1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sci/sci.h"
#include "sci/resource.h"
#include "sci/engine/features.h"
#include "sci/engine/state.h"
#include "sci/engine/selector.h"
#include "sci/engine/kernel.h"
#include "sci/graphics/animate.h"
#include "sci/graphics/screen.h"
namespace Sci {
/**
* Compute "velocity" vector (xStep,yStep)=(vx,vy) for a jump from (0,0) to
* (dx,dy), with gravity constant gy. The gravity is assumed to be non-negative.
*
* If this was ordinary continuous physics, we would compute the desired
* (floating point!) velocity vector (vx,vy) as follows, under the assumption
* that vx and vy are linearly correlated by a constant c, i.e., vy = c * vx:
* dx = t * vx
* dy = t * vy + gy * t^2 / 2
* => dy = c * dx + gy * (dx/vx)^2 / 2
* => |vx| = sqrt( gy * dx^2 / (2 * (dy - c * dx)) )
* Here, the sign of vx must be chosen equal to the sign of dx, obviously.
*
* This square root only makes sense in our context if the denominator is
* positive, or equivalently, (dy - c * dx) must be positive. For simplicity
* and by symmetry along the x-axis, we assume dx to be positive for all
* computations, and only adjust for its sign in the end. Switching the sign of
* c appropriately, we set tmp := (dy + c * dx) and compute c so that this term
* becomes positive.
*
* Remark #1: If the jump is straight up, i.e. dx == 0, then we should not
* assume the above linear correlation vy = c * vx of the velocities (as vx
* will be 0, but vy shouldn't be, unless we drop down).
*
* Remark #2: We are actually in a discrete setup. The motion is computed
* iteratively: each iteration, we add vx and vy to the position, then add gy
* to vy. So the real formula is the following (where t ideally is close to an int):
*
* dx = t * vx
* dy = t * vy + gy * t*(t-1) / 2
*
* But the solution resulting from that is a lot more complicated, so we use
* the above approximation instead.
*
* Still, what we compute in the end is of course not a real velocity anymore,
* but an integer approximation, used in an iterative stepping algorithm.
*/
reg_t kSetJump(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
// Input data
reg_t object = argv[0];
int dx = argv[1].toSint16();
int dy = argv[2].toSint16();
int gy = argv[3].toSint16();
// Derived data
int c;
int tmp;
int vx = 0; // x velocity
int vy = 0; // y velocity
int dxWasNegative = (dx < 0);
dx = ABS(dx);
assert(gy >= 0);
if (dx == 0) {
// Upward jump. Value of c doesn't really matter
c = 1;
} else {
// Compute a suitable value for c respectively tmp.
// The important thing to consider here is that we want the resulting
// *discrete* x/y velocities to be not-too-big integers, for a smooth
// curve (i.e. we could just set vx=dx, vy=dy, and be done, but that
// is hardly what you would call a parabolic jump, would ya? ;-).
//
// So, we make sure that 2.0*tmp will be bigger than dx (that way,
// we ensure vx will be less than sqrt(gy * dx)).
if (dx + dy < 0) {
// dy is negative and |dy| > |dx|
c = (2 * ABS(dy)) / dx;
//tmp = ABS(dy); // ALMOST the resulting value, except for obvious rounding issues
} else {
// dy is either positive, or |dy| <= |dx|
c = (dx * 3 / 2 - dy) / dx;
// We force c to be strictly positive
if (c < 1)
c = 1;
//tmp = dx * 3 / 2; // ALMOST the resulting value, except for obvious rounding issues
// FIXME: Where is the 3 coming from? Maybe they hard/coded, by "accident", that usually gy=3 ?
