File: adv_rails.cpp

package info (click to toggle)
scummvm 2.9.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 450,268 kB
  • sloc: cpp: 4,297,604; asm: 28,322; python: 12,901; sh: 11,219; java: 8,477; xml: 7,843; perl: 2,633; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (1076 lines) | stat: -rw-r--r-- 31,700 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "m4/adv_r/adv_rails.h"
#include "m4/core/errors.h"
#include "m4/core/imath.h"
#include "m4/mem/mem.h"
#include "m4/vars.h"

namespace M4 {

#define TOP_EDGE    0x01
#define LEFT_EDGE   0x02
#define BOTTOM_EDGE 0x04
#define RIGHT_EDGE  0x08

bool InitRails() {
	int32 i, edgeTableSize;

	// Register with the stash the frequently used structs
	if (!mem_register_stash_type(&_G(rails).memtypePATHN, sizeof(pathNode), 32, "+PATHNODE")) {
		return false;
	}

	// Create the stack. Since any path through a series of nodes can have at most MAXRAILNODES...
	if ((_G(rails).stackBottom = (railNode **)mem_alloc(sizeof(railNode *) * MAXRAILNODES, STR_RAILNODE)) == nullptr) {
		return false;
	}

	// Allocate the array of railNode pointers and initialize...
	if ((_G(rails).myNodes = (railNode **)mem_alloc(sizeof(railNode *) * MAXRAILNODES, STR_RAILNODE)) == nullptr) {
		return false;
	}

	for (i = 0; i < MAXRAILNODES; i++) {
		_G(rails).myNodes[i] = nullptr;
	}

	// Calculate the size of the edge table, allocate, and initialize
	// The edge table stores the upper triangle of a square matrix.
	edgeTableSize = (MAXRAILNODES * (MAXRAILNODES - 1)) >> 1;
	if ((_G(rails).myEdges = (int16 *)mem_alloc(sizeof(int16) * edgeTableSize, "edge table")) == nullptr) {
		return false;
	}

	for (i = 0; i < edgeTableSize; i++) {
		_G(rails).myEdges[i] = 0;
	}

	// Set the parameters and return
	_G(rails).noWalkRectList = nullptr;

	return true;
}


void rail_system_shutdown(void) {
	if (_G(rails).stackBottom) {
		mem_free(_G(rails).stackBottom);
		_G(rails).stackBottom = nullptr;
	}

	ClearRails();

	if (_G(rails).myNodes) {
		mem_free(_G(rails).myNodes);
		_G(rails).myNodes = nullptr;
	}
	if (_G(rails).myEdges) {
		mem_free(_G(rails).myEdges);
		_G(rails).myEdges = nullptr;
	}
}


void ClearRails(void) {
	int32 i, edgeTableSize;
	noWalkRect *myRect;

	if (_G(rails).myNodes) {
		for (i = 0; i < MAXRAILNODES; i++) {
			if (_G(rails).myNodes[i]) {
				mem_free((void *)_G(rails).myNodes[i]);
				_G(rails).myNodes[i] = nullptr;
			}
		}
	}

	if (_G(rails).myEdges) {
		edgeTableSize = (MAXRAILNODES * (MAXRAILNODES - 1)) >> 1;
		for (i = 0; i < edgeTableSize; i++) {
			_G(rails).myEdges[i] = 0;
		}
	}

	// Now turf the noWalkRectList
	myRect = _G(rails).noWalkRectList;
	while (myRect) {
		_G(rails).noWalkRectList = _G(rails).noWalkRectList->next;
		mem_free((void *)myRect);
		myRect = _G(rails).noWalkRectList;
	}
}


noWalkRect *intr_add_no_walk_rect(int32 x1, int32 y1, int32 x2, int32 y2, int32 altX, int32 altY, Buffer *walkCodes) {
	noWalkRect *newRect;

