1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* This code is based on the CRAB engine
*
* Copyright (c) Arvind Raja Yadav
*
* Licensed under MIT
*
*/
#include "common/system.h"
#include "crab/crab.h"
#include "crab/PathfindingAgent.h"
namespace Crab {
// This keeps the PriorityQueue organized based on the cost of the paths.
static bool compareNodes(PlannerNode const *nodeA, PlannerNode const *nodeB) {
return nodeA->getFinalCost() > nodeB->getFinalCost();
}
PathfindingAgent::PathfindingAgent() : _nodeQueue(compareNodes) {
_grid = nullptr;
_destinationSet = false;
_destinationReachable = false;
_nodeBufferDistance = 1.0f;
_solutionFound = _noSolution = false;
_startTile = nullptr;
_goalTile = nullptr;
_clickedTile = nullptr;
}
PathfindingAgent::~PathfindingAgent() {
}
void PathfindingAgent::initialize(PathfindingGrid *g) {
_grid = g;
_nodeBufferDistance = _grid->getCellSize().x / 2.0f;
_nodeBufferDistance *= _nodeBufferDistance;
}
void PathfindingAgent::setDestination(Vector2i d, bool r) {
Vector2f iVec = Vector2f((float)d.x, (float)d.y);
setDestination(iVec, r);
}
void PathfindingAgent::setDestination(Vector2i d) {
setDestination(d, true);
}
void PathfindingAgent::setDestination(Vector2f d) {
setDestination(d, true);
}
void PathfindingAgent::setDestination(Vector2f d, bool r) {
if (_grid == nullptr)
return;
_destination = d;
// TODO: This could be optimized to cache the route somehow... (SZ)
reset();
_startTile = _grid->getNodeAtPoint(_position);
// m_pGoalTile = grid->GetNodeAtPoint(d);
// I am now tracking the goal node and the clicked tile separately to solve problems
// with hangups and trying to reach un-reachable destinations.
_clickedTile = _grid->getNodeAtPoint(d);
_goalTile = _grid->getNearestOpenNode(d, _position);
PlannerNode *startingNode = new PlannerNode();
startingNode->setLocation(_startTile);
startingNode->setHCost((_position - _destination).magnitude());
startingNode->setFinalCost((_position - _destination).magnitude());
startingNode->setGivenCost(0.0);
_nodeQueue.push(startingNode);
_createdList[_startTile] = (startingNode);
_destinationSet = true;
_solutionFound = _noSolution = false;
_destinationReachable = r;
}
void PathfindingAgent::update(uint32 timeslice) {
uint32 prevTime = g_system->getMillis();
uint32 timeLeft = timeslice;
double dTempCost;
if (_solutionFound) {
if (_vSolution.size() > 0) {
float distSqr = (_position - _vSolution.back()->getPosition()).magSqr();
if (distSqr < _nodeBufferDistance) { // Have to find the right deadzone buffer
_vSolution.pop_back();
}
}
if (_vSolution.size() > 0) {
_immediateDest = Vector2i(_vSolution.back()->getPosition().x, _vSolution.back()->getPosition().y);
} else {
if (_destinationReachable)
_immediateDest = Vector2i((int)_destination.x, (int)_destination.y);
else
_immediateDest = Vector2i((int)_position.x, (int)_position.y);
}
return;
}
// No nodes, no pathing.
if (_nodeQueue.empty()) {
return;
}
Common::StableMap<PathfindingGraphNode *, PlannerNode *>::iterator currentIter;
do {
PlannerNode *current = _nodeQueue.front();
_nodeQueue.pop();
if (current->getLocation() == _goalTile) { // We're done.
// m_vSolution = getSolution();
_vSolution = getPrunedSolution(nullptr);
_solutionFound = true;
return;
} else if (current->getLocation()->getMovementCost() > 0 && current->getLocation()->adjacentToNode(_clickedTile) && _clickedTile->getMovementCost() < 0) {
_vSolution = getPrunedSolution(current->getLocation());
_solutionFound = true;
return;
}
for (auto &i : current->_location->_neighborNodes) {
if (i->getMovementCost() > 0) {
// Compute the temp given cost
dTempCost = current->getGivenCost() + i->getMovementCost() * distExact(i, current->getLocation());
// If it's a duplicate...
currentIter = _createdList.find(i);
if (currentIter != _createdList.end()) {
if (dTempCost < currentIter->second->getGivenCost()) {
// If the current planner node has already been added, but the current path is cheaper,
// replace it.
