1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* The code in this file is based on code with Copyright 1998 Fabrice Bellard
* Fabrice original code is part of SoX (http://sox.sourceforge.net).
* Max Horn adapted that code to the needs of ScummVM and rewrote it partial,
* in the process removing any use of floating point arithmetic. Various other
* improvements over the original code were made.
*/
#include "audio/audiostream.h"
#include "audio/rate.h"
#include "audio/mixer.h"
#include "common/util.h"
namespace Audio {
/**
* The default fractional type in frac.h (with 16 fractional bits) limits
* the rate conversion code to 65536Hz audio: we need to able to handle
* 96kHz audio, so we use fewer fractional bits in this code.
*/
enum {
FRAC_BITS_LOW = 15,
FRAC_ONE_LOW = (1L << FRAC_BITS_LOW),
FRAC_HALF_LOW = (1L << (FRAC_BITS_LOW-1))
};
template<bool inStereo, bool outStereo, bool reverseStereo>
class RateConverter_Impl : public RateConverter {
private:
/** Input and output rates */
st_rate_t _inRate, _outRate;
/**
* The intermediate input cache. Bigger values may increase performance,
* but only until some point (depends largely on cache size, target
* processor and various other factors), at which it will decrease again.
*/
st_sample_t _buffer[512];
/** Current position inside the buffer */
const st_sample_t *_bufferPos;
/** Size of data currently loaded into the buffer */
int _bufferSize;
/** How far output is ahead of input when doing simple conversion */
frac_t _outPos;
/** Fractional position of the output stream in input stream unit */
frac_t _outPosFrac;
/** Last sample(s) in the input stream (left/right channel) */
st_sample_t _inLastL, _inLastR;
/** Current sample(s) in the input stream (left/right channel) */
st_sample_t _inCurL, _inCurR;
int copyConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t vol_l, st_volume_t vol_r);
int simpleConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t vol_l, st_volume_t vol_r);
int interpolateConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t vol_l, st_volume_t vol_r);
public:
RateConverter_Impl(st_rate_t inputRate, st_rate_t outputRate);
virtual ~RateConverter_Impl() {}
int convert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t vol_l, st_volume_t vol_r) override;
void setInputRate(st_rate_t inputRate) override { _inRate = inputRate; }
void setOutputRate(st_rate_t outputRate) override { _outRate = outputRate; }
st_rate_t getInputRate() const override { return _inRate; }
st_rate_t getOutputRate() const override { return _outRate; }
bool needsDraining() const override { return _bufferSize != 0; }
};
template<bool inStereo, bool outStereo, bool reverseStereo>
int RateConverter_Impl<inStereo, outStereo, reverseStereo>::copyConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t volL, st_volume_t volR) {
st_sample_t *outStart, *outEnd;
outStart = outBuffer;
outEnd = outBuffer + numSamples * (outStereo ? 2 : 1);
while (outBuffer < outEnd) {
// Check if we have to refill the buffer
if (_bufferSize == 0) {
_bufferPos = _buffer;
_bufferSize = input.readBuffer(_buffer, ARRAYSIZE(_buffer));
if (_bufferSize <= 0)
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
// Mix the data into the output buffer
st_sample_t inL, inR;
inL = *_bufferPos++;
inR = (inStereo ? *_bufferPos++ : inL);
_bufferSize -= (inStereo ? 2 : 1);
st_sample_t outL, outR;
outL = (inL * (int)volL) / Audio::Mixer::kMaxMixerVolume;
outR = (inR * (int)volR) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// Output left channel
clampedAdd(outBuffer[reverseStereo ], outL);
// Output right channel
clampedAdd(outBuffer[reverseStereo ^ 1], outR);
outBuffer += 2;
} else {
// Output mono channel
clampedAdd(outBuffer[0], (outL + outR) / 2);
outBuffer += 1;
}
}
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
template<bool inStereo, bool outStereo, bool reverseStereo>
int RateConverter_Impl<inStereo, outStereo, reverseStereo>::simpleConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t volL, st_volume_t volR) {
// How much to increment _outPos by
frac_t outPos_inc = _inRate / _outRate;
st_sample_t *outStart, *outEnd;
outStart = outBuffer;
outEnd = outBuffer + numSamples * (outStereo ? 2 : 1);
while (outBuffer < outEnd) {
// Read enough input samples so that _outPos >= 0
do {
// Check if we have to refill the buffer