	// Parameter verification
	if ((x2 < x1) || (y2 < y1)) {
		return nullptr;
	}

	// Create new noWalkRect structure
	if ((newRect = (noWalkRect *)mem_alloc(sizeof(noWalkRect), "intr noWalkRect")) == nullptr) {
		error_show(FL, 'IADN', "rect size: %d %d %d %d", x1, y1, x2, y2);
		return nullptr;
	}

	// Initialize the new rect
	newRect->x1 = x1;
	newRect->y1 = y1;
	newRect->x2 = x2;
	newRect->y2 = y2;

	// Add the alternate walkto node - this node must exist
	if ((newRect->alternateWalkToNode = AddRailNode(altX, altY, walkCodes, false)) < 0) {
		error_show(FL, 'IADN', "could not add node. coord: %d %d", altX, altY);
	}

	// Now add the corner nodes.  Not as important if these don't exist
	newRect->walkAroundNode1 = AddRailNode(x1 - 1, y1 - 1, walkCodes, false);
	newRect->walkAroundNode2 = AddRailNode(x2 + 1, y1 - 1, walkCodes, false);
	newRect->walkAroundNode3 = AddRailNode(x2 + 1, y2 + 1, walkCodes, false);
	newRect->walkAroundNode4 = AddRailNode(x1 - 1, y2 + 1, walkCodes, false);

	// Now link the rectangle into the list
	newRect->prev = nullptr;
	newRect->next = _G(rails).noWalkRectList;

	if (_G(rails).noWalkRectList) {
		_G(rails).noWalkRectList->prev = newRect;
	}
	_G(rails).noWalkRectList = newRect;

	// Now refresh all the edges in case the noWalkRect is blocking edges
	RestoreEdgeList(walkCodes);

	return newRect;
}

noWalkRect *intr_add_no_walk_rect(int32 x1, int32 y1, int32 x2, int32 y2, int32 altX, int32 altY) {
	return intr_add_no_walk_rect(x1, y1, x2, y2, altX, altY, _G(screenCodeBuff)->get_buffer());
}

void intr_move_no_walk_rect(noWalkRect *myRect, int32 new_x1, int32 new_y1,
	int32 new_x2, int32 new_y2, int32 new_altX, int32 new_altY, Buffer *walkCodes) {
	if (!myRect) {
		return;
	}

	// Set the new values into the rect
	myRect->x1 = new_x1;
	myRect->y1 = new_y1;
	myRect->x2 = new_x2;
	myRect->y2 = new_y2;

	// Now move the nodes
	MoveRailNode(myRect->alternateWalkToNode, new_altX, new_altY, walkCodes, false);
	MoveRailNode(myRect->walkAroundNode1, new_x1 - 1, new_y1 - 1, walkCodes, false);
	MoveRailNode(myRect->walkAroundNode2, new_x2 + 1, new_y1 - 1, walkCodes, false);
	MoveRailNode(myRect->walkAroundNode3, new_x2 + 1, new_y2 - 1, walkCodes, false);
	MoveRailNode(myRect->walkAroundNode4, new_x1 - 1, new_y2 - 1, walkCodes, false);

	// Now refresh all the edges
	RestoreEdgeList(walkCodes);
}


void intr_remove_no_walk_rect(noWalkRect *myRect, Buffer *walkCodes) {
	// Parameter verification
	if (!myRect) {
		return;
	}

	// Remove myRect from the list
	if (myRect->prev) {
		myRect->prev->next = myRect->next;
	} else {
		_G(rails).noWalkRectList = myRect->next;
	}
	if (myRect->next) {
		myRect->next->prev = myRect->prev;
	}

	// Remove the railNodes
	RemoveRailNode(myRect->alternateWalkToNode, walkCodes, false);
	RemoveRailNode(myRect->walkAroundNode1, walkCodes, false);
	RemoveRailNode(myRect->walkAroundNode2, walkCodes, false);
	RemoveRailNode(myRect->walkAroundNode3, walkCodes, false);
	RemoveRailNode(myRect->walkAroundNode4, walkCodes, false);

	// Turf myRect
	mem_free(myRect);

