1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "tetraedge/te/te_bezier_curve.h"
#include "tetraedge/te/te_mesh.h"
#include "tetraedge/te/te_renderer.h"
#include "tetraedge/tetraedge.h"
namespace Tetraedge {
TeBezierCurve::TeBezierCurve() : _length(0.0), _rawLength(0.0), _lengthNeedsUpdate(true),
_rawLengthNeedsUpdate(true), _numIterations(1000) {
}
//long TeBezierCurve::bounds(int start);
void TeBezierCurve::clear() {
_lengthNeedsUpdate = true;
_rawLengthNeedsUpdate = true;
_length = 0.0;
_controlPoints.clear();
}
void TeBezierCurve::draw() {
if (!worldVisible() || _controlPoints.empty())
return;
Common::SharedPtr<TeMesh> mesh1(TeMesh::makeInstance());
Common::SharedPtr<TeMesh> mesh2(TeMesh::makeInstance());
uint npoints = _controlPoints.size();
mesh1->setConf(npoints, npoints, TeMesh::MeshMode_Points, 0, 0);
for (uint i = 0; i < npoints; i++) {
mesh1->setVertex(i, _controlPoints[i]);
mesh1->setIndex(i, i);
}
mesh2->setConf(npoints, npoints, TeMesh::MeshMode_LineStrip, 0, 0);
for (uint i = 0; i < npoints; i++) {
mesh2->setVertex(i, _controlPoints[i]);
mesh2->setNormal(i, TeVector3f32(0.0f, 1.0f, 0.0));
mesh2->setIndex(i, i);
}
TeRenderer *renderer = g_engine->getRenderer();
const TeColor prevColor = renderer->currentColor();
renderer->pushMatrix();
renderer->multiplyMatrix(worldTransformationMatrix());
renderer->setCurrentColor(TeColor(0, 0xff, 0xff, 0xff));
mesh2->draw();
renderer->setCurrentColor(TeColor(0xff, 0, 0xff, 0xff));
mesh1->draw();
renderer->popMatrix();
renderer->setCurrentColor(prevColor);
}
float TeBezierCurve::length() {
if (_lengthNeedsUpdate) {
_length = 0.0;
_lengthNeedsUpdate = false;
_lengths.clear();
TeVector3f32 lastpt = _controlPoints[0];
lastpt.y() = 0;
for (uint i = 0; i < _numIterations; i++) {
float amount = (float)i / _numIterations;
TeVector3f32 pt = retrievePoint(amount);
pt.y() = 0;
float len = (lastpt - pt).length();
_length += len;
_lengths.push_back(_length);
lastpt = pt;
}
}
return _length;
}
void TeBezierCurve::pseudoTangent(float offset, TeVector3f32 &v1, TeVector3f32 &v2) {
const float step = 1.0f / _numIterations;
if (step + offset <= 1.0f) {
v1 = retrievePoint(offset);
v2 = retrievePoint(offset + step);
} else {
v1 = retrievePoint(offset - step);
v2 = retrievePoint(offset);
}
}
float TeBezierCurve::rawLength() {
if (_rawLengthNeedsUpdate) {
_rawLengthNeedsUpdate = false;
_rawLength = 0.0;
_rawLengths.clear();
_rawLengths.push_back(0.0);
for (uint i = 1; i < _controlPoints.size(); i++) {
const TeVector3f32 diff = _controlPoints[i] - _controlPoints[i - 1];
_rawLength += diff.length();
_rawLengths.push_back(_rawLength);
}
}
return _rawLength;
}
TeVector3f32 TeBezierCurve::retrievePoint(float offset) {
const int npoints = _controlPoints.size();
// Simple cases for small numbers of points.
if (npoints == 0)
return TeVector3f32();
else if (npoints == 1)
return _controlPoints[0];
else if (npoints == 2)
return _controlPoints[0] + (_controlPoints[1] - _controlPoints[0]) * offset;
// else, there are at least 3 points so need to actually interpolate.
const float rawlen = rawLength();
float proportion = 0.0f;
int startpt = 0;
while (startpt < npoints) {
proportion = _rawLengths[startpt] / rawlen;
if (proportion >= offset)
break;
startpt++;
}
float t;
if (proportion == offset) {
// Exactly on a point
t = 0.0f;
} else {
// Proportion between two points
float p1 = _rawLengths[startpt - 1];
float p2 = _rawLengths[startpt];
t = (rawlen * offset - p1) / (p2 - p1);
startpt--;
}
// Collect 4 points around the startpt (1 before, 2 after)
TeVector3f32 points[4];
const int maxPt = _controlPoints.size() - 1;
for (int p = 0; p < 4; p++) {
int ptno = CLIP(startpt + p - 1, 0, maxPt);
points[p] = _controlPoints[ptno];
}
// If we hit the end, linearly extend the last gradient.
if (startpt <= 0)
points[0] += (points[1] - points[2]);
if (startpt + 1 >= maxPt)
points[3] += (points[2] - points[1]);
return hermiteInterpolate(t, points, 0.0, 0.0);
}
void TeBezierCurve::setControlPoints(const Common::Array<TeVector3f32> &points) {
_lengthNeedsUpdate = true;
_rawLengthNeedsUpdate = true;
_controlPoints = points;
}
void TeBezierCurve::setNbIterations(unsigned long iterations) {
_lengthNeedsUpdate = true;
_rawLengthNeedsUpdate = true;
_numIterations = iterations;
}
/*static*/
void TeBezierCurve::serialize(Common::WriteStream &stream, const TeBezierCurve &curve) {
error("TODO: Implement TeBezierCurve::serialize");
}
/*static*/
void TeBezierCurve::deserialize(Common::ReadStream &stream, TeBezierCurve &curve) {
Te3DObject2::deserialize(stream, curve);
curve._lengthNeedsUpdate = false;
curve._length = stream.readFloatLE();
uint32 npoints = stream.readUint32LE();
if (npoints > 1000000)
error("TeBezierCurve::deserialize improbable number of control ponts %d", npoints);
for (uint i = 0; i < npoints; i++) {
TeVector3f32 vec;
TeVector3f32::deserialize(stream, vec);
curve._controlPoints.push_back(vec);
}
}
/*static*/
TeVector3f32 TeBezierCurve::hermiteInterpolate(float t, const TeVector3f32 *points, float param_4, float param_5) {
assert(points);
const TeVector3f32 delta1 = ((points[1] - points[0]) * (param_5 + 1.0) * (1.0 - param_4)) / 2.0;
const TeVector3f32 delta2a = ((points[2] - points[1]) * (1.0 - param_5) * (1.0 - param_4)) / 2.0;
const TeVector3f32 delta2b = ((points[2] - points[1]) * (param_5 + 1.0) * (1.0 - param_4)) / 2.0;
const TeVector3f32 delta3 = ((points[3] - points[2]) * (1.0 - param_5) * (1.0 - param_4)) / 2.0;
const TeVector3f32 x1 = delta1 + delta2a;
const TeVector3f32 x2 = delta2b + delta3;
const float t2 = t * t;
const float t3 = t * t * t;
const TeVector3f32 h1a = points[1] * ((t3 + t3) - t2 * 3.0 + 1.0);
const TeVector3f32 h1b = x1 * ((t3 - (t2 + t2)) + t);
const TeVector3f32 h1 = (h1a + h1b) + (x2 * (t3 - t2));
return h1 + (points[2] * (t3 * -2.0 + t2 * 3.0));
}
} // end namespace Tetraedge
|