1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* This code is based on the CRAB engine
*
* Copyright (c) Arvind Raja Yadav
*
* Licensed under MIT
*
*/
#include "graphics/screen.h"
#include "crab/crab.h"
#include "crab/Polygon.h"
namespace Crab {
// Calculate the distance between [minA, maxA] and [minB, maxB]
// The distance will be negative if the intervals overlap
float IntervalDistance(float minA, float maxA, float minB, float maxB) {
if (minA < minB)
return minB - maxA;
return minA - maxB;
}
void Polygon2D::addPoint(const Vector2f &ref, const Common::String &x, const Common::String &y, Vector2f &min, Vector2f &max) {
Vector2f p;
p.x = ref.x + stringToNumber<float>(x);
p.y = ref.y + stringToNumber<float>(y);
if (p.x < min.x)
min.x = p.x;
if (p.x > max.x)
max.x = p.x;
if (p.y < min.y)
min.y = p.y;
if (p.y > max.y)
max.y = p.y;
_point.push_back(p);
}
void Polygon2D::load(rapidxml::xml_node<char> *node, Rect &bounds) {
Vector2f ref;
ref.load(node);
// Converting a polygon to an axis aligned bounding box is easy - just record the minimum and maximum values of x and y
// for the vertices of the polygon, then minimum = top left corner, max - min = dimensions
Vector2f min(std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
Vector2f max(-std::numeric_limits<float>::max(), -std::numeric_limits<float>::max());
_point.clear();
rapidxml::xml_node<char> *polynode = node->first_node("polygon");
if (polynode != nullptr) {
Common::String points, x, y;
loadStr(points, "points", polynode);
bool comma = false;
for (const auto &i : points) {
if (i == ',')
comma = true;
else if (i == ' ') {
addPoint(ref, x, y, min, max);
comma = false;
x.clear();
y.clear();
} else if (comma)
y += i;
else
x += i;
}
addPoint(ref, x, y, min, max);
bounds.x = min.x;
bounds.y = min.y;
bounds.w = max.x - min.x;
bounds.h = max.y - min.y;
}
setEdge();
}
void Polygon2D::setEdge() {
_edge.clear();
Vector2f p1, p2, res;
for (uint i = 0; i < _point.size(); i++) {
p1 = _point[i];
if (i + 1 >= _point.size())
p2 = _point[0];
else
p2 = _point[i + 1];
res.x = p2.x - p1.x;
res.y = p2.y - p1.y;
_edge.push_back(res);
}
}
Vector2f Polygon2D::center() const {
Vector2f total;
for (uint i = 0; i < _point.size(); i++) {
total.x += _point[i].x;
total.y += _point[i].y;
}
Vector2f ret;
if (_point.size() > 0) {
ret.x = total.x / _point.size();
ret.y = total.y / _point.size();
}
return ret;
}
void Polygon2D::offset(const float &x, const float &y) {
for (auto &i : _point) {
i.x += x;
i.y += y;
}
}
void Polygon2D::project(const Vector2f &axis, float &min, float &max) const {
// To project a point on an axis use the dot product
float d = axis.dotProduct(_point[0]);
min = d;
max = d;
for (auto i = _point.begin(); i != _point.end(); ++i) {
d = i->dotProduct(axis);
if (d < min)
min = d;
else if (d > max)
max = d;
}
}
PolygonCollisionResult Polygon2D::collide(const Rect &rect) const {
Polygon2D polyB;
Vector2f p;
p.x = rect.x;
p.y = rect.y;
polyB._point.push_back(p);
p.x = rect.x + rect.w;
p.y = rect.y;
polyB._point.push_back(p);
p.x = rect.x + rect.w;
p.y = rect.y + rect.h;
polyB._point.push_back(p);
p.x = rect.x;
p.y = rect.y + rect.h;
polyB._point.push_back(p);
polyB.setEdge();
return collide(polyB);
}
PolygonCollisionResult Polygon2D::collide(const Polygon2D &polyB) const {
PolygonCollisionResult result;
result._intersect = true;
int edgeCountA = _edge.size();
int edgeCountB = polyB._edge.size();
float minIntervalDistance = std::numeric_limits<float>::max();
Vector2f translationAxis;
Vector2f e;
// Loop through all the edges of both polygons
for (int edgeIndex = 0; edgeIndex < edgeCountA + edgeCountB; edgeIndex++) {
if (edgeIndex < edgeCountA)
e = _edge[edgeIndex];
else
e = polyB._edge[edgeIndex - edgeCountA];
// ===== 1. Find if the Polygon2Ds are currently intersecting =====
// Find the axis perpendicular to the current edge
Vector2f axis(-e.y, e.x);
axis.normalize();
// Find the projection of the Polygon2D on the current axis
float minA = 0;
float minB = 0;
float maxA = 0;
float maxB = 0;
project(axis, minA, maxA);
polyB.project(axis, minB, maxB);
// Check if the Polygon2D projections are currently intersecting
float intervalDistance = IntervalDistance(minA, maxA, minB, maxB);
if (intervalDistance > 0) {
// If the Polygon2Ds are not intersecting and won't intersect, exit the loop
result._intersect = false;
break;
}
// Check if the current interval distance is the minimum one. If so store
// the interval distance and the current distance.
// This will be used to calculate the minimum translation vector
intervalDistance = abs(intervalDistance);
if (intervalDistance < minIntervalDistance) {
minIntervalDistance = intervalDistance;
translationAxis = axis;
Vector2f d, ca, cb;
ca = center();
cb = polyB.center();
d.x = ca.x - cb.x;
d.y = ca.y - cb.y;
if (d.dotProduct(translationAxis) < 0) {
translationAxis.x = -translationAxis.x;
translationAxis.y = -translationAxis.y;
}
}
}
// The minimum translation vector can be used to push the Polygon2Ds apart.
// First moves the Polygon2Ds by their velocity
// then move polyA by MinimumTranslationVector.
if (result._intersect) {
result._mtv.x = translationAxis.x * minIntervalDistance;
result._mtv.y = translationAxis.y * minIntervalDistance;
}
return result;
}
bool Polygon2D::contains(const float &x, const float &y) {
bool result = false;
for (uint i = 0, j = _point.size() - 1; i < _point.size(); j = i++) {
if (((_point[i].y > y) != (_point[j].y > y)) &&
(x < (_point[j].x - _point[i].x) * (y - _point[i].y) / (_point[j].y - _point[i].y) + _point[i].x))
result = !result;
}
return result;
}
void Polygon2D::draw(const int &xOffset, const int &yOffset, const uint8 &r, const uint8 &g, const uint8 &b, const uint8 &a) {
Vector2f p1, p2;
for (uint i = 0; i < _point.size(); i++) {
p1 = _point[i];
if (i + 1 >= _point.size())
p2 = _point[0];
else
p2 = _point[i + 1];
g_engine->_screen->drawLine(p1.x + xOffset, p1.y + yOffset, p2.x + xOffset, p2.y + yOffset, g_engine->_format->ARGBToColor(a, r, g, b));
}
}
} // End of namespace Crab
|