File: array.h

package info (click to toggle)
scummvm 2.9.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 450,268 kB
  • sloc: cpp: 4,297,604; asm: 28,322; python: 12,901; sh: 11,219; java: 8,477; xml: 7,843; perl: 2,633; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (625 lines) | stat: -rw-r--r-- 17,243 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H

#include "common/scummsys.h"
#include "common/algorithm.h"
#include "common/textconsole.h" // For error()
#include "common/memory.h"

namespace Common {

/**
 * @defgroup common_array Arrays
 * @ingroup common
 *
 * @brief  Functions for replacing std arrays.
 * @{
 */

/**
 * This class implements a dynamically sized container, which
 * can be accessed similarly to a regular C++ array. Accessing
 * elements is performed in constant time (like with plain arrays).
 * In addition, you can append, insert, and remove entries (this
 * is the 'dynamic' part). In general, doing that takes time
 * proportional to the number of elements in the array.
 *
 * The container class closest to this in the C++ standard library is
 * std::vector. However, there are some differences.
 */
template<class T>
class Array {
public:
	typedef T *iterator; /*!< Array iterator. */
	typedef const T *const_iterator; /*!< Const-qualified array iterator. */

	typedef T value_type; /*!< Value type of the array. */

	typedef uint size_type; /*!< Size type of the array. */

protected:
	size_type _capacity; /*!< Maximum number of elements the array can hold. */
	size_type _size; /*!< How many elements the array holds. */
	T *_storage;  /*!< Memory used for element storage. */

public:
	constexpr Array() : _capacity(0), _size(0), _storage(nullptr) {}

	/**
	 * Construct an array with @p count default-inserted instances of @p T. No
	 * copies are made.
	 */
	explicit Array(size_type count) : _size(count) {
		allocCapacity(count);

		T *storage = _storage;

		for (size_type i = 0; i < count; ++i)
			new ((void *)&storage[i]) T();
	}

	/**
	 * Construct an array with @p count copies of elements with value @p value.
	 */
	Array(size_type count, const T &value) : _size(count) {
		allocCapacity(count);
		uninitialized_fill_n(_storage, count, value);
	}

	/**
	 * Construct an array as a copy of the given @p array.
	 */
	Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(nullptr) {
		if (array._storage) {
			allocCapacity(_size);
			uninitialized_copy(array._storage, array._storage + _size, _storage);
		}
	}

	/**
	 * Construct an array as a copy of the given array using the C++11 move semantic.
	 */
	Array(Array<T> &&old) : _capacity(old._capacity), _size(old._size), _storage(old._storage) {
		old._storage = nullptr;
		old._capacity = 0;
		old._size = 0;
	}

	/**
	 * Construct an array using list initialization.
	 * For example:
	 * @code
	 * Common::Array<int> myArray = {1, 7, 42};
	 * @endcode
	 * constructs an array with 3 elements whose values are 1, 7, and 42 respectively.
	 * @note
	 * This constructor is only available when C++11 support is enabled.
	 */
	Array(std::initializer_list<T> list) : _size(list.size()) {
		allocCapacity(list.size());
		if (_storage)
			Common::uninitialized_copy(list.begin(), list.end(), _storage);
	}

	/**
	 * Construct an array by copying data from a regular array.
	 */
	template<class T2>
	Array(const T2 *array, size_type n) {
		_size = n;
		allocCapacity(n);
		uninitialized_copy(array, array + _size, _storage);
	}

	~Array() {
		freeStorage(_storage, _size);
		_storage = nullptr;
		_capacity = _size = 0;
	}

	/** Construct an element into a position in the array. */
	template<class... TArgs>
	void emplace(const_iterator pos, TArgs&&... args) {
		assert(pos >= _storage && pos <= _storage + _size);

		const size_type index = static_cast<size_type>(pos - _storage);

		if (_size != _capacity && index == _size) {
			// Added at the end in the existing storage
			new (_storage + index) T(Common::forward<TArgs>(args)...);
		} else {
			// Either added in the middle, or ran out of space
			// In the added-in-the-middle case, the copy is required because the parameters
			// may contain a const ref to the original storage.
			T *oldStorage = _storage;

			allocCapacity(roundUpCapacity(_size + 1));

