1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
This is a lightly modified version of MicroPather, from
github.com/leethomason/MicroPather. Modifications were made to fit with
ScummVM coding style and APIs.
The original copyright message is:
-------
Copyright (c) 2000-2013 Lee Thomason (www.grinninglizard.com)
Micropather
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product documentation
would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution.
*/
#ifndef TETRAEDGE_TE_MICROPATHER
#define TETRAEDGE_TE_MICROPATHER
#include "common/array.h"
#include "common/util.h"
#include "common/math.h"
#include "common/types.h"
/** @mainpage MicroPather
MicroPather is a path finder and A* solver (astar or a-star) written in platform independent
C++ that can be easily integrated into existing code. MicroPather focuses on being a path
finding engine for video games but is a generic A* solver. MicroPather is open source, with
a license suitable for open source or commercial use.
*/
namespace Tetraedge
{
namespace micropather
{
typedef uintptr MP_UPTR;
/**
Used to pass the cost of states from the cliet application to MicroPather. This
structure is copied in a vector.
@sa AdjacentCost
*/
struct StateCost
{
void* state; ///< The state as a void*
float cost; ///< The cost to the state. Use FLT_MAX for infinite cost.
};
/**
A pure abstract class used to define a set of callbacks.
The client application inherits from
this class, and the methods will be called when MicroPather::Solve() is invoked.
The notion of a "state" is very important. It must have the following properties:
- Unique
- Unchanging (unless MicroPather::Reset() is called)
If the client application represents states as objects, then the state is usually
just the object cast to a void*. If the client application sees states as numerical
values, (x,y) for example, then state is an encoding of these values. MicroPather
never interprets or modifies the value of state.
*/
class Graph
{
public:
virtual ~Graph() {}
/**
Return the least possible cost between 2 states. For example, if your pathfinding
is based on distance, this is simply the straight distance between 2 points on the
map. If you pathfinding is based on minimum time, it is the minimal travel time
between 2 points given the best possible terrain.
*/
virtual float LeastCostEstimate( void* stateStart, void* stateEnd ) = 0;
/**
Return the exact cost from the given state to all its neighboring states. This
may be called multiple times, or cached by the solver. It *must* return the same
exact values for every call to MicroPather::Solve(). It should generally be a simple,
fast function with no callbacks into the pather.
*/
virtual void AdjacentCost( void* state, Common::Array< micropather::StateCost > *adjacent ) = 0;
/**
This function is only used in DEBUG mode - it dumps output to stdout. Since void*
aren't really human readable, normally you print out some concise info (like "(1,2)")
without an ending newline.
*/
virtual void PrintStateInfo( void* state ) = 0;
};
class PathNode;
struct NodeCost
{
PathNode* node;
float cost;
};
/*
Every state (void*) is represented by a PathNode in MicroPather. There
can only be one PathNode for a given state.
*/
class PathNode
{
public:
void Init( unsigned _frame,
void* _state,
float _costFromStart,
float _estToGoal,
PathNode* _parent );
void Clear();
void InitSentinel() {
Clear();
Init( 0, 0, FLT_MAX, FLT_MAX, 0 );
prev = next = this;
}
void *state; // the client state
float costFromStart; // exact
float estToGoal; // estimated
float totalCost; // could be a function, but save some math.