_nodeQueue.remove(currentIter->second);
currentIter->second->setGivenCost(dTempCost);
currentIter->second->setFinalCost(
currentIter->second->getHCost() * 1.1 +
currentIter->second->getGivenCost());
currentIter->second->setParent(current);
_nodeQueue.push(currentIter->second);
}
} else { // Otherwise...
PlannerNode *successor = new PlannerNode();
successor->setLocation(i);
// Set the new heuristic (distance from node to the goal)
successor->setHCost(distExact(i, _goalTile));
successor->setGivenCost(dTempCost);
// Final cost is the distance to goal (scaled by 10%) plus the distance of the path.
successor->setFinalCost(successor->getHCost() * 1.1 + successor->getGivenCost());
successor->setParent(current);
_createdList[i] = (successor);
_nodeQueue.push(successor); // When the node is pushed onto the PriorityQueue it ends up beings sorted cheapest -> most expensive
}
}
}
// Update the time
if (timeslice != 0) {
timeLeft -= (g_system->getMillis() - prevTime);
prevTime = g_system->getMillis();
}
} while (!isDone() && ((int32)timeLeft >= 0 || timeslice == 0));
_noSolution = true; // You can't get there from here (SZ)
}
bool PathfindingAgent::isDone() const {
if (_nodeQueue.empty())
return true;
return false;
}
// Clear everything.
void PathfindingAgent::reset() {
for (auto &iter : _createdList)
delete iter.second;
_nodeQueue.clear();
_createdList.clear();
_vSolution.clear();
_solutionFound = false;
_goalTile = nullptr;
_startTile = nullptr;
}
void PathfindingAgent::shutdown() {
reset();
_grid = nullptr;
}
Common::Array<PathfindingGraphNode const *> const PathfindingAgent::getSolution(PathfindingGraphNode *destNode) const {
Common::Array<PathfindingGraphNode const *> temp;
PlannerNode *current = nullptr;
if (_createdList.find(_goalTile) != _createdList.end()) {
current = _createdList.find(_goalTile)->second;
} else if (destNode != nullptr) {
// If the dest node passed in is not null, that means we did not reach the goal but came close
// so we should start with that node instead when we are constructing our path
current = _createdList.find(destNode)->second;
}
// Iterate through the planner nodes to create a vector to return.
while (current) {
if (current->getLocation() != _startTile) {
// You don't have to path to the start
if (current->getLocation() != _startTile)
temp.push_back(current->getLocation());
}
current = current->getParent();
}
return temp;
}
Common::Array<PathfindingGraphNode const *> const PathfindingAgent::getPrunedSolution(PathfindingGraphNode *destNode) {
Common::Array<PathfindingGraphNode const *> temp = getSolution(destNode);
Common::Array<PathfindingGraphNode const *> returnVec = temp;
// Any node that is not adjacent to an obstacle or an obstacle corner can be removed.
for (int i = 0; (uint)i < temp.size(); ++i) {
if (!temp[i]->adjacentToObstacle()) {
if (i > 0 && (uint)i < temp.size() - 1) {
// This check to see if the node is a "corner" to an obstacle that should not be pruned
// to prevent hanging on corners.
Common::Array<PathfindingGraphNode *> corners = _grid->cornerCheck(temp[i - 1], temp[i + 1]);
if (corners.size() == 0) {
Common::Array<PathfindingGraphNode const *>::iterator theEnd = Common::remove(returnVec.begin(), returnVec.end(), temp[i]);
returnVec.erase(theEnd);
}
}
}
}
return returnVec;
}
double PathfindingAgent::distSquared(PathfindingGraphNode *tileA, PathfindingGraphNode *tileB) {
Vector2f vecTo = tileA->getPosition() - tileB->getPosition();
return vecTo.magSqr();
}
double PathfindingAgent::distExact(PathfindingGraphNode *tileA, PathfindingGraphNode *tileB) {
Vector2f vecTo = tileA->getPosition() - tileB->getPosition();
return vecTo.magnitude();
}
bool PathfindingAgent::adjacentToGoal(PathfindingGraphNode *node) {
for (const auto &iter : node->_neighborNodes) {
if (iter == _goalTile) {
return true;
}
}
return false;
}
} // End of namespace Crab
|