// Then this choice of scalar will make t equal to roughly sqrt(dx)
}
}
// POST: c >= 1
tmp = c * dx + dy;
// POST: (dx != 0) ==> ABS(tmp) > ABS(dx)
// POST: (dx != 0) ==> ABS(tmp) ~>=~ ABS(dy)
debugC(kDebugLevelBresen, "c: %d, tmp: %d", c, tmp);
// Compute x step
if (tmp != 0 && dx != 0)
vx = (int16)((float)(dx * sqrt(gy / (2.0 * tmp))));
else
vx = 0;
// Restore the left/right direction: dx and vx should have the same sign.
if (dxWasNegative)
vx = -vx;
if ((dy < 0) && (vx == 0)) {
// Special case: If this was a jump (almost) straight upward, i.e. dy < 0 (upward),
// and vx == 0 (i.e. no horizontal movement, at least not after rounding), then we
// compute vy directly.
// For this, we drop the assumption on the linear correlation of vx and vy (obviously).
// FIXME: This choice of vy makes t roughly (2+sqrt(2))/gy * sqrt(dy);
// so if gy==3, then t is roughly sqrt(dy)...
vy = (int)sqrt((float)gy * ABS(2 * dy)) + 1;
} else {
// As stated above, the vertical direction is correlated to the horizontal by the
// (non-zero) factor c.
// Strictly speaking, we should probably be using the value of vx *before* rounding
// it to an integer... Ah well
vy = c * vx;
}
// Always force vy to be upwards
vy = -ABS(vy);
debugC(kDebugLevelBresen, "SetJump for object at %04x:%04x", PRINT_REG(object));
debugC(kDebugLevelBresen, "xStep: %d, yStep: %d", vx, vy);
writeSelectorValue(segMan, object, SELECTOR(xStep), vx);
writeSelectorValue(segMan, object, SELECTOR(yStep), vy);
return s->r_acc;
}
reg_t kInitBresen(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t mover = argv[0];
reg_t client = readSelector(segMan, mover, SELECTOR(client));
int16 stepFactor = (argc >= 2) ? argv[1].toUint16() : 1;
int16 mover_x = readSelectorValue(segMan, mover, SELECTOR(x));
int16 mover_y = readSelectorValue(segMan, mover, SELECTOR(y));
int16 client_xStep = readSelectorValue(segMan, client, SELECTOR(xStep)) * stepFactor;
int16 client_yStep = readSelectorValue(segMan, client, SELECTOR(yStep)) * stepFactor;
int16 client_step;
if (client_xStep < client_yStep)
client_step = client_yStep * 2;
else
client_step = client_xStep * 2;
int16 deltaX = mover_x - readSelectorValue(segMan, client, SELECTOR(x));
int16 deltaY = mover_y - readSelectorValue(segMan, client, SELECTOR(y));
int16 mover_dx = 0;
int16 mover_dy = 0;
int16 mover_i1 = 0;
int16 mover_i2 = 0;
int16 mover_di = 0;
int16 mover_incr = 0;
int16 mover_xAxis = 0;
while (1) {
mover_dx = client_xStep;
mover_dy = client_yStep;
mover_incr = 1;
if (ABS(deltaX) >= ABS(deltaY)) {
mover_xAxis = 1;
if (deltaX < 0)
mover_dx = -mover_dx;
mover_dy = deltaX ? mover_dx * deltaY / deltaX : 0;
mover_i1 = ((mover_dx * deltaY) - (mover_dy * deltaX)) * 2;
if (deltaY < 0) {
mover_incr = -1;
mover_i1 = -mover_i1;
}
mover_i2 = mover_i1 - (deltaX * 2);
mover_di = mover_i1 - deltaX;
if (deltaX < 0) {
mover_i1 = -mover_i1;
mover_i2 = -mover_i2;
mover_di = -mover_di;
}
} else {
mover_xAxis = 0;