	// Now refresh all the edges
	RestoreEdgeList(walkCodes);
}

void intr_remove_no_walk_rect(noWalkRect *myRect) {
	intr_remove_no_walk_rect(myRect, _G(screenCodeBuff)->get_buffer());
}

bool intr_LineCrossesRect(int32 line_x1, int32 line_y1, int32 line_x2, int32 line_y2,
	int32 rect_x1, int32 rect_y1, int32 rect_x2, int32 rect_y2) {
	int32 p1X, p1Y, p2X, p2Y, mX, mY;
	uint8 endCode1, endCode2, midCode;
	bool finished;

	// Ensure we have a valid rectangle
	if ((rect_x1 > rect_x2) || (rect_y1 > rect_y2)) {
		return false;
	}

	// Make copies of x1, y1, x2, y2
	p1X = line_x1;
	p1Y = line_y1;
	p2X = line_x2;
	p2Y = line_y2;

	// Calculate the cohen sutherland codes for the endpoints of the line
	// For (p1X, p1Y)
	endCode1 = 0;
	if (p1X < rect_x1) {
		endCode1 = LEFT_EDGE;
	} else if (p1X > rect_x2) {
		endCode1 = RIGHT_EDGE;
	}
	if (p1Y < rect_y1) {
		endCode1 |= TOP_EDGE;
	} else if (p1Y > rect_y2) {
		endCode1 |= BOTTOM_EDGE;
	}

	// For (p2X, p2Y)
	endCode2 = 0;
	if (p2X < rect_x1) {
		endCode2 = LEFT_EDGE;
	} else if (p2X > rect_x2) {
		endCode2 = RIGHT_EDGE;
	}
	if (p2Y < rect_y1) {
		endCode2 |= TOP_EDGE;
	} else if (p2Y > rect_y2) {
		endCode2 |= BOTTOM_EDGE;
	}

	// If either endCode is 0, that point is inside the rect, therefore the line intersects
	if ((!endCode1) || (!endCode2)) {
		return true;
	}

	finished = false;
	while (!finished) {
		// If both have a bit set in common, then the line segment is completely off one edge
		if (endCode1 & endCode2) {
			finished = true;
		}

		// Calculate the mid point of the line segment
		mX = (p1X + p2X) >> 1;
		mY = (p1Y + p2Y) >> 1;

		// Because the midpoint is an integer (round-off err), make sure it isn't the same
		// as one of the two endpoints.
		if (((mX == p1X) && (mY == p1Y)) || ((mX == p2X) && (mY == p2Y))) {
			return false;
		}

		// Calculate the cohen sutherland codes for the midpoint of the line segment
		midCode = 0;
		if (mX < rect_x1) {
			midCode = LEFT_EDGE;
		} else if (mX > rect_x2) {
			midCode = RIGHT_EDGE;
		}
		if (mY < rect_y1) {
			midCode |= TOP_EDGE;
		} else if (mY > rect_y2) {
			midCode |= BOTTOM_EDGE;
		}

		if (!midCode) {
			return true;
		}

		// Else the midCode and one of the end points must form a line segment completely off one edge
		else if (midCode & endCode1) {
			// Setting endpoint1 to the midpoint throws away that half of the line segment
			p1X = mX;
			p1Y = mY;
			endCode1 = midCode;
		} else {
			// Ditto for endpoint 2
			p2X = mX;
			p2Y = mY;
			endCode2 = midCode;
		}
	}

	// Got through without intersecting, therefore...
	return false;
}


static bool intr_LinePassesThroughRect(int32 x1, int32 y1, int32 x2, int32 y2) {
	noWalkRect *tempRect;
	bool intersected;

	// If there aren't any no-walk rects, no problem, return false
	if (!_G(rails).noWalkRectList) {
		return false;
	}

	// Loop through the _G(rails).noWalkRectList
	tempRect = _G(rails).noWalkRectList;
	intersected = false;
	while (tempRect && (!intersected)) {
		// See if the line passes through tempRect
		intersected = intr_LineCrossesRect(x1, y1, x2, y2, tempRect->x1, tempRect->y1, tempRect->x2, tempRect->y2);

		tempRect = tempRect->next;
	}

	return intersected;
}


bool intr_LinesCross(int32 line1_x1, int32 line1_y1, int32 line1_x2, int32 line1_y2,
	int32 line2_x1, int32 line2_y1, int32 line2_x2, int32 line2_y2) {
	bool intersected;
	int32 rectX1, rectY1, rectX2, rectY2;

	// The theory is that either line1 intersects the rectangle created by line2, and/or line2
	// intersects the rectangle reacted by line1.

