1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
// PlayStation Stream demuxer and XA audio decoder based on FFmpeg/libav
// MDEC video emulation based on http://kenai.com/downloads/jpsxdec/Old/PlayStation1_STR_format1-00.txt
#include "audio/audiostream.h"
#include "audio/decoders/raw.h"
#include "common/bitstream.h"
#include "common/huffman.h"
#include "common/stream.h"
#include "common/system.h"
#include "common/textconsole.h"
#include "graphics/yuv_to_rgb.h"
#include "video/psx_decoder.h"
namespace Video {
// Here are the codes/lengths/symbols that are used for decoding
// DC coefficients (version 3 frames only)
#define DC_CODE_COUNT 9
#define DC_HUFF_VAL(b, n, p) (((b) << 16) | ((n) << 8) | (p))
#define GET_DC_BITS(x) ((x) >> 16)
#define GET_DC_NEG(x) ((int)(((x) >> 8) & 0xff))
#define GET_DC_POS(x) ((int)((x) & 0xff))
static const uint32 s_huffmanDCChromaCodes[DC_CODE_COUNT] = {
254, 126, 62, 30, 14, 6, 2, 1, 0
};
static const byte s_huffmanDCChromaLengths[DC_CODE_COUNT] = {
8, 7, 6, 5, 4, 3, 2, 2, 2
};
static const uint32 s_huffmanDCLumaCodes[DC_CODE_COUNT] = {
126, 62, 30, 14, 6, 5, 1, 0, 4
};
static const byte s_huffmanDCLumaLengths[DC_CODE_COUNT] = {
7, 6, 5, 4, 3, 3, 2, 2, 3
};
static const uint32 s_huffmanDCSymbols[DC_CODE_COUNT] = {
DC_HUFF_VAL(8, 255, 128), DC_HUFF_VAL(7, 127, 64), DC_HUFF_VAL(6, 63, 32),
DC_HUFF_VAL(5, 31, 16), DC_HUFF_VAL(4, 15, 8), DC_HUFF_VAL(3, 7, 4),
DC_HUFF_VAL(2, 3, 2), DC_HUFF_VAL(1, 1, 1), DC_HUFF_VAL(0, 0, 0)
};
// Here are the codes/lengths/symbols that are used for decoding
// DC coefficients (version 2 and 3 frames)
#define AC_CODE_COUNT 113
#define AC_HUFF_VAL(z, a) ((z << 8) | a)
#define ESCAPE_CODE ((uint32)-1) // arbitrary, just so we can tell what code it is
#define END_OF_BLOCK ((uint32)-2) // arbitrary, just so we can tell what code it is
#define GET_AC_ZERO_RUN(code) (code >> 8)
#define GET_AC_COEFFICIENT(code) ((int)(code & 0xff))
static const uint32 s_huffmanACCodes[AC_CODE_COUNT] = {
// Regular codes
3, 3, 4, 5, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
32, 33, 34, 35, 36, 37, 38, 39, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31,
// Escape code
1,
// End of block code
2
};
static const byte s_huffmanACLengths[AC_CODE_COUNT] = {
// Regular codes
2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10,
10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16,
// Escape code
6,
// End of block code
2
};
static const uint32 s_huffmanACSymbols[AC_CODE_COUNT] = {
// Regular codes
AC_HUFF_VAL(0, 1), AC_HUFF_VAL(1, 1), AC_HUFF_VAL(0, 2), AC_HUFF_VAL(2, 1), AC_HUFF_VAL(0, 3),
AC_HUFF_VAL(4, 1), AC_HUFF_VAL(3, 1), AC_HUFF_VAL(7, 1), AC_HUFF_VAL(6, 1), AC_HUFF_VAL(1, 2),
