1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H
#include "common/scummsys.h"
#include "common/algorithm.h"
#include "common/textconsole.h" // For error()
#include "common/memory.h"
namespace Common {
/**
* @defgroup common_array Arrays
* @ingroup common
*
* @brief Functions for replacing std arrays.
* @{
*/
/**
* This class implements a dynamically sized container, which
* can be accessed similarly to a regular C++ array. Accessing
* elements is performed in constant time (like with plain arrays).
* In addition, you can append, insert, and remove entries (this
* is the 'dynamic' part). In general, doing that takes time
* proportional to the number of elements in the array.
*
* The container class closest to this in the C++ standard library is
* std::vector. However, there are some differences.
*/
template<class T>
class Array {
public:
typedef T *iterator; /*!< Array iterator. */
typedef const T *const_iterator; /*!< Const-qualified array iterator. */
typedef T value_type; /*!< Value type of the array. */
typedef uint size_type; /*!< Size type of the array. */
protected:
size_type _capacity; /*!< Maximum number of elements the array can hold. */
size_type _size; /*!< How many elements the array holds. */
T *_storage; /*!< Memory used for element storage. */
public:
constexpr Array() : _capacity(0), _size(0), _storage(nullptr) {}
/**
* Construct an array with @p count default-inserted instances of @p T. No
* copies are made.
*/
explicit Array(size_type count) : _size(count) {
allocCapacity(count);
T *storage = _storage;
for (size_type i = 0; i < count; ++i)
new ((void *)&storage[i]) T();
}
/**
* Construct an array with @p count copies of elements with value @p value.
*/
Array(size_type count, const T &value) : _size(count) {
allocCapacity(count);
uninitialized_fill_n(_storage, count, value);
}
/**
* Construct an array as a copy of the given @p array.
*/
Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(nullptr) {
if (array._storage) {
allocCapacity(_size);
uninitialized_copy(array._storage, array._storage + _size, _storage);
}
}
/**
* Construct an array as a copy of the given array using the C++11 move semantic.
*/
Array(Array<T> &&old) : _capacity(old._capacity), _size(old._size), _storage(old._storage) {
old._storage = nullptr;
old._capacity = 0;
old._size = 0;
}
/**
* Construct an array using list initialization.
* For example:
* @code
* Common::Array<int> myArray = {1, 7, 42};
* @endcode
* constructs an array with 3 elements whose values are 1, 7, and 42 respectively.
* @note
* This constructor is only available when C++11 support is enabled.
*/
Array(std::initializer_list<T> list) : _size(list.size()) {
allocCapacity(list.size());
if (_storage)
Common::uninitialized_copy(list.begin(), list.end(), _storage);
}
/**
* Construct an array by copying data from a regular array.
*/
template<class T2>
Array(const T2 *array, size_type n) {
_size = n;
allocCapacity(n);
uninitialized_copy(array, array + _size, _storage);
}
~Array() {
freeStorage(_storage, _size);
_storage = nullptr;
_capacity = _size = 0;
}
/** Construct an element into a position in the array. */
template<class... TArgs>
void emplace(const_iterator pos, TArgs&&... args) {
assert(pos >= _storage && pos <= _storage + _size);
const size_type index = static_cast<size_type>(pos - _storage);
if (_size != _capacity && index == _size) {
// Added at the end in the existing storage
new (_storage + index) T(Common::forward<TArgs>(args)...);
} else {
// Either added in the middle, or ran out of space
// In the added-in-the-middle case, the copy is required because the parameters
// may contain a const ref to the original storage.
T *oldStorage = _storage;
allocCapacity(roundUpCapacity(_size + 1));
// Construct the new element first, since it may copy-construct from
// the original array
new (_storage + index) T(Common::forward<TArgs>(args)...);
// Move the original data
uninitialized_move(oldStorage, oldStorage + index, _storage);
uninitialized_move(oldStorage + index, oldStorage + _size, _storage + index + 1);
freeStorage(oldStorage, _size);
}
_size++;
}
/** Construct an element to the end of the array. */
template<class... TArgs>
void emplace_back(TArgs &&...args) {
emplace(begin() + _size, Common::forward<TArgs>(args)...);
}
/** Append an element to the end of the array. */
void push_back(const T &element) {
emplace_back(element);
}
/** Append an element to the end of the array. */
void push_back(T &&element) {
emplace_back(Common::move(element));
}
/** Append an element to the end of the array. */
void push_back(const Array<T> &array) {
if (_size + array.size() <= _capacity) {
uninitialized_copy(array.begin(), array.end(), end());
_size += array.size();
} else
insert_aux(end(), array.begin(), array.end());
}
/** Remove the last element of the array. */
void pop_back() {
assert(_size > 0);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
}
/** Return a pointer to the underlying memory serving as element storage. */
const T *data() const {
return _storage;
}
/** Return a pointer to the underlying memory serving as element storage. */
T *data() {
return _storage;
}
/** Return a reference to the first element of the array. */
T &front() {
assert(_size > 0);
return _storage[0];
}
/** Return a reference to the first element of the array. */
const T &front() const {
assert(_size > 0);
return _storage[0];
}
/** Return a reference to the last element of the array. */
T &back() {
assert(_size > 0);
return _storage[_size-1];
}
/** Return a reference to the last element of the array. */
const T &back() const {
assert(_size > 0);
return _storage[_size-1];
}
/** Insert an element into the array at the given position. */
void insert_at(size_type idx, const T &element) {
assert(idx <= _size);
insert_aux(_storage + idx, &element, &element + 1);
}
/** Insert copies of all the elements from the given array into this array at the given position. */
void insert_at(size_type idx, const Array<T> &array) {
assert(idx <= _size);
insert_aux(_storage + idx, array.begin(), array.end());
}
/**
* Insert an element before @p pos.
*/
void insert(iterator pos, const T &element) {
insert_aux(pos, &element, &element + 1);
}
/** Remove an element at the given position from the array and return the value of that element. */
T remove_at(size_type idx) {
assert(idx < _size);
T tmp = Common::move(_storage[idx]);
move(_storage + idx + 1, _storage + _size, _storage + idx);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
return tmp;
}
// TODO: insert, remove, ...
/** Return a reference to the element at the given position in the array. */
T &operator[](size_type idx) {
assert(idx < _size);
return _storage[idx];
}
/** Return a const reference to the element at the given position in the array. */
const T &operator[](size_type idx) const {
assert(idx < _size);
return _storage[idx];
}
/** Assign the given @p array to this array. */
Array<T> &operator=(const Array<T> &array) {
if (this == &array)
return *this;
freeStorage(_storage, _size);
_size = array._size;
allocCapacity(_size);
uninitialized_copy(array._storage, array._storage + _size, _storage);
return *this;
}
/** Assign the given array to this array using the C++11 move semantic. */
Array &operator=(Array<T> &&old) {
if (this == &old)
return *this;
freeStorage(_storage, _size);
_capacity = old._capacity;
_size = old._size;
_storage = old._storage;
old._storage = nullptr;
old._capacity = 0;
old._size = 0;
return *this;
}
/** Return the size of the array. */
size_type size() const {
return _size;
}
/** Clear the array of all its elements. */
void clear() {
freeStorage(_storage, _size);
_storage = nullptr;
_size = 0;
_capacity = 0;
}
/** Erase the element at @p pos position and return an iterator pointing to the next element in the array. */
iterator erase(iterator pos) {
move(pos + 1, _storage + _size, pos);
_size--;
// We also need to destroy the last object properly here.
_storage[_size].~T();
return pos;
}
/** Erase the elements from @p first to @p last and return an iterator pointing to the next element in the array. */
iterator erase(iterator first, iterator last) {
move(last, _storage + _size, first);
int count = (last - first);
_size -= count;
// We also need to destroy the objects beyond the new size
for (uint idx = _size; idx < (_size + count); ++idx)
_storage[idx].~T();
return first;
}
/** Check whether the array is empty. */
bool empty() const {
return (_size == 0);
}
/** Check whether two arrays are identical. */
bool operator==(const Array<T> &other) const {
if (this == &other)
return true;
if (_size != other._size)
return false;
for (size_type i = 0; i < _size; ++i) {
if (_storage[i] != other._storage[i])
return false;
}
return true;
}
/** Check if two arrays are different. */
bool operator!=(const Array<T> &other) const {
return !(*this == other);
}
/** Return an iterator pointing to the first element in the array. */
iterator begin() {
return _storage;
}
/** Return an iterator pointing past the last element in the array. */
iterator end() {
return _storage + _size;
}
/** Return a const iterator pointing to the first element in the array. */
const_iterator begin() const {
return _storage;
}
/** Return a const iterator pointing past the last element in the array. */
const_iterator end() const {
return _storage + _size;
}
/** Reserve enough memory in the array so that it can store at least the given number of elements.
* The current content of the array is not modified.
*/
void reserve(size_type newCapacity) {
if (newCapacity <= _capacity)
return;
T *oldStorage = _storage;
allocCapacity(newCapacity);
if (oldStorage) {
// Move old data
uninitialized_move(oldStorage, oldStorage + _size, _storage);
freeStorage(oldStorage, _size);
}
}
/** Change the size of the array. */
void resize(size_type newSize) {
reserve(newSize);
T *storage = _storage;
for (size_type i = newSize; i < _size; ++i)
storage[i].~T();
for (size_type i = _size; i < newSize; ++i)
new ((void *)&storage[i]) T();
_size = newSize;
}
/** Change the size of the array and initialize new elements that exceed the
* current array's size with copies of value. */
void resize(size_type newSize, const T value) {
reserve(newSize);
T *storage = _storage;
for (size_type i = newSize; i < _size; ++i)
storage[i].~T();
if (newSize > _size)
uninitialized_fill_n(storage + _size, newSize - _size, value);
_size = newSize;
}
/** Assign to this array the elements between the given iterators from another array,
* from @p first included to @p last excluded.
*/
void assign(const_iterator first, const_iterator last) {
resize(distance(first, last)); // FIXME: ineffective?
T *dst = _storage;
while (first != last)
*dst++ = *first++;
}
void swap(Array &arr) {
SWAP(this->_capacity, arr._capacity);
SWAP(this->_size, arr._size);
SWAP(this->_storage, arr._storage);
}
protected:
/** Round up capacity to the next power of 2.
* A minimal capacity of 8 is used.
*/
static size_type roundUpCapacity(size_type capacity) {
size_type capa = 8;
while (capa < capacity)
capa <<= 1;
return capa;
}
/** Allocate a specific capacity for the array. */
void allocCapacity(size_type capacity) {
_capacity = capacity;
if (capacity) {
_storage = (T *)malloc(sizeof(T) * capacity);
if (!_storage)
::error("Common::Array: failure to allocate %u bytes", capacity * (size_type)sizeof(T));
} else {
_storage = nullptr;
}
}
/** Free the storage used by the array. */
void freeStorage(T *storage, const size_type elements) {
for (size_type i = 0; i < elements; ++i)
storage[i].~T();
free(storage);
}
/**
* Insert a range of elements coming from this or another array.
* Unlike std::vector::insert, this method does not accept
* arbitrary iterators, mainly because our iterator system is
* seriously limited and does not distinguish between input iterators,
* output iterators, forward iterators, or random access iterators.
*
* So, we simply restrict to Array iterators. Extending this to arbitrary
* random access iterators would be trivial.
*
* Moreover, this method does not handle all cases of inserting a subrange
* of an array into itself; this is why it is private for now.
*/
iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
assert(_storage <= pos && pos <= _storage + _size);
assert(first <= last);
const size_type n = last - first;
if (n) {
const size_type idx = pos - _storage;
if (_size + n > _capacity || (_storage <= first && first <= _storage + _size)) {
T *const oldStorage = _storage;
// If there is not enough space, allocate more.
// Likewise, if this is a self-insert, we allocate new
// storage to avoid conflicts.
allocCapacity(roundUpCapacity(_size + n));
// Move the data from the old storage till the position where
// we insert new data
uninitialized_move(oldStorage, oldStorage + idx, _storage);
// Copy the data we insert
uninitialized_copy(first, last, _storage + idx);
// Afterwards, move the old data from the position where we
// insert.
uninitialized_move(oldStorage + idx, oldStorage + _size, _storage + idx + n);
freeStorage(oldStorage, _size);
} else if (idx + n <= _size) {
// Make room for the new elements by shifting back
// existing ones.
// 1. Move a part of the data to the uninitialized area
uninitialized_move(_storage + _size - n, _storage + _size, _storage + _size);
// 2. Move a part of the data to the initialized area
move_backward(pos, _storage + _size - n, _storage + _size);
// Insert the new elements.
copy(first, last, pos);
} else {
// Move the old data from the position till the end to the new
// place.
uninitialized_move(pos, _storage + _size, _storage + idx + n);
// Copy a part of the new data to the position inside the
// initialized space.
copy(first, first + (_size - idx), pos);
// Copy a part of the new data to the position inside the
// uninitialized space.
uninitialized_copy(first + (_size - idx), last, _storage + _size);
}
// Finally, update the internal state
_size += n;
}
return pos;
}
};
/**
* Array with sorted nodes.
*/
template<class T, typename CompareArgType = const void *>
class SortedArray : public Array<T> {
public:
typedef int (*Comparator)(CompareArgType, CompareArgType);
typedef T *iterator;
typedef uint size_type;
SortedArray(Comparator comparator) {
_comparator = comparator;
}
/**
* Insert an element at the sorted position.
*/
void insert(const T &element) {
if (!this->_size) {
this->insert_aux(this->_storage, &element, &element + 1);
return;
}
T *where = bsearchMin(element);
if (where > this->_storage + this->_size)
Array<T>::push_back(element);
else
Array<T>::insert(where, element);
}
private:
T &operator[](size_type idx);
void insert_at(size_type idx, const T &element);
void insert_at(size_type idx, const Array<T> &array);
void insert(iterator pos, const T &element);
void push_back(const T &element);
void push_back(const Array<T> &array);
// Based on code Copyright (C) 2008-2009 Ksplice, Inc.
// Author: Tim Abbott <tabbott@ksplice.com>
// Licensed under GPLv2+
T *bsearchMin(CompareArgType key) {
uint start_ = 0, end_ = this->_size;
int result;
while (start_ < end_) {
uint mid = start_ + (end_ - start_) / 2;
result = this->_comparator(key, this->_storage[mid]);
if (result < 0)
end_ = mid;
else
start_ = mid + 1;
}
return &this->_storage[start_];
}
Comparator _comparator;
};
/** @} */
} // End of namespace Common
#endif
|