if (_bufferSize == 0) {
_bufferPos = _buffer;
_bufferSize = input.readBuffer(_buffer, ARRAYSIZE(_buffer));
if (_bufferSize <= 0)
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
_bufferSize -= (inStereo ? 2 : 1);
_outPos--;
if (_outPos >= 0) {
_bufferPos += (inStereo ? 2 : 1);
}
} while (_outPos >= 0);
st_sample_t inL, inR;
inL = *_bufferPos++;
inR = (inStereo ? *_bufferPos++ : inL);
// Increment output position
_outPos += outPos_inc;
st_sample_t outL, outR;
outL = (inL * (int)volL) / Audio::Mixer::kMaxMixerVolume;
outR = (inR * (int)volR) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// output left channel
clampedAdd(outBuffer[reverseStereo ], outL);
// output right channel
clampedAdd(outBuffer[reverseStereo ^ 1], outR);
outBuffer += 2;
} else {
// output mono channel
clampedAdd(outBuffer[0], (outL + outR) / 2);
outBuffer += 1;
}
}
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
template<bool inStereo, bool outStereo, bool reverseStereo>
int RateConverter_Impl<inStereo, outStereo, reverseStereo>::interpolateConvert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t volL, st_volume_t volR) {
// How much to increment _outPosFrac by
frac_t outPos_inc = (_inRate << FRAC_BITS_LOW) / _outRate;
st_sample_t *outStart, *outEnd;
outStart = outBuffer;
outEnd = outBuffer + numSamples * (outStereo ? 2 : 1);
while (outBuffer < outEnd) {
// Read enough input samples so that _outPosFrac < 0
while ((frac_t)FRAC_ONE_LOW <= _outPosFrac) {
// Check if we have to refill the buffer
if (_bufferSize == 0) {
_bufferPos = _buffer;
_bufferSize = input.readBuffer(_buffer, ARRAYSIZE(_buffer));
if (_bufferSize <= 0)
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
_bufferSize -= (inStereo ? 2 : 1);
_inLastL = _inCurL;
_inCurL = *_bufferPos++;
if (inStereo) {
_inLastR = _inCurR;
_inCurR = *_bufferPos++;
}
_outPosFrac -= FRAC_ONE_LOW;
}
// Loop as long as the _outPos trails behind, and as long as there is
// still space in the output buffer.
while (_outPosFrac < (frac_t)FRAC_ONE_LOW && outBuffer < outEnd) {
// Interpolate
st_sample_t inL, inR;
inL = (st_sample_t)(_inLastL + (((_inCurL - _inLastL) * _outPosFrac + FRAC_HALF_LOW) >> FRAC_BITS_LOW));
inR = (inStereo ?
(st_sample_t)(_inLastR + (((_inCurR - _inLastR) * _outPosFrac + FRAC_HALF_LOW) >> FRAC_BITS_LOW)) :
inL);
st_sample_t outL, outR;
outL = (inL * (int)volL) / Audio::Mixer::kMaxMixerVolume;
outR = (inR * (int)volR) / Audio::Mixer::kMaxMixerVolume;
if (outStereo) {
// Output left channel
clampedAdd(outBuffer[reverseStereo ], outL);
// Output right channel
clampedAdd(outBuffer[reverseStereo ^ 1], outR);
outBuffer += 2;
} else {
// Output mono channel
clampedAdd(outBuffer[0], (outL + outR) / 2);
outBuffer += 1;
}
// Increment output position
_outPosFrac += outPos_inc;
}
}
return (outBuffer - outStart) / (outStereo ? 2 : 1);
}
template<bool inStereo, bool outStereo, bool reverseStereo>
RateConverter_Impl<inStereo, outStereo, reverseStereo>::RateConverter_Impl(st_rate_t inputRate, st_rate_t outputRate) :
_inRate(inputRate),
_outRate(outputRate),
_outPos(1),
_outPosFrac(FRAC_ONE_LOW),
_inLastL(0),
_inLastR(0),
_inCurL(0),
_inCurR(0),
_bufferSize(0),
_bufferPos(nullptr) {}
template<bool inStereo, bool outStereo, bool reverseStereo>
int RateConverter_Impl<inStereo, outStereo, reverseStereo>::convert(AudioStream &input, st_sample_t *outBuffer, st_size_t numSamples, st_volume_t volL, st_volume_t volR) {
assert(input.isStereo() == inStereo);
if (_inRate == _outRate) {
return copyConvert(input, outBuffer, numSamples, volL, volR);
} else {
if ((_inRate % _outRate) == 0 && (_inRate < 65536)) {
return simpleConvert(input, outBuffer, numSamples, volL, volR);
} else {
return interpolateConvert(input, outBuffer, numSamples, volL, volR);
}
}
}
RateConverter *makeRateConverter(st_rate_t inRate, st_rate_t outRate, bool inStereo, bool outStereo, bool reverseStereo) {
if (inStereo) {
if (outStereo) {
if (reverseStereo)
return new RateConverter_Impl<true, true, true>(inRate, outRate);
else
return new RateConverter_Impl<true, true, false>(inRate, outRate);
} else
return new RateConverter_Impl<true, false, false>(inRate, outRate);
} else {
if (outStereo) {
return new RateConverter_Impl<false, true, false>(inRate, outRate);
} else
return new RateConverter_Impl<false, false, false>(inRate, outRate);
}
}
} // End of namespace Audio
|