AC_HUFF_VAL(5, 1), AC_HUFF_VAL(2, 2), AC_HUFF_VAL(9, 1), AC_HUFF_VAL(0, 4), AC_HUFF_VAL(8, 1),
AC_HUFF_VAL(13, 1), AC_HUFF_VAL(0, 6), AC_HUFF_VAL(12, 1), AC_HUFF_VAL(11, 1), AC_HUFF_VAL(3, 2),
AC_HUFF_VAL(1, 3), AC_HUFF_VAL(0, 5), AC_HUFF_VAL(10, 1), AC_HUFF_VAL(16, 1), AC_HUFF_VAL(5, 2),
AC_HUFF_VAL(0, 7), AC_HUFF_VAL(2, 3), AC_HUFF_VAL(1, 4), AC_HUFF_VAL(15, 1), AC_HUFF_VAL(14, 1),
AC_HUFF_VAL(4, 2), AC_HUFF_VAL(0, 11), AC_HUFF_VAL(8, 2), AC_HUFF_VAL(4, 3), AC_HUFF_VAL(0, 10),
AC_HUFF_VAL(2, 4), AC_HUFF_VAL(7, 2), AC_HUFF_VAL(21, 1), AC_HUFF_VAL(20, 1), AC_HUFF_VAL(0, 9),
AC_HUFF_VAL(19, 1), AC_HUFF_VAL(18, 1), AC_HUFF_VAL(1, 5), AC_HUFF_VAL(3, 3), AC_HUFF_VAL(0, 8),
AC_HUFF_VAL(6, 2), AC_HUFF_VAL(17, 1), AC_HUFF_VAL(10, 2), AC_HUFF_VAL(9, 2), AC_HUFF_VAL(5, 3),
AC_HUFF_VAL(3, 4), AC_HUFF_VAL(2, 5), AC_HUFF_VAL(1, 7), AC_HUFF_VAL(1, 6), AC_HUFF_VAL(0, 15),
AC_HUFF_VAL(0, 14), AC_HUFF_VAL(0, 13), AC_HUFF_VAL(0, 12), AC_HUFF_VAL(26, 1), AC_HUFF_VAL(25, 1),
AC_HUFF_VAL(24, 1), AC_HUFF_VAL(23, 1), AC_HUFF_VAL(22, 1), AC_HUFF_VAL(0, 31), AC_HUFF_VAL(0, 30),
AC_HUFF_VAL(0, 29), AC_HUFF_VAL(0, 28), AC_HUFF_VAL(0, 27), AC_HUFF_VAL(0, 26), AC_HUFF_VAL(0, 25),
AC_HUFF_VAL(0, 24), AC_HUFF_VAL(0, 23), AC_HUFF_VAL(0, 22), AC_HUFF_VAL(0, 21), AC_HUFF_VAL(0, 20),
AC_HUFF_VAL(0, 19), AC_HUFF_VAL(0, 18), AC_HUFF_VAL(0, 17), AC_HUFF_VAL(0, 16), AC_HUFF_VAL(0, 40),
AC_HUFF_VAL(0, 39), AC_HUFF_VAL(0, 38), AC_HUFF_VAL(0, 37), AC_HUFF_VAL(0, 36), AC_HUFF_VAL(0, 35),
AC_HUFF_VAL(0, 34), AC_HUFF_VAL(0, 33), AC_HUFF_VAL(0, 32), AC_HUFF_VAL(1, 14), AC_HUFF_VAL(1, 13),
AC_HUFF_VAL(1, 12), AC_HUFF_VAL(1, 11), AC_HUFF_VAL(1, 10), AC_HUFF_VAL(1, 9), AC_HUFF_VAL(1, 8),
AC_HUFF_VAL(1, 18), AC_HUFF_VAL(1, 17), AC_HUFF_VAL(1, 16), AC_HUFF_VAL(1, 15), AC_HUFF_VAL(6, 3),
AC_HUFF_VAL(16, 2), AC_HUFF_VAL(15, 2), AC_HUFF_VAL(14, 2), AC_HUFF_VAL(13, 2), AC_HUFF_VAL(12, 2),
AC_HUFF_VAL(11, 2), AC_HUFF_VAL(31, 1), AC_HUFF_VAL(30, 1), AC_HUFF_VAL(29, 1), AC_HUFF_VAL(28, 1),
AC_HUFF_VAL(27, 1),
// Escape code
ESCAPE_CODE,
// End of block code
END_OF_BLOCK
};
PSXStreamDecoder::PSXStreamDecoder(CDSpeed speed, uint32 frameCount) : _speed(speed), _frameCount(frameCount) {
_stream = 0;
_videoTrack = 0;
_audioTrack = 0;
}
PSXStreamDecoder::~PSXStreamDecoder() {
close();
}
#define RAW_CD_SECTOR_SIZE 2352
#define CDXA_TYPE_MASK 0x0E
#define CDXA_TYPE_DATA 0x08
#define CDXA_TYPE_AUDIO 0x04
#define CDXA_TYPE_VIDEO 0x02
bool PSXStreamDecoder::loadStream(Common::SeekableReadStream *stream) {
close();
_stream = stream;
readNextPacket();
return true;
}
void PSXStreamDecoder::close() {
VideoDecoder::close();
