
}
int mean = _interMean->getSymbol(*s) - 256;
const uint32 *codebook = (const uint32 *)s_svq1InterCodebooks[level];
uint32 bitCache = s->getBits(stages * 4);
// calculate codebook entries for this vector
int entries[6];
for (int j = 0; j < stages; j++)
entries[j] = (((bitCache >> ((stages - j - 1) * 4)) & 0xF) + j * 16) << (level + 1);
mean -= stages * 128;
uint32 n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF);
for (int y = 0; y < height; y++) {
for (int x = 0; x < (width / 4); x++, codebook++) {
uint32 n3 = dst[x];
// add mean value to vector
uint32 n1 = ((n3 & 0xFF00FF00) >> 8) + n4;
uint32 n2 = (n3 & 0x00FF00FF) + n4;
// add codebook entries to vector
for (int j = 0; j < stages; j++) {
n3 = READ_UINT32(&codebook[entries[j]]) ^ 0x80808080;
n1 += (n3 & 0xFF00FF00) >> 8;
n2 += n3 & 0x00FF00FF;
}
// clip to [0..255]
if (n1 & 0xFF00FF00) {
n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 += 0x7F007F00;
n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n1 &= n3 & 0x00FF00FF;
}
if (n2 & 0xFF00FF00) {
n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 += 0x7F007F00;
n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001;
n2 &= n3 & 0x00FF00FF;
}
// store result
dst[x] = (n1 << 8) | n2;
}
dst += pitch / 4;
}
}
return true;
}
// median of 3
static inline int midPred(int a, int b, int c) {
if (a > b) {
if (c > b) {
if (c > a)
b = a;
else
b = c;
}
} else {
if (b > c) {
if (c > a)
b = c;
else
b = a;
}
}
return b;
}
bool SVQ1Decoder::svq1DecodeMotionVector(Common::BitStream32BEMSB *s, Common::Point *mv, Common::Point **pmv) {
for (int i = 0; i < 2; i++) {
// get motion code
int diff = _motionComponent->getSymbol(*s);
if (diff < 0)
return false; // error - invalid motion code
else if (diff && s->getBit() != 0)
diff = -diff;
// add median of motion vector predictors and clip result
if (i == 1)
mv->y = ((diff + midPred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26;
else
mv->x = ((diff + midPred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26;
}
return true;
}
void SVQ1Decoder::svq1SkipBlock(byte *current, byte *previous, int pitch, int x, int y) {
const byte *src = &previous[x + y * pitch];
byte *dst = current;
for (int i = 0; i < 16; i++) {
memcpy(dst, src, 16);
src += pitch;
dst += pitch;
}
}
void SVQ1Decoder::putPixels8C(byte *block, const byte *pixels, int lineSize, int h) {
for (int i = 0; i < h; i++) {
*((uint32 *)block) = READ_UINT32(pixels);
*((uint32 *)(block + 4)) = READ_UINT32(pixels + 4);
pixels += lineSize;
block += lineSize;
}
}
static inline uint32 rndAvg32(uint32 a, uint32 b) {
return (a | b) - (((a ^ b) & ~0x01010101) >> 1);
}
void SVQ1Decoder::putPixels8L2(byte *dst, const byte *src1, const byte *src2,
int dstStride, int srcStride1, int srcStride2, int h) {
for (int i = 0; i < h; i++) {
uint32 a = READ_UINT32(&src1[srcStride1 * i]);
uint32 b = READ_UINT32(&src2[srcStride2 * i]);
*((uint32 *)&dst[dstStride * i]) = rndAvg32(a, b);
a = READ_UINT32(&src1[srcStride1 * i + 4]);
b = READ_UINT32(&src2[srcStride2 * i + 4]);
*((uint32 *)&dst[dstStride * i + 4]) = rndAvg32(a, b);
}
}
void SVQ1Decoder::putPixels8X2C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8L2(block, pixels, pixels + 1, lineSize, lineSize, lineSize, h);
}
void SVQ1Decoder::putPixels8Y2C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8L2(block, pixels, pixels + lineSize, lineSize, lineSize, lineSize, h);
}
void SVQ1Decoder::putPixels8XY2C(byte *block, const byte *pixels, int lineSize, int h) {
for (int j = 0; j < 2; j++) {
uint32 a = READ_UINT32(pixels);
uint32 b = READ_UINT32(pixels + 1);
uint32 l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL;
uint32 h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
pixels += lineSize;
for (int i = 0; i < h; i += 2) {
a = READ_UINT32(pixels);
b = READ_UINT32(pixels + 1);
uint32 l1 = (a & 0x03030303UL) + (b & 0x03030303UL);
uint32 h1 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
*((uint32 *)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL);
pixels += lineSize;
block += lineSize;
a = READ_UINT32(pixels);
b = READ_UINT32(pixels + 1);
l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL;
h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2);
*((uint32 *)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL);
pixels += lineSize;
block += lineSize;
}
pixels += 4 - lineSize * (h + 1);
block += 4 - lineSize * h;
}
}
void SVQ1Decoder::putPixels16C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8C(block, pixels, lineSize, h);
putPixels8C(block + 8, pixels + 8, lineSize, h);
}
void SVQ1Decoder::putPixels16X2C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8X2C(block, pixels, lineSize, h);
putPixels8X2C(block + 8, pixels + 8, lineSize, h);
}
void SVQ1Decoder::putPixels16Y2C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8Y2C(block, pixels, lineSize, h);
putPixels8Y2C(block + 8, pixels + 8, lineSize, h);
}
void SVQ1Decoder::putPixels16XY2C(byte *block, const byte *pixels, int lineSize, int h) {
putPixels8XY2C(block, pixels, lineSize, h);
putPixels8XY2C(block + 8, pixels + 8, lineSize, h);
}
bool SVQ1Decoder::svq1MotionInterBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch,
Common::Point *motion, int x, int y) {
// predict and decode motion vector
Common::Point *pmv[3];
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] = pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
}
Common::Point mv;
bool resultValid = svq1DecodeMotionVector(ss, &mv, pmv);
if (!resultValid)
return false;
motion[0].x = motion[(x / 8) + 2].x = motion[(x / 8) + 3].x = mv.x;
motion[0].y = motion[(x / 8) + 2].y = motion[(x / 8) + 3].y = mv.y;
if (y + (mv.y >> 1) < 0)
mv.y = 0;
if (x + (mv.x >> 1) < 0)
mv.x = 0;
const byte *src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1)) * pitch];
byte *dst = current;
// Halfpel motion compensation with rounding (a + b + 1) >> 1.