if (deltaY < 0)
mover_dy = -mover_dy;
mover_dx = deltaY ? mover_dy * deltaX / deltaY : 0;
mover_i1 = ((mover_dy * deltaX) - (mover_dx * deltaY)) * 2;
if (deltaX < 0) {
mover_incr = -1;
mover_i1 = -mover_i1;
}
mover_i2 = mover_i1 - (deltaY * 2);
mover_di = mover_i1 - deltaY;
if (deltaY < 0) {
mover_i1 = -mover_i1;
mover_i2 = -mover_i2;
mover_di = -mover_di;
}
break;
}
if (client_xStep <= client_yStep)
break;
if (!client_xStep)
break;
if (client_yStep >= ABS(mover_dy + mover_incr))
break;
client_step--;
if (!client_step)
error("kInitBresen failed");
client_xStep--;
}
// set mover
writeSelectorValue(segMan, mover, SELECTOR(dx), mover_dx);
writeSelectorValue(segMan, mover, SELECTOR(dy), mover_dy);
writeSelectorValue(segMan, mover, SELECTOR(b_i1), mover_i1);
writeSelectorValue(segMan, mover, SELECTOR(b_i2), mover_i2);
writeSelectorValue(segMan, mover, SELECTOR(b_di), mover_di);
writeSelectorValue(segMan, mover, SELECTOR(b_incr), mover_incr);
writeSelectorValue(segMan, mover, SELECTOR(b_xAxis), mover_xAxis);
return s->r_acc;
}
reg_t kDoBresen(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t mover = argv[0];
reg_t client = readSelector(segMan, mover, SELECTOR(client));
bool completed = false;
bool handleMoveCount = g_sci->_features->handleMoveCount();
if (getSciVersion() >= SCI_VERSION_1_EGA_ONLY) {
uint client_signal = readSelectorValue(segMan, client, SELECTOR(signal));
writeSelectorValue(segMan, client, SELECTOR(signal), client_signal & ~kSignalHitObstacle);
}
int16 mover_moveCnt = 1;
int16 client_moveSpeed = 0;
if (handleMoveCount) {
mover_moveCnt = readSelectorValue(segMan, mover, SELECTOR(b_movCnt));
client_moveSpeed = readSelectorValue(segMan, client, SELECTOR(moveSpeed));
mover_moveCnt++;
}
if (client_moveSpeed < mover_moveCnt) {
mover_moveCnt = 0;
int16 client_x = readSelectorValue(segMan, client, SELECTOR(x));
int16 client_y = readSelectorValue(segMan, client, SELECTOR(y));
int16 mover_x = readSelectorValue(segMan, mover, SELECTOR(x));
int16 mover_y = readSelectorValue(segMan, mover, SELECTOR(y));
int16 mover_xAxis = readSelectorValue(segMan, mover, SELECTOR(b_xAxis));
int16 mover_dx = readSelectorValue(segMan, mover, SELECTOR(dx));
int16 mover_dy = readSelectorValue(segMan, mover, SELECTOR(dy));
int16 mover_incr = readSelectorValue(segMan, mover, SELECTOR(b_incr));
int16 mover_i1 = readSelectorValue(segMan, mover, SELECTOR(b_i1));
int16 mover_i2 = readSelectorValue(segMan, mover, SELECTOR(b_i2));
int16 mover_di = readSelectorValue(segMan, mover, SELECTOR(b_di));
int16 mover_org_i1 = mover_i1;
int16 mover_org_i2 = mover_i2;
int16 mover_org_di = mover_di;
if ((getSciVersion() >= SCI_VERSION_1_EGA_ONLY)) {
// save current position into mover
writeSelectorValue(segMan, mover, SELECTOR(xLast), client_x);
writeSelectorValue(segMan, mover, SELECTOR(yLast), client_y);
}
// Store backups of all client selector variables. We will restore them
// in case of a collision.