_audioTrack = 0;
_videoTrack = 0;
_frameCount = 0;
delete _stream;
_stream = 0;
}
#define VIDEO_DATA_CHUNK_SIZE 2016
#define VIDEO_DATA_HEADER_SIZE 56
void PSXStreamDecoder::readNextPacket() {
Common::SeekableReadStream *sector = 0;
byte *partialFrame = 0;
int sectorsRead = 0;
while (_stream->pos() < _stream->size()) {
sector = readSector();
sectorsRead++;
if (!sector)
error("Corrupt PSX stream sector");
sector->seek(0x11);
byte track = sector->readByte();
if (track >= 32)
error("Bad PSX stream track");
byte sectorType = sector->readByte() & CDXA_TYPE_MASK;
switch (sectorType) {
case CDXA_TYPE_DATA:
case CDXA_TYPE_VIDEO:
if (track == 1) {
if (!_videoTrack) {
_videoTrack = new PSXVideoTrack(sector, _speed, _frameCount);
addTrack(_videoTrack);
}
sector->seek(28);
uint16 curSector = sector->readUint16LE();
uint16 sectorCount = sector->readUint16LE();
sector->readUint32LE();
uint16 frameSize = sector->readUint32LE();
if (curSector >= sectorCount)
error("Bad sector");
if (!partialFrame)
partialFrame = (byte *)malloc(sectorCount * VIDEO_DATA_CHUNK_SIZE);
sector->seek(VIDEO_DATA_HEADER_SIZE);
sector->read(partialFrame + curSector * VIDEO_DATA_CHUNK_SIZE, VIDEO_DATA_CHUNK_SIZE);
if (curSector == sectorCount - 1) {
// Done assembling the frame
Common::BitStreamMemoryStream *frame = new Common::BitStreamMemoryStream(partialFrame, frameSize, DisposeAfterUse::YES);
_videoTrack->decodeFrame(frame, sectorsRead);
delete frame;
delete sector;
return;
}
} else
error("Unhandled multi-track video");
break;
case CDXA_TYPE_AUDIO:
// We only handle one audio channel so far
if (track == 1) {
if (!_audioTrack) {
_audioTrack = new PSXAudioTrack(sector, getSoundType());
addTrack(_audioTrack);
}
_audioTrack->queueAudioFromSector(sector);
} else {
warning("Unhandled multi-track audio");
}
break;
default:
// This shows up way too often, but the other sectors
// are safe to ignore
//warning("Unknown PSX sector type 0x%x", sectorType);
break;
}
delete sector;
}
if (_stream->pos() >= _stream->size()) {
if (_videoTrack)
_videoTrack->setEndOfTrack();
if (_audioTrack)
_audioTrack->setEndOfTrack();
}
}
bool PSXStreamDecoder::useAudioSync() const {
// Audio sync is disabled since most audio data comes after video
// data.
return false;
}
static const byte s_syncHeader[12] = { 0x00, 0xff ,0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 };
Common::SeekableReadStream *PSXStreamDecoder::readSector() {
assert(_stream);
Common::SeekableReadStream *stream = _stream->readStream(RAW_CD_SECTOR_SIZE);
byte syncHeader[12];
stream->read(syncHeader, 12);
if (!memcmp(s_syncHeader, syncHeader, 12))
return stream;
return 0;
}
// Ha! It's palindromic!