			// Construct the new element first, since it may copy-construct from
			// the original array
			new (_storage + index) T(Common::forward<TArgs>(args)...);

			// Move the original data
			uninitialized_move(oldStorage, oldStorage + index, _storage);
			uninitialized_move(oldStorage + index, oldStorage + _size, _storage + index + 1);

			freeStorage(oldStorage, _size);
		}

		_size++;
	}

	/** Construct an element to the end of the array. */
	template<class... TArgs>
	void emplace_back(TArgs &&...args) {
		emplace(begin() + _size, Common::forward<TArgs>(args)...);
	}

	/** Append an element to the end of the array. */
	void push_back(const T &element) {
		emplace_back(element);
	}

	/** Append an element to the end of the array. */
	void push_back(T &&element) {
		emplace_back(Common::move(element));
	}

	/** Append an element to the end of the array. */
	void push_back(const Array<T> &array) {
		if (_size + array.size() <= _capacity) {
			uninitialized_copy(array.begin(), array.end(), end());
			_size += array.size();
		} else
			insert_aux(end(), array.begin(), array.end());
	}

	/** Remove the last element of the array. */
	void pop_back() {
		assert(_size > 0);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
	}

	/** Return a pointer to the underlying memory serving as element storage. */
	const T *data() const {
		return _storage;
	}

	/** Return a pointer to the underlying memory serving as element storage. */
	T *data() {
		return _storage;
	}

	/** Return a reference to the first element of the array. */
	T &front() {
		assert(_size > 0);
		return _storage[0];
	}

	/** Return a reference to the first element of the array. */
	const T &front() const {
		assert(_size > 0);
		return _storage[0];
	}

	/** Return a reference to the last element of the array. */
	T &back() {
		assert(_size > 0);
		return _storage[_size-1];
	}

	/** Return a reference to the last element of the array. */
	const T &back() const {
		assert(_size > 0);
		return _storage[_size-1];
	}

	/** Insert an element into the array at the given position. */
	void insert_at(size_type idx, const T &element) {
		assert(idx <= _size);
		insert_aux(_storage + idx, &element, &element + 1);
	}

	/** Insert copies of all the elements from the given array into this array at the given position. */
	void insert_at(size_type idx, const Array<T> &array) {
		assert(idx <= _size);
		insert_aux(_storage + idx, array.begin(), array.end());
	}

	/**
	 * Insert an element before @p pos.
	 */
	void insert(iterator pos, const T &element) {
		insert_aux(pos, &element, &element + 1);
	}

	/** Remove an element at the given position from the array and return the value of that element. */
	T remove_at(size_type idx) {
		assert(idx < _size);
		T tmp = Common::move(_storage[idx]);
		move(_storage + idx + 1, _storage + _size, _storage + idx);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
		return tmp;
	}

	// TODO: insert, remove, ...

	/** Return a reference to the element at the given position in the array. */
	T &operator[](size_type idx) {
		assert(idx < _size);
		return _storage[idx];
	}

	/** Return a const reference to the element at the given position in the array. */
	const T &operator[](size_type idx) const {
		assert(idx < _size);
		return _storage[idx];
	}

	/** Assign the given @p array to this array. */
	Array<T> &operator=(const Array<T> &array) {
		if (this == &array)
			return *this;

		freeStorage(_storage, _size);
		_size = array._size;
		allocCapacity(_size);
		uninitialized_copy(array._storage, array._storage + _size, _storage);

		return *this;
	}

	/** Assign the given array to this array using the C++11 move semantic. */
	Array &operator=(Array<T> &&old) {
		if (this == &old)
			return *this;

		freeStorage(_storage, _size);
		_capacity = old._capacity;
		_size = old._size;
		_storage = old._storage;

		old._storage = nullptr;
		old._capacity = 0;
		old._size = 0;

		return *this;
	}

	/** Return the size of the array. */
	size_type size() const {
		return _size;
	}

