File: sound_a2.cpp

package info (click to toggle)
scummvm 2.9.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 450,268 kB
  • sloc: cpp: 4,297,604; asm: 28,322; python: 12,901; sh: 11,219; java: 8,477; xml: 7,843; perl: 2,633; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (220 lines) | stat: -rw-r--r-- 7,713 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "audio/mixer.h"

#include "agi/agi.h"
#include "agi/sound_a2.h"

namespace Agi {

// SoundGenA2 plays Apple II sounds.
//
// Apple II AGI sounds are a series of monotonic notes. They sound similar to
// PC speaker versions, but they use a different resource format, and sound
// playback is a blocking operation.
//
// The sound resource's values are based on the number of 6502 CPU cycles
// consumed by AGI's play-note routine and the speed of the CPU. Playback was
// driven by the engine's own inner loops instead of a timer, so games are
// blocked until a sound is completed or interrupted by a key press.
//
// Common::PCSpeaker is used for sound generation. It produces significantly
// louder volumes than the other AGI sound generators, so I've lowered the
// mixer volume for consistency.

#define A2_MIXER_VOLUME 20

static void calculateNote(uint16 clickCount, uint16 delayCount, float &freq, uint32 &duration_usec);
static uint32 calculateDelayCycles(uint16 delayCount);
static uint32 calculateTotalCycles(uint32 delayCycles, uint16 delayCount, uint16 clickCount);

SoundGenA2::SoundGenA2(AgiBase *vm, Audio::Mixer *pMixer) :
	_isPlaying(false),
	SoundGen(vm, pMixer) {
	
	_mixer->playStream(Audio::Mixer::kMusicSoundType, _soundHandle, this, -1, A2_MIXER_VOLUME, 0, DisposeAfterUse::NO, true);
}

SoundGenA2::~SoundGenA2() {
	_mixer->stopHandle(*_soundHandle);
}

void SoundGenA2::play(int resnum) {
	Common::StackLock lock(_mutex);

	if (_vm->_game.sounds[resnum] == nullptr ||
		_vm->_game.sounds[resnum]->type() != AGI_SOUND_APPLE2) {
		error("Apple II sound %d not loaded", resnum);
	}

	_speaker.stop();

	// parse and enqueue all notes
	AgiSound *sound = _vm->_game.sounds[resnum];
	byte *data = sound->getData();
	uint32 dataLength = sound->getLength();
	for (uint32 i = 0; i + 4 < dataLength; i += 4) {
		uint16 clickCount = READ_LE_UINT16(&data[i]);
		uint16 delayCount = READ_LE_UINT16(&data[i + 2]);
		if (clickCount == 0xffff) {
			break;
		}
		
		float freq;
		uint32 duration_usec;
		calculateNote(clickCount, delayCount, freq, duration_usec);

		if (delayCount != 0) {
			_speaker.playQueue(Audio::PCSpeaker::kWaveFormSquare, freq, duration_usec);
		} else {
			_speaker.playQueue(Audio::PCSpeaker::kWaveFormSilence, 0, duration_usec);
		}
	}
	
	_isPlaying = true;
}

void SoundGenA2::stop() {
	Common::StackLock lock(_mutex);

	_speaker.stop();
	_isPlaying = false;
}

int SoundGenA2::readBuffer(int16 *buffer, const int numSamples) {
	Common::StackLock lock(_mutex);

	// if not playing then there are no samples
	if (!_isPlaying) {
		return 0;
	}

	// fill the buffer with PCSpeaker samples
	int result = _speaker.readBuffer(buffer, numSamples);

	// if PCSpeaker is no longer playing then sound is finished
	if (!_speaker.isPlaying()) {
		_isPlaying = false;
		_vm->_sound->soundIsFinished();
	}

	return result;
}

// Apple II note calculations
// 
// Each note is four bytes. Each byte controls how many iterations a loop makes
// in AGI's play-note routine. If the last two bytes are zero then the "click"
// instruction (LDA $C030) is skipped.
//
// The four bytes are conceptually two 16-bit little-endian values: the number
// of clicks to perform and the delay before each click.
//
// Calculating a note's frequency and duration requires calculating the number
// of CPU cycles spent delaying before each click and the number of CPU cycles
// spent in the play-note routine, and then applying the CPU speed.
//
// play-note routine from Black Cauldron:
//
// 6583:A5 12                LDA VALTYP+1   0012 ; a = delayCount[0]
// 6585:05 13                ORA GARFLG     0013 ; a |= delayCount[1]
// 6587:85 14                STA SUBFLG     0014 ; playNote = delayCount != 0
// ----------- begin counting cycles -----------
// 6589:A6 13                LDX GARFLG     0013 ; x = delayCount[1]
// 658B:A4 12                LDY VALTYP+1   0012 ; y = delayCount[0]
// 658D:88                   DEY                 ; x--
// 658E:D0 FD                BNE $658D      658D
// 6590:CA                   DEX                 ; y--
// 6591:10 FA                BPL $658D      658D
// 6593:A5 14                LDA SUBFLG     0014 ; a = playNote
// 6595:F0 03                BEQ $659A      659A ; skip click if !playNote
// 6597:AD 30 C0             LDA SPKR       C030 ; *click*
// 659A:C6 10                DEC DIMFLG     0010 ; clickCount[0]--
// 659C:D0 EB                BNE $6589      6589
// 659E:C6 11                DEC VALTYP     0011 ; clickCount[1]--
// 65A0:10 E7                BPL $6589      6589
// ----------- end counting cycles -------------
// 65A2:60                   RTS

static void calculateNote(uint16 clickCount, uint16 delayCount, float &freq, uint32 &duration_usec) {
	// calculate CPU cycles
	uint32 delayCycles = calculateDelayCycles(delayCount);
	uint32 totalCycles = calculateTotalCycles(delayCycles, delayCount, clickCount);

	// frequency is half the time spent delaying before a click,
	// because each click only toggles the speaker's state.
	// the average 6502 CPU cycle at 1.023 MHz is 0.98 microseconds.
	freq = 0.5f / (delayCycles * 0.00000098f);
	duration_usec = (uint32)(totalCycles * 0.98f);
}

static uint32 calculateDelayCycles(uint16 delayCount) {
	bool playNote = (delayCount != 0);
	uint32 delayHighByte = delayCount >> 8;

	uint32 cycles = 0;
	cycles += 3; // LDX
	cycles += 3; // LDY
	if (playNote) {
		cycles += (2 * delayCount); // DEY
		int bneNoBranchCount = (delayCount / 256) + 1;
		cycles += (3 * (delayCount - bneNoBranchCount)) + // BNE
			      (2 * bneNoBranchCount);
	} else {
		cycles += ((2 + 3) * 256) - 1; // DEY, BNE - 1 for last 2-cycle BNE
	}
	cycles += 2 * (delayHighByte + 1); // DEX
	cycles += (3 * delayHighByte) + 2; // BPL (3 cycles, 2 cycles on last iteration)
	cycles += 3;                       // LDA playNote
	cycles += playNote ? 2 : 3;        // BEQ (playNote)

	return cycles;
}

static uint32 calculateTotalCycles(uint32 delayCycles, uint16 delayCount, uint16 clickCount) {
	bool playNote = (delayCount != 0);
	uint32 clickHighByte = clickCount >> 8;

	// click count should never be zero, but if it were, then the low byte
	// would wrap around and produce 256 clicks while the high byte would
	// be correctly interpreted as zero.
	if (clickCount == 0) {
		clickCount = 256;
	}

	uint32 cycles = 0;
	cycles += delayCycles * clickCount; // every click incurs delayCycles
	if (playNote) {
		cycles += (4 * clickCount); // every click incurs LDA SPKR (the click!)
	}

	cycles += 5 * clickCount; // DEC
	int bneNoBranchCount = (clickCount / 256) + 1;
	cycles += (3 * (clickCount - bneNoBranchCount)) + // BNE
	          (2 * bneNoBranchCount);
	cycles += 5 * (clickHighByte + 1); // DEC
	cycles += (3 * clickHighByte) + 2; // BPL (3 cycles, 2 cycles on last iteration)

	return cycles;
}

} // End of namespace Agi