#define AUDIO_DATA_CHUNK_SIZE 2304
#define AUDIO_DATA_SAMPLE_COUNT 4032
static const int s_xaTable[5][2] = {
{ 0, 0 },
{ 60, 0 },
{ 115, -52 },
{ 98, -55 },
{ 122, -60 }
};
PSXStreamDecoder::PSXAudioTrack::PSXAudioTrack(Common::SeekableReadStream *sector, Audio::Mixer::SoundType soundType) :
AudioTrack(soundType) {
assert(sector);
_endOfTrack = false;
sector->seek(19);
byte format = sector->readByte();
bool stereo = (format & (1 << 0)) != 0;
uint rate = (format & (1 << 2)) ? 18900 : 37800;
_audStream = Audio::makeQueuingAudioStream(rate, stereo);
memset(&_adpcmStatus, 0, sizeof(_adpcmStatus));
}
PSXStreamDecoder::PSXAudioTrack::~PSXAudioTrack() {
delete _audStream;
}
bool PSXStreamDecoder::PSXAudioTrack::endOfTrack() const {
return AudioTrack::endOfTrack() && _endOfTrack;
}
void PSXStreamDecoder::PSXAudioTrack::queueAudioFromSector(Common::SeekableReadStream *sector) {
assert(sector);
sector->seek(24);
// This XA audio is different (yet similar) from normal XA audio! Watch out!
// TODO: It's probably similar enough to normal XA that we can merge it somehow...
// TODO: RTZ PSX needs the same audio code in a regular AudioStream class. Probably
// will do something similar to QuickTime and creating a base class 'ISOMode2Parser'
// or something similar.
byte *buf = new byte[AUDIO_DATA_CHUNK_SIZE];
sector->read(buf, AUDIO_DATA_CHUNK_SIZE);
int channels = _audStream->isStereo() ? 2 : 1;
int16 *dst = new int16[AUDIO_DATA_SAMPLE_COUNT];
int16 *leftChannel = dst;
int16 *rightChannel = dst + 1;
for (byte *src = buf; src < buf + AUDIO_DATA_CHUNK_SIZE; src += 128) {
for (int i = 0; i < 4; i++) {
int shift = 12 - (src[4 + i * 2] & 0xf);
int filter = src[4 + i * 2] >> 4;
int f0 = s_xaTable[filter][0];
int f1 = s_xaTable[filter][1];
int16 s_1 = _adpcmStatus[0].sample[0];
int16 s_2 = _adpcmStatus[0].sample[1];
for (int j = 0; j < 28; j++) {
byte d = src[16 + i + j * 4];
int t = (int8)(d << 4) >> 4;
int s = (t << shift) + ((s_1 * f0 + s_2 * f1 + 32) >> 6);
s_2 = s_1;
s_1 = CLIP<int>(s, -32768, 32767);
*leftChannel = s_1;
leftChannel += channels;
}
if (channels == 2) {
_adpcmStatus[0].sample[0] = s_1;
_adpcmStatus[0].sample[1] = s_2;
s_1 = _adpcmStatus[1].sample[0];
s_2 = _adpcmStatus[1].sample[1];
}
shift = 12 - (src[5 + i * 2] & 0xf);
filter = src[5 + i * 2] >> 4;
f0 = s_xaTable[filter][0];
f1 = s_xaTable[filter][1];
for (int j = 0; j < 28; j++) {
byte d = src[16 + i + j * 4];
int t = (int8)d >> 4;
int s = (t << shift) + ((s_1 * f0 + s_2 * f1 + 32) >> 6);
s_2 = s_1;
s_1 = CLIP<int>(s, -32768, 32767);
if (channels == 2) {
*rightChannel = s_1;
rightChannel += 2;
} else {
*leftChannel++ = s_1;
}
}
if (channels == 2) {
_adpcmStatus[1].sample[0] = s_1;
_adpcmStatus[1].sample[1] = s_2;
} else {
_adpcmStatus[0].sample[0] = s_1;
_adpcmStatus[0].sample[1] = s_2;
}
}
}
int flags = Audio::FLAG_16BITS;
if (_audStream->isStereo())
flags |= Audio::FLAG_STEREO;
#ifdef SCUMM_LITTLE_ENDIAN
flags |= Audio::FLAG_LITTLE_ENDIAN;