// 4 motion compensation functions for the 4 halfpel positions
// for 16x16 blocks
switch(((mv.y & 1) << 1) + (mv.x & 1)) {
case 0:
putPixels16C(dst, src, pitch, 16);
break;
case 1:
putPixels16X2C(dst, src, pitch, 16);
break;
case 2:
putPixels16Y2C(dst, src, pitch, 16);
break;
case 3:
putPixels16XY2C(dst, src, pitch, 16);
break;
}
return true;
}
bool SVQ1Decoder::svq1MotionInter4vBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch,
Common::Point *motion, int x, int y) {
// predict and decode motion vector (0)
Common::Point *pmv[4];
pmv[0] = &motion[0];
if (y == 0) {
pmv[1] = pmv[2] = pmv[0];
} else {
pmv[1] = &motion[(x / 8) + 2];
pmv[2] = &motion[(x / 8) + 4];
}
Common::Point mv;
bool resultValid = svq1DecodeMotionVector(ss, &mv, pmv);
if (!resultValid)
return false;
// predict and decode motion vector (1)
pmv[0] = &mv;
if (y == 0)
pmv[1] = pmv[2] = pmv[0];
else
pmv[1] = &motion[(x / 8) + 3];
resultValid = svq1DecodeMotionVector(ss, &motion[0], pmv);
if (!resultValid)
return false;
// predict and decode motion vector (2)
pmv[1] = &motion[0];
pmv[2] = &motion[(x / 8) + 1];
resultValid = svq1DecodeMotionVector(ss, &motion[(x / 8) + 2], pmv);
if (!resultValid)
return false;
// predict and decode motion vector (3)
pmv[2] = &motion[(x / 8) + 2];
pmv[3] = &motion[(x / 8) + 3];
resultValid = svq1DecodeMotionVector(ss, pmv[3], pmv);
if (!resultValid)
return false;
// form predictions
for (int i = 0; i < 4; i++) {
int mvx = pmv[i]->x + (i & 1) * 16;
int mvy = pmv[i]->y + (i >> 1) * 16;
// FIXME: clipping or padding?
if (y + (mvy >> 1) < 0)
mvy = 0;
if (x + (mvx >> 1) < 0)
mvx = 0;
const byte *src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1)) * pitch];
byte *dst = current;
// Halfpel motion compensation with rounding (a + b + 1) >> 1.
// 4 motion compensation functions for the 4 halfpel positions
// for 8x8 blocks
switch(((mvy & 1) << 1) + (mvx & 1)) {
case 0:
putPixels8C(dst, src, pitch, 8);
break;
case 1:
putPixels8X2C(dst, src, pitch, 8);
break;
case 2:
putPixels8Y2C(dst, src, pitch, 8);
break;
case 3:
putPixels8XY2C(dst, src, pitch, 8);
break;
}
// select next block
if (i & 1)
current += (pitch - 1) * 8;
else
current += 8;
}
return true;
}
bool SVQ1Decoder::svq1DecodeDeltaBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch,
Common::Point *motion, int x, int y) {
// get block type
uint32 blockType = _blockType->getSymbol(*ss);
// reset motion vectors
if (blockType == SVQ1_BLOCK_SKIP || blockType == SVQ1_BLOCK_INTRA) {
motion[0].x =
motion[0].y =
motion[(x / 8) + 2].x =
motion[(x / 8) + 2].y =
motion[(x / 8) + 3].x =
motion[(x / 8) + 3].y = 0;
}
bool resultValid = true;
switch (blockType) {
case SVQ1_BLOCK_SKIP:
svq1SkipBlock(current, previous, pitch, x, y);
break;
case SVQ1_BLOCK_INTER:
resultValid = svq1MotionInterBlock(ss, current, previous, pitch, motion, x, y);
if (!resultValid) {
warning("svq1MotionInterBlock decode failure");
break;
}
resultValid = svq1DecodeBlockNonIntra(ss, current, pitch);
break;
case SVQ1_BLOCK_INTER_4V:
resultValid = svq1MotionInter4vBlock(ss, current, previous, pitch, motion, x, y);
if (!resultValid) {
warning("svq1MotionInter4vBlock decode failure");
break;
}
resultValid = svq1DecodeBlockNonIntra(ss, current, pitch);
break;
case SVQ1_BLOCK_INTRA:
resultValid = svq1DecodeBlockIntra(ss, current, pitch);
break;
}
return resultValid;
}
} // End of namespace Image
|