PathNode* parent; // the parent is used to reconstruct the path
unsigned frame; // unique id for this path, so the solver can distinguish
// correct from stale values
int numAdjacent; // -1 is unknown & needs to be queried
int cacheIndex; // position in cache
PathNode *child[2]; // Binary search in the hash table. [left, right]
PathNode *next, *prev; // used by open queue
bool inOpen;
bool inClosed;
void Unlink() {
next->prev = prev;
prev->next = next;
next = prev = 0;
}
void AddBefore( PathNode* addThis ) {
addThis->next = this;
addThis->prev = prev;
prev->next = addThis;
prev = addThis;
}
#ifdef TETRAEDGE_MICROPATHER_DEBUG
void CheckList()
{
MPASSERT( totalCost == FLT_MAX );
for( PathNode* it = next; it != this; it=it->next ) {
MPASSERT( it->prev == this || it->totalCost >= it->prev->totalCost );
MPASSERT( it->totalCost <= it->next->totalCost );
}
}
#endif
void CalcTotalCost() {
if ( costFromStart < FLT_MAX && estToGoal < FLT_MAX )
totalCost = costFromStart + estToGoal;
else
totalCost = FLT_MAX;
}
private:
void operator=( const PathNode& );
};
/* Memory manager for the PathNodes. */
class PathNodePool
{
public:
PathNodePool( unsigned allocate, unsigned typicalAdjacent );
~PathNodePool();
// Free all the memory except the first block. Resets all memory.
void Clear();
// Essentially:
// pNode = Find();
// if ( !pNode )
// pNode = New();
//
// Get the PathNode associated with this state. If the PathNode already
// exists (allocated and is on the current frame), it will be returned.
// Else a new PathNode is allocated and returned. The returned object
// is always fully initialized.
//
// NOTE: if the pathNode exists (and is current) all the initialization
// parameters are ignored.
PathNode* GetPathNode( unsigned frame,
void* _state,
float _costFromStart,
float _estToGoal,
PathNode* _parent );
// Get a pathnode that is already in the pool.
PathNode* FetchPathNode( void* state );
// Store stuff in cache
bool PushCache( const NodeCost* nodes, int nNodes, int* start );
// Get neighbors from the cache
// Note - always access this with an offset. Can get re-allocated.
void GetCache( int start, int nNodes, NodeCost* nodes );
// Return all the allocated states. Useful for visuallizing what
// the pather is doing.
void AllStates( unsigned frame, Common::Array< void* >* stateVec );
private:
struct Block
{
Block* nextBlock;
PathNode pathNode[1];
};
unsigned Hash( void* voidval );
unsigned HashSize() const { return 1<<hashShift; }
unsigned HashMask() const { return ((1<<hashShift)-1); }
void AddPathNode( unsigned key, PathNode* p );
Block* NewBlock();
PathNode* Alloc();
PathNode** hashTable;
Block* firstBlock;
Block* blocks;
NodeCost* cache;
int cacheCap;
int cacheSize;
PathNode freeMemSentinel;
unsigned allocate; // how big a block of pathnodes to allocate at once
unsigned nAllocated; // number of pathnodes allocated (from Alloc())
unsigned nAvailable; // number available for allocation
unsigned hashShift;
unsigned totalCollide;
};
/* Used to cache results of paths. Much, much faster
to return an existing solution than to calculate
a new one. A post on this is here: http://grinninglizard.com/altera/programming/a-path-caching-2/
*/
class PathCache
{
public:
struct Item {
// The key:
void* start;
void* end;
bool KeyEqual( const Item& item ) const { return start == item.start && end == item.end; }
bool Empty() const { return start == 0 && end == 0; }
// Data:
void* next;
float cost; // from 'start' to 'next'. FLT_MAX if unsolveable.
unsigned Hash() const {
const unsigned char *p = (const unsigned char *)(&start);
uint h = 2166136261U;
for( unsigned i=0; i<sizeof(void*)*2; ++i, ++p ) {
h ^= *p;
h *= 16777619;
}
return h;
}
};
PathCache( int itemsToAllocate );
~PathCache();
void Reset();
void Add( const Common::Array< void* >& path, const Common::Array< float >& cost );
void AddNoSolution( void* end, void* states[], int count );
int Solve( void* startState, void* endState, Common::Array< void* >* path, float* totalCost );
int AllocatedBytes() const { return allocated * sizeof(Item); }
int UsedBytes() const { return nItems * sizeof(Item); }
int hit;
int miss;
private:
void AddItem( const Item& item );
const Item* Find( void* start, void* end );
Item* mem;
int allocated;
int nItems;
};
struct CacheData {
CacheData() { reset(); }
int nBytesAllocated;
int nBytesUsed;
float memoryFraction;
int hit;
int miss;
float hitFraction;
void reset() {
nBytesAllocated = 0;
nBytesUsed = 0;
memoryFraction = 0;
hit = 0;
miss = 0;
hitFraction = 0;
}
};
/**
Create a MicroPather object to solve for a best path. Detailed usage notes are
on the main page.
*/
class MicroPather
{
friend class micropather::PathNode;
public:
enum
{
SOLVED,
NO_SOLUTION,
START_END_SAME,
// internal
NOT_CACHED
};
/**
Construct the pather, passing a pointer to the object that implements
the Graph callbacks.
@param graph The "map" that implements the Graph callbacks.
@param allocate How many states should be internally allocated at a time. This
can be hard to get correct. The higher the value, the more memory
MicroPather will use.
- If you have a small map (a few thousand states?) it may make sense
to pass in the maximum value. This will cache everything, and MicroPather
will only need one main memory allocation. For a chess board, allocate
would be set to 8x8 (64)
- If your map is large, something like 1/4 the number of possible
states is good.
- If your state space is huge, use a multiple (5-10x) of the normal
path. "Occasionally" call Reset() to free unused memory.
@param typicalAdjacent Used to determine cache size. The typical number of adjacent states
to a given state. (On a chessboard, 8.) Higher values use a little
more memory.
@param cache Turn on path caching. Uses more memory (yet again) but at a huge speed
advantage if you may call the pather with the same path or sub-path, which
is common for pathing over maps in games.
*/
MicroPather( Graph* graph, unsigned allocate = 250, unsigned typicalAdjacent=6, bool cache=true );
~MicroPather();
/**
Solve for the path from start to end.
@param startState Input, the starting state for the path.
@param endState Input, the ending state for the path.
@param path Output, a vector of states that define the path. Empty if not found.
@param totalCost Output, the cost of the path, if found.
@return Success or failure, expressed as SOLVED, NO_SOLUTION, or START_END_SAME.
*/
int Solve( void* startState, void* endState, Common::Array< void* >* path, float* totalCost );
/**
Find all the states within a given cost from startState.
@param startState Input, the starting state for the path.
@param near All the states within 'maxCost' of 'startState', and cost to that state.
@param maxCost Input, the maximum cost that will be returned. (Higher values return
larger 'near' sets and take more time to compute.)
@return Success or failure, expressed as SOLVED or NO_SOLUTION.
*/
int SolveForNearStates( void* startState, Common::Array< StateCost >* near, float maxCost );
/** Should be called whenever the cost between states or the connection between states changes.
Also frees overhead memory used by MicroPather, and calling will free excess memory.
*/
void Reset();
// Debugging function to return all states that were used by the last "solve"
void StatesInPool( Common::Array< void* >* stateVec );
void GetCacheData( CacheData* data );
private:
MicroPather( const MicroPather& ); // undefined and unsupported
void operator=( const MicroPather ); // undefined and unsupported
void GoalReached( PathNode* node, void* start, void* end, Common::Array< void* > *path );
void GetNodeNeighbors( PathNode* node, Common::Array< NodeCost >* neighborNode );
#ifdef TETRAEDGE_MICROPATHER_DEBUG
void DumpStats();
#endif
PathNodePool pathNodePool;
Common::Array< StateCost > stateCostVec; // local to Solve, but put here to reduce memory allocation
Common::Array< NodeCost > nodeCostVec; // local to Solve, but put here to reduce memory allocation
Common::Array< float > costVec;
Graph* graph;
unsigned frame; // incremented with every solve, used to determine if cached data needs to be refreshed
PathCache* pathCache;
};
} // namespace micropather
} // namespace Tetraedge
#endif // TETRAEDGE_TE_MICROPATHER
|