#endif
_audStream->queueBuffer((byte *)dst, AUDIO_DATA_SAMPLE_COUNT * 2, DisposeAfterUse::YES, flags);
delete[] buf;
}
Audio::AudioStream *PSXStreamDecoder::PSXAudioTrack::getAudioStream() const {
return _audStream;
}
PSXStreamDecoder::PSXVideoTrack::PSXVideoTrack(Common::SeekableReadStream *firstSector, CDSpeed speed, int frameCount) : _nextFrameStartTime(0, speed), _frameCount(frameCount) {
assert(firstSector);
firstSector->seek(40);
uint16 width = firstSector->readUint16LE();
uint16 height = firstSector->readUint16LE();
_surface = new Graphics::Surface();
_surface->create(width, height, g_system->getScreenFormat());
_macroBlocksW = (width + 15) / 16;
_macroBlocksH = (height + 15) / 16;
_yBuffer = new byte[_macroBlocksW * _macroBlocksH * 16 * 16];
_cbBuffer = new byte[_macroBlocksW * _macroBlocksH * 8 * 8];
_crBuffer = new byte[_macroBlocksW * _macroBlocksH * 8 * 8];
_endOfTrack = false;
_curFrame = -1;
_acHuffman = new Common::Huffman(0, AC_CODE_COUNT, s_huffmanACCodes, s_huffmanACLengths, s_huffmanACSymbols);
_dcHuffmanChroma = new Common::Huffman(0, DC_CODE_COUNT, s_huffmanDCChromaCodes, s_huffmanDCChromaLengths, s_huffmanDCSymbols);
_dcHuffmanLuma = new Common::Huffman(0, DC_CODE_COUNT, s_huffmanDCLumaCodes, s_huffmanDCLumaLengths, s_huffmanDCSymbols);
}
PSXStreamDecoder::PSXVideoTrack::~PSXVideoTrack() {
_surface->free();
delete _surface;
delete[] _yBuffer;
delete[] _cbBuffer;
delete[] _crBuffer;
delete _acHuffman;
delete _dcHuffmanChroma;
delete _dcHuffmanLuma;
}
uint32 PSXStreamDecoder::PSXVideoTrack::getNextFrameStartTime() const {
return _nextFrameStartTime.msecs();
}
const Graphics::Surface *PSXStreamDecoder::PSXVideoTrack::decodeNextFrame() {
return _surface;
}
void PSXStreamDecoder::PSXVideoTrack::decodeFrame(Common::BitStreamMemoryStream *frame, uint sectorCount) {
// A frame is essentially an MPEG-1 intra frame
Common::BitStreamMemory16LEMSB bits(frame);
bits.skip(16); // unknown
bits.skip(16); // 0x3800
uint16 scale = bits.getBits(16);
uint16 version = bits.getBits(16);
if (version != 2 && version != 3)
error("Unknown PSX stream frame version");
// Initalize default v3 DC here
_lastDC[0] = _lastDC[1] = _lastDC[2] = 0;
for (int mbX = 0; mbX < _macroBlocksW; mbX++)
for (int mbY = 0; mbY < _macroBlocksH; mbY++)
decodeMacroBlock(&bits, mbX, mbY, scale, version);
// Output data onto the frame
YUVToRGBMan.convert420(_surface, Graphics::YUVToRGBManager::kScaleFull, _yBuffer, _cbBuffer, _crBuffer, _surface->w, _surface->h, _macroBlocksW * 16, _macroBlocksW * 8);
_curFrame++;
// Increase the time by the amount of sectors we read
// One may notice that this is still not the most precise
// method since a frame takes up the time its sectors took
// up instead of the amount of time it takes the next frame
// to be read from the sectors. The actual frame rate should
// be constant instead of variable, so the slight difference
// in a frame's showing time is negligible (1/150 of a second).