Object* clientObject = segMan->getObject(client);
uint clientVarNum = clientObject->getVarCount();
reg_t* clientBackup = new reg_t[clientVarNum];
for (uint i = 0; i < clientVarNum; ++i)
clientBackup[i] = clientObject->getVariable(i);
if ((getSciVersion() <= SCI_VERSION_1_EGA_ONLY)) {
if (mover_xAxis) {
if (ABS(mover_x - client_x) < ABS(mover_dx))
completed = true;
} else {
if (ABS(mover_y - client_y) < ABS(mover_dy))
completed = true;
}
} else {
// SCI1EARLY+ code
if (mover_xAxis) {
if (ABS(mover_x - client_x) <= ABS(mover_dx))
completed = true;
} else {
if (ABS(mover_y - client_y) <= ABS(mover_dy))
completed = true;
}
}
if (completed) {
client_x = mover_x;
client_y = mover_y;
} else {
client_x += mover_dx;
client_y += mover_dy;
if (mover_di < 0) {
mover_di += mover_i1;
} else {
mover_di += mover_i2;
if (mover_xAxis == 0) {
client_x += mover_incr;
} else {
client_y += mover_incr;
}
}
}
writeSelectorValue(segMan, client, SELECTOR(x), client_x);
writeSelectorValue(segMan, client, SELECTOR(y), client_y);
// Now call client::canBeHere/client::cantBehere to check for collisions
bool collision = false;
reg_t cantBeHere = NULL_REG;
// adding this here for hoyle 3 to get happy. CantBeHere is a dummy in hoyle 3 and acc is != 0 so we would
// get a collision otherwise. Resetting the result was always done in SSCI
s->r_acc = NULL_REG;
if (SELECTOR(cantBeHere) != -1) {
invokeSelector(s, client, SELECTOR(cantBeHere), argc, argv);
if (!s->r_acc.isNull())
collision = true;
cantBeHere = s->r_acc;
} else {
invokeSelector(s, client, SELECTOR(canBeHere), argc, argv);
if (s->r_acc.isNull())
collision = true;
}
if (collision) {
// We restore the backup of the client variables
for (uint i = 0; i < clientVarNum; ++i)
clientObject->getVariableRef(i) = clientBackup[i];
mover_i1 = mover_org_i1;
mover_i2 = mover_org_i2;
mover_di = mover_org_di;
uint16 client_signal = readSelectorValue(segMan, client, SELECTOR(signal));
writeSelectorValue(segMan, client, SELECTOR(signal), client_signal | kSignalHitObstacle);
}
delete[] clientBackup;
writeSelectorValue(segMan, mover, SELECTOR(b_i1), mover_i1);
writeSelectorValue(segMan, mover, SELECTOR(b_i2), mover_i2);
writeSelectorValue(segMan, mover, SELECTOR(b_di), mover_di);
if (getSciVersion() >= SCI_VERSION_1_EGA_ONLY) {
// In sci1egaonly this block of code was outside of the main if,
// but client_x/client_y aren't set there, so it was an
// uninitialized read in SSCI. (This issue was fixed in sci1early.)
if (handleMoveCount)
writeSelectorValue(segMan, mover, SELECTOR(b_movCnt), mover_moveCnt);
// We need to compare directly in here, complete may have happened during
// the current move
if ((client_x == mover_x) && (client_y == mover_y))
invokeSelector(s, mover, SELECTOR(moveDone), argc, argv);
return s->r_acc;
}
}
if (handleMoveCount)
writeSelectorValue(segMan, mover, SELECTOR(b_movCnt), mover_moveCnt);
return s->r_acc;
}
extern void kDirLoopWorker(reg_t obj, uint16 angle, EngineState *s, int argc, reg_t *argv);
extern uint16 kGetAngleWorker(int16 x1, int16 y1, int16 x2, int16 y2);
reg_t kDoAvoider(EngineState *s, int argc, reg_t *argv) {
SegManager *segMan = s->_segMan;
reg_t avoider = argv[0];
int16 timesStep = argc > 1 ? argv[1].toUint16() : 1;
// Note: the avoider must be an object but it may already have been freed.