	/** Clear the array of all its elements. */
	void clear() {
		freeStorage(_storage, _size);
		_storage = nullptr;
		_size = 0;
		_capacity = 0;
	}

	/** Erase the element at @p pos position and return an iterator pointing to the next element in the array. */
	iterator erase(iterator pos) {
		move(pos + 1, _storage + _size, pos);
		_size--;
		// We also need to destroy the last object properly here.
		_storage[_size].~T();
		return pos;
	}

	/** Erase the elements from @p first to @p last and return an iterator pointing to the next element in the array. */
	iterator erase(iterator first, iterator last) {
		move(last, _storage + _size, first);

		int count = (last - first);
		_size -= count;

		// We also need to destroy the objects beyond the new size
		for (uint idx = _size; idx < (_size + count); ++idx)
			_storage[idx].~T();

		return first;
	}

	/** Check whether the array is empty. */
	bool empty() const {
		return (_size == 0);
	}

	/** Check whether two arrays are identical. */
	bool operator==(const Array<T> &other) const {
		if (this == &other)
			return true;
		if (_size != other._size)
			return false;
		for (size_type i = 0; i < _size; ++i) {
			if (_storage[i] != other._storage[i])
				return false;
		}
		return true;
	}

	/** Check if two arrays are different. */
	bool operator!=(const Array<T> &other) const {
		return !(*this == other);
	}

	/** Return an iterator pointing to the first element in the array. */
	iterator       begin() {
		return _storage;
	}

	/** Return an iterator pointing past the last element in the array. */
	iterator       end() {
		return _storage + _size;
	}

	/** Return a const iterator pointing to the first element in the array. */
	const_iterator begin() const {
		return _storage;
	}

	/** Return a const iterator pointing past the last element in the array. */
	const_iterator end() const {
		return _storage + _size;
	}

	/** Reserve enough memory in the array so that it can store at least the given number of elements.
	 *  The current content of the array is not modified.
	 */
	void reserve(size_type newCapacity) {
		if (newCapacity <= _capacity)
			return;

		T *oldStorage = _storage;
		allocCapacity(newCapacity);

		if (oldStorage) {
			// Move old data
			uninitialized_move(oldStorage, oldStorage + _size, _storage);
			freeStorage(oldStorage, _size);
		}
	}

	/** Change the size of the array. */
	void resize(size_type newSize) {
		reserve(newSize);

		T *storage = _storage;

		for (size_type i = newSize; i < _size; ++i)
			storage[i].~T();
		for (size_type i = _size; i < newSize; ++i)
			new ((void *)&storage[i]) T();

		_size = newSize;
	}

	/** Change the size of the array and initialize new elements that exceed the
	 *  current array's size with copies of value. */
	void resize(size_type newSize, const T value) {
		reserve(newSize);

		T *storage = _storage;

		for (size_type i = newSize; i < _size; ++i)
			storage[i].~T();
		if (newSize > _size)
			uninitialized_fill_n(storage + _size, newSize - _size, value);

		_size = newSize;
	}

	/** Assign to this array the elements between the given iterators from another array,
	 *  from @p first included to @p last excluded.
	 */
	void assign(const_iterator first, const_iterator last) {
		resize(distance(first, last)); // FIXME: ineffective?
		T *dst = _storage;
		while (first != last)
			*dst++ = *first++;
	}

	void swap(Array &arr) {
		SWAP(this->_capacity, arr._capacity);
		SWAP(this->_size, arr._size);
		SWAP(this->_storage, arr._storage);
	}

protected:
	/** Round up capacity to the next power of 2.
	  * A minimal capacity of 8 is used.
	  */
	static size_type roundUpCapacity(size_type capacity) {
		size_type capa = 8;
		while (capa < capacity)
			capa <<= 1;
		return capa;
	}

	/** Allocate a specific capacity for the array. */
	void allocCapacity(size_type capacity) {
		_capacity = capacity;
		if (capacity) {
			_storage = (T *)malloc(sizeof(T) * capacity);
			if (!_storage)
				::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
		} else {
			_storage = nullptr;
		}
	}

	/** Free the storage used by the array. */
	void freeStorage(T *storage, const size_type elements) {
		for (size_type i = 0; i < elements; ++i)
			storage[i].~T();
		free(storage);
	}

	/**
	 * Insert a range of elements coming from this or another array.
	 * Unlike std::vector::insert, this method does not accept
	 * arbitrary iterators, mainly because our iterator system is
	 * seriously limited and does not distinguish between input iterators,
	 * output iterators, forward iterators, or random access iterators.
	 *
	 * So, we simply restrict to Array iterators. Extending this to arbitrary
	 * random access iterators would be trivial.
	 *
	 * Moreover, this method does not handle all cases of inserting a subrange
	 * of an array into itself; this is why it is private for now.
	 */
	iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
		assert(_storage <= pos && pos <= _storage + _size);
		assert(first <= last);
		const size_type n = last - first;
		if (n) {
			const size_type idx = pos - _storage;
			if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
				T *const oldStorage = _storage;

				// If there is not enough space, allocate more.
				// Likewise, if this is a self-insert, we allocate new
				// storage to avoid conflicts.
				allocCapacity(roundUpCapacity(_size + n));

				// Move the data from the old storage till the position where
				// we insert new data
				uninitialized_move(oldStorage, oldStorage + idx, _storage);
				// Copy the data we insert
				uninitialized_copy(first, last, _storage + idx);
				// Afterwards, move the old data from the position where we
				// insert.
				uninitialized_move(oldStorage + idx, oldStorage + _size, _storage + idx + n);

				freeStorage(oldStorage, _size);
			} else if (idx + n <= _size) {
				// Make room for the new elements by shifting back
				// existing ones.
				// 1. Move a part of the data to the uninitialized area
				uninitialized_move(_storage + _size - n, _storage + _size, _storage + _size);
				// 2. Move a part of the data to the initialized area
				move_backward(pos, _storage + _size - n, _storage + _size);

				// Insert the new elements.
				copy(first, last, pos);
			} else {
				// Move the old data from the position till the end to the new
				// place.
				uninitialized_move(pos, _storage + _size, _storage + idx + n);

				// Copy a part of the new data to the position inside the
				// initialized space.
				copy(first, first + (_size - idx), pos);

				// Copy a part of the new data to the position inside the
				// uninitialized space.
				uninitialized_copy(first + (_size - idx), last, _storage + _size);
			}

			// Finally, update the internal state
			_size += n;
		}
		return pos;
	}

};

/**
 * Array with sorted nodes.
 */
template<class T, typename CompareArgType = const void *>
class SortedArray : public Array<T> {
public:
	typedef int (*Comparator)(CompareArgType, CompareArgType);
	typedef T *iterator;
	typedef uint size_type;

	SortedArray(Comparator comparator) {
		_comparator = comparator;
	}

	/**
	 * Insert an element at the sorted position.
	 */
	void insert(const T &element) {
		if (!this->_size) {
			this->insert_aux(this->_storage, &element, &element + 1);
			return;
		}

		T *where = bsearchMin(element);

		if (where > this->_storage + this->_size)
			Array<T>::push_back(element);
		else
			Array<T>::insert(where, element);
	}

private:
	T &operator[](size_type idx);

	void insert_at(size_type idx, const T &element);

	void insert_at(size_type idx, const Array<T> &array);

	void insert(iterator pos, const T &element);

	void push_back(const T &element);

	void push_back(const Array<T> &array);

	// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
	// Author: Tim Abbott <tabbott@ksplice.com>
	// Licensed under GPLv2+
	T *bsearchMin(CompareArgType key) {
		uint start_ = 0, end_ = this->_size;
		int result;

		while (start_ < end_) {
			uint mid = start_ + (end_ - start_) / 2;

			result = this->_comparator(key, this->_storage[mid]);
			if (result < 0)
				end_ = mid;
			else
				start_ = mid + 1;
		}

		return &this->_storage[start_];
	}

	Comparator _comparator;
};

/** @} */

} // End of namespace Common

#endif