_nextFrameStartTime = _nextFrameStartTime.addFrames(sectorCount);
}
void PSXStreamDecoder::PSXVideoTrack::decodeMacroBlock(Common::BitStreamMemory16LEMSB *bits, int mbX, int mbY, uint16 scale, uint16 version) {
int pitchY = _macroBlocksW * 16;
int pitchC = _macroBlocksW * 8;
// Note the strange order of red before blue
decodeBlock(bits, _crBuffer + (mbY * pitchC + mbX) * 8, pitchC, scale, version, kPlaneV);
decodeBlock(bits, _cbBuffer + (mbY * pitchC + mbX) * 8, pitchC, scale, version, kPlaneU);
decodeBlock(bits, _yBuffer + (mbY * pitchY + mbX) * 16, pitchY, scale, version, kPlaneY);
decodeBlock(bits, _yBuffer + (mbY * pitchY + mbX) * 16 + 8, pitchY, scale, version, kPlaneY);
decodeBlock(bits, _yBuffer + (mbY * pitchY + mbX) * 16 + 8 * pitchY, pitchY, scale, version, kPlaneY);
decodeBlock(bits, _yBuffer + (mbY * pitchY + mbX) * 16 + 8 * pitchY + 8, pitchY, scale, version, kPlaneY);
}
// Standard JPEG/MPEG zig zag table
static const byte s_zigZagTable[8 * 8] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
// One byte different from the standard MPEG-1 table
static const byte s_quantizationTable[8 * 8] = {
2, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
void PSXStreamDecoder::PSXVideoTrack::dequantizeBlock(int *coefficients, float *block, uint16 scale) {
// Dequantize the data, un-zig-zagging as we go along
for (int i = 0; i < 8 * 8; i++) {
if (i == 0) // Special case for the DC coefficient
block[i] = coefficients[i] * s_quantizationTable[i];
else
block[i] = (float)coefficients[s_zigZagTable[i]] * s_quantizationTable[i] * scale / 8;
}
}
int PSXStreamDecoder::PSXVideoTrack::readDC(Common::BitStreamMemory16LEMSB *bits, uint16 version, PlaneType plane) {
// Version 2 just has its coefficient as 10-bits
if (version == 2)
return readSignedCoefficient(bits);
// Version 3 has it stored as huffman codes as a difference from the previous DC value
Common::Huffman *huffman = (plane == kPlaneY) ? _dcHuffmanLuma : _dcHuffmanChroma;
uint32 symbol = huffman->getSymbol(*bits);
int dc = 0;
if (GET_DC_BITS(symbol) != 0) {
bool negative = (bits->getBit() == 0);
dc = bits->getBits(GET_DC_BITS(symbol) - 1);
if (negative)
dc -= GET_DC_NEG(symbol);
else
dc += GET_DC_POS(symbol);
}
_lastDC[plane] += dc * 4; // convert from 8-bit to 10-bit
return _lastDC[plane];
}
#define BLOCK_OVERFLOW_CHECK() \
if (count > 63) \
error("PSXStreamDecoder::readAC(): Too many coefficients")
void PSXStreamDecoder::PSXVideoTrack::readAC(Common::BitStreamMemory16LEMSB *bits, int *block) {
// Clear the block first
for (int i = 0; i < 63; i++)
block[i] = 0;
int count = 0;
while (!bits->eos()) {
uint32 symbol = _acHuffman->getSymbol(*bits);
if (symbol == ESCAPE_CODE) {
// The escape code!
int zeroes = bits->getBits(6);
count += zeroes + 1;
BLOCK_OVERFLOW_CHECK();
block += zeroes;
*block++ = readSignedCoefficient(bits);
} else if (symbol == END_OF_BLOCK) {
// We're done
break;
} else {
// Normal huffman code
int zeroes = GET_AC_ZERO_RUN(symbol);
count += zeroes + 1;
BLOCK_OVERFLOW_CHECK();
block += zeroes;
if (bits->getBit())
*block++ = -GET_AC_COEFFICIENT(symbol);
else
*block++ = GET_AC_COEFFICIENT(symbol);
}
}
}
int PSXStreamDecoder::PSXVideoTrack::readSignedCoefficient(Common::BitStreamMemory16LEMSB *bits) {
uint val = bits->getBits(10);
// extend the sign
uint shift = 8 * sizeof(int) - 10;
return (int)(val << shift) >> shift;
}
// IDCT table built with :
// _idct8x8[x][y] = cos(((2 * x + 1) * y) * (M_PI / 16.0)) * 0.5;
// _idct8x8[x][y] /= sqrt(2.0) if y == 0
static const double s_idct8x8[8][8] = {
{ 0.353553390593274, 0.490392640201615, 0.461939766255643, 0.415734806151273, 0.353553390593274, 0.277785116509801, 0.191341716182545, 0.097545161008064 },
{ 0.353553390593274, 0.415734806151273, 0.191341716182545, -0.097545161008064, -0.353553390593274, -0.490392640201615, -0.461939766255643, -0.277785116509801 },
{ 0.353553390593274, 0.277785116509801, -0.191341716182545, -0.490392640201615, -0.353553390593274, 0.097545161008064, 0.461939766255643, 0.415734806151273 },
{ 0.353553390593274, 0.097545161008064, -0.461939766255643, -0.277785116509801, 0.353553390593274, 0.415734806151273, -0.191341716182545, -0.490392640201615 },
{ 0.353553390593274, -0.097545161008064, -0.461939766255643, 0.277785116509801, 0.353553390593274, -0.415734806151273, -0.191341716182545, 0.490392640201615 },
{ 0.353553390593274, -0.277785116509801, -0.191341716182545, 0.490392640201615, -0.353553390593273, -0.097545161008064, 0.461939766255643, -0.415734806151273 },
{ 0.353553390593274, -0.415734806151273, 0.191341716182545, 0.097545161008064, -0.353553390593274, 0.490392640201615, -0.461939766255643, 0.277785116509801 },
{ 0.353553390593274, -0.490392640201615, 0.461939766255643, -0.415734806151273, 0.353553390593273, -0.277785116509801, 0.191341716182545, -0.097545161008064 }
};
void PSXStreamDecoder::PSXVideoTrack::idct(float *dequantData, float *result) {
// IDCT code based on JPEG's IDCT code
// TODO: Switch to the integer-based one mentioned in the docs
// This is by far the costliest operation here
float tmp[8 * 8];
// Apply 1D IDCT to rows
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 8; x++) {
tmp[y + x * 8] = dequantData[0] * s_idct8x8[x][0]
+ dequantData[1] * s_idct8x8[x][1]
+ dequantData[2] * s_idct8x8[x][2]
+ dequantData[3] * s_idct8x8[x][3]
+ dequantData[4] * s_idct8x8[x][4]
+ dequantData[5] * s_idct8x8[x][5]
+ dequantData[6] * s_idct8x8[x][6]
+ dequantData[7] * s_idct8x8[x][7];
}
dequantData += 8;
}
// Apply 1D IDCT to columns
for (int x = 0; x < 8; x++) {
const float *u = tmp + x * 8;
for (int y = 0; y < 8; y++) {
result[y * 8 + x] = u[0] * s_idct8x8[y][0]
+ u[1] * s_idct8x8[y][1]
+ u[2] * s_idct8x8[y][2]
+ u[3] * s_idct8x8[y][3]
+ u[4] * s_idct8x8[y][4]
+ u[5] * s_idct8x8[y][5]
+ u[6] * s_idct8x8[y][6]
+ u[7] * s_idct8x8[y][7];
}
}
}
void PSXStreamDecoder::PSXVideoTrack::decodeBlock(Common::BitStreamMemory16LEMSB *bits, byte *block, int pitch, uint16 scale, uint16 version, PlaneType plane) {
// Version 2 just has signed 10 bits for DC
// Version 3 has them huffman coded
int coefficients[8 * 8];
coefficients[0] = readDC(bits, version, plane);
readAC(bits, &coefficients[1]); // Read in the AC
// Dequantize
float dequantData[8 * 8];
dequantizeBlock(coefficients, dequantData, scale);
// Perform IDCT
float idctData[8 * 8];
idct(dequantData, idctData);
// Now output the data
for (int y = 0; y < 8; y++) {
byte *dst = block + pitch * y;
// Convert the result to be in the range [0, 255]
for (int x = 0; x < 8; x++)
*dst++ = (int)CLIP<float>(idctData[y * 8 + x], -128.0f, 127.0f) + 128;
}
}
} // End of namespace Video
|