// Avoid:doit calls kDoAvoider multiple times and any of these calls might
// result in the avoider being disposed when invoking mover:doit.
// This can happen in kq4 early when captured by a witch in room 57.
if (!s->_segMan->isObject(avoider)) {
error("DoAvoider() where avoider %04x:%04x is not an object", PRINT_REG(avoider));
return SIGNAL_REG;
}
reg_t client = readSelector(segMan, avoider, SELECTOR(client));
reg_t mover = readSelector(segMan, client, SELECTOR(mover));
if (mover.isNull())
return SIGNAL_REG;
// call mover::doit
invokeSelector(s, mover, SELECTOR(doit), argc, argv);
// Read mover again
mover = readSelector(segMan, client, SELECTOR(mover));
if (mover.isNull())
return SIGNAL_REG;
int16 clientX = readSelectorValue(segMan, client, SELECTOR(x));
int16 clientY = readSelectorValue(segMan, client, SELECTOR(y));
int16 moverX = readSelectorValue(segMan, mover, SELECTOR(x));
int16 moverY = readSelectorValue(segMan, mover, SELECTOR(y));
int16 avoiderHeading = readSelectorValue(segMan, avoider, SELECTOR(heading));
// call client::isBlocked
invokeSelector(s, client, SELECTOR(isBlocked), argc, argv);
if (s->r_acc.isNull()) {
// not blocked
if (avoiderHeading == -1)
return SIGNAL_REG;
avoiderHeading = -1;
uint16 angle = kGetAngleWorker(clientX, clientY, moverX, moverY);
reg_t clientLooper = readSelector(segMan, client, SELECTOR(looper));
if (clientLooper.isNull()) {
kDirLoopWorker(client, angle, s, argc, argv);
} else {
// call looper::doit
reg_t params[2] = { make_reg(0, angle), client };
invokeSelector(s, clientLooper, SELECTOR(doit), argc, argv, 2, params);
}
s->r_acc = SIGNAL_REG;
} else {
// is blocked
if (avoiderHeading == -1)
avoiderHeading = g_sci->getRNG().getRandomBit() ? 45 : -45;
int16 clientHeading = readSelectorValue(segMan, client, SELECTOR(heading));
clientHeading = (clientHeading / 45) * 45;
int16 clientXstep = readSelectorValue(segMan, client, SELECTOR(xStep)) * timesStep;
int16 clientYstep = readSelectorValue(segMan, client, SELECTOR(yStep)) * timesStep;
int16 newHeading = clientHeading;
while (1) {
int16 newX = clientX;
int16 newY = clientY;
switch (newHeading) {
case 45:
case 90:
case 135:
newX += clientXstep;
break;
case 225:
case 270:
case 315:
newX -= clientXstep;
break;
default:
break;
}
switch (newHeading) {
case 0:
case 45:
case 315:
newY -= clientYstep;
break;
case 135:
case 180:
case 225:
newY += clientYstep;
break;
default:
break;
}
writeSelectorValue(segMan, client, SELECTOR(x), newX);
writeSelectorValue(segMan, client, SELECTOR(y), newY);
// call client::canBeHere
invokeSelector(s, client, SELECTOR(canBeHere), argc, argv);
if (!s->r_acc.isNull()) {
s->r_acc = make_reg(0, newHeading);
break; // break out
}
newHeading += avoiderHeading;
if (newHeading >= 360)
newHeading -= 360;
if (newHeading < 0)
newHeading += 360;
if (newHeading == clientHeading) {
// tried everything
writeSelectorValue(segMan, client, SELECTOR(x), clientX);
writeSelectorValue(segMan, client, SELECTOR(y), clientY);
s->r_acc = SIGNAL_REG;
break; // break out
}
}
}
writeSelectorValue(segMan, avoider, SELECTOR(heading), avoiderHeading);
return s->r_acc;
}
} // End of namespace Sci
|