File: xpfloat.cpp

package info (click to toggle)
scummvm 2.9.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 450,268 kB
  • sloc: cpp: 4,297,604; asm: 28,322; python: 12,901; sh: 11,219; java: 8,477; xml: 7,843; perl: 2,633; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (161 lines) | stat: -rw-r--r-- 4,843 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "common/xpfloat.h"
#include "common/textconsole.h"

/*
Format:
s eeeeeeeeeeeeeee i fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
^ ^               ^ ^
| |               | |
| Exponent (15)   | Fraction (63)
Sign (1)          Integer i (1)

MC68881 semantics:
e                i    f     meaning
0 <= e <= 32766  1    any   (-1)^s x 2^(e-16383) x (1.f)    Normalized
0 <= e <= 32766  0    non-0 (-1)^s x 2^(e-16383) x (0.f)    Denormalized
0 <= e <= 32766  0    0     (-1)^s x 0                      Zero
32767            any  0     (-1)^s x Infinity               Infinity
32767            any  non-0 NaN                             NaN
*/

namespace Common {

XPFloat XPFloat::fromDouble(double value, Semantics semantics) {
	uint64 bits;
	memcpy(&bits, &value, 8);
	return fromDoubleBits(bits, semantics);
}

XPFloat XPFloat::fromDoubleBits(uint64 inBits, Semantics semantics) {
	uint64 inMantissa = inBits & 0xfffffffffffffu;
	int16 inExponent = (inBits >> 52) & 0x7ff;
	uint8 inSign = (inBits >> 63) & 1;

	// Convert to 1.63 fraction and absolute exponent
	uint64 workMantissa = 0;
	int16 workExponent = 0;
	if (inExponent == 0) {
		if (inMantissa == 0) {
			// +/- 0
			return XPFloat(inSign << 15, 0);
		} else {
			// Subnormal
			workMantissa = inMantissa << 11;
			workExponent = -1022;

			// Move implicit 1 to the high bit
			while ((workMantissa & 0x8000000000000000u) == 0) {
				workMantissa <<= 1;
				workExponent--;
			}
		}
	} else if (inExponent == 0x7ff) {
		if (inMantissa == 0) {
			// Infinity
			return XPFloat((inSign << 15) | 0x7fffu, static_cast<uint64>(1) << 63);
		} else {
			// NaN
			return XPFloat(0xFFFFu, 0xffffffffffffffffu);
		}
	} else {
		// Normal number
		workExponent = inExponent - 1023;
		workMantissa = (inMantissa | 0x10000000000000) << 11;
	}

	return XPFloat((inSign << 15) | (workExponent + 16383), workMantissa);
}

void XPFloat::toDoubleSafe(double &result, bool &outOverflowed, Semantics semantics) const {
	uint64 temp;
	toDoubleBitsSafe(temp, outOverflowed, semantics);
	memcpy(&result, &temp, 8);
}

void XPFloat::toDoubleBitsSafe(uint64 &result, bool &outOverflowed, Semantics semantics) const {
	bool overflowed = false;
	uint64 doubleBits = 0;
	if ((signAndExponent & 0x7fff) == 0x7fff) {
		if ((mantissa & 0x7fffffffffffffffu) == 0) {
			// Infinity
			doubleBits = (static_cast<uint64>(signAndExponent & 0x8000) << (63 - 15)) | 0x7ff0000000000000u;
		} else {
			// NaN
			doubleBits = 0xffffffffffffffff;
		}
	} else {
		// For MC68881 semantics, denormal and normal numbers are handled the same way because the
		// i bit is effectively an explicit 1.
		uint8 signBit = ((signAndExponent >> 15) & 1);
		if (mantissa == 0) {
			// +/- 0
			doubleBits = static_cast<uint64>(signBit) << 63;
		} else {
			// Convert to 1.63
			int32 workExponent = static_cast<int32>(signAndExponent & 0x7fff) - 16383;
			uint64 workMantissa = mantissa;

			while ((workMantissa & 0x8000000000000000u) == 0) {
				workMantissa <<= 1;
				workExponent--;
			}

			int32 adjustedExponent = workExponent + 1023;
			if (adjustedExponent < 0) {
				// Subnormal
				int subnormalBits = -adjustedExponent;
				if (subnormalBits > 52)
					workMantissa = 0;
				else
					workMantissa >>= subnormalBits;
				adjustedExponent = 0;
			} else {
				// Normal
				if (adjustedExponent >= 0x7ff) {
					// Overflow to +/- infinity
					overflowed = true;
					adjustedExponent = 0x7ff;
					workMantissa = 0;
				}
			}

			doubleBits = (static_cast<uint64>(signBit) << 63) | (static_cast<uint64>(adjustedExponent) << 52) | ((workMantissa >> 11) & 0xfffffffffffffu);
		}
	}

	memcpy(&result, &doubleBits, 8);
	outOverflowed = overflowed;
}

double XPFloat::toDouble(Semantics semantics) const {
	double result;
	bool overflowed;
	toDoubleSafe(result, overflowed, semantics);
	if (overflowed)
		warning("Extended-precision floating point value was too large to represent as a double");

	return result;
}

}