	// Make sure both lines are listed left to right, top to bottom when passing in the coords as a rectangle
	rectX1 = imath_min(line1_x1, line1_x2);
	rectY1 = imath_min(line1_y1, line1_y2);
	rectX2 = imath_max(line1_x1, line1_x2);
	rectY2 = imath_max(line1_y1, line1_y2);

	intersected = intr_LineCrossesRect(line2_x1, line2_y1, line2_x2, line2_y2, rectX1, rectY1, rectX2, rectY2);
	if (intersected) {
		rectX1 = imath_min(line2_x1, line2_x2);
		rectY1 = imath_min(line2_y1, line2_y2);
		rectX2 = imath_max(line2_x1, line2_x2);
		rectY2 = imath_max(line2_y1, line2_y2);

		intersected = intr_LineCrossesRect(line1_x1, line1_y1, line1_x2, line1_y2, rectX1, rectY1, rectX2, rectY2);
	}

	return intersected;
}


void CreateEdge(int32 node1, int32 node2, Buffer *walkCodes) {
	int32 i, temp;
	int32 index;
	int32 x1, y1, x2, y2;
	int32 y_unit, x_unit, xdiff, ydiff, scanX, scanY, width, height, error_term, stride;
	bool valid, finished;
	frac16 deltaX, deltaY, distance;
	uint8 *walkCodePtr;

	// Check for nodes and edges
	if ((!_G(rails).myNodes) || (!_G(rails).myEdges)) {
		return;
	}
	if ((node1 < 0) || (node1 >= MAXRAILNODES) || (node2 < 0) || (node2 >= MAXRAILNODES)) {
		return;
	}
	if (node1 == node2) {
		return;
	}

	// Ensure node1 < node2
	if (node2 < node1) {
		temp = node1;
		node1 = node2;
		node2 = temp;
	}

	// If node1 is y and node2 is x, first find table entry ie. tableWidth * y + x, the subtract
	// n(n+1)/2  since only the upper triangle of the table is stored...
	index = (MAXRAILNODES - 1) * node1 + node2 - 1 - (node1 * (node1 + 1) >> 1);
	_G(rails).myEdges[index] = 0;
	valid = true;
	walkCodePtr = nullptr;
	finished = false;

	if ((!_G(rails).myNodes[node1]) || (!_G(rails).myNodes[node2]))
		return;
	x1 = _G(rails).myNodes[node1]->x;
	y1 = _G(rails).myNodes[node1]->y;
	x2 = _G(rails).myNodes[node2]->x;
	y2 = _G(rails).myNodes[node2]->y;

	// Ensure the algorithm is symmetric...
	if (x2 < x1) {
		temp = x1;
		x1 = x2;
		x2 = temp;
		temp = y1;
		y1 = y2;
		y2 = temp;
	}

	if (walkCodes && walkCodes->data) {
		// Initialize the buffer data pointer, the maximum dimensions of the buffer, and the scan x and y
		width = walkCodes->w;
		stride = walkCodes->stride;
		height = walkCodes->h;
		scanX = x1;
		scanY = y1;

		// Calculate the difference along the y-axis
		ydiff = y2 - y1;

		// If we are scanning from bottom to top
		if (ydiff < 0) {

			//set ydiff to be the absolute, and set the y_unit direction negative
			ydiff = -ydiff;
			y_unit = -1;
		}

		//else set the y_unit direction positive
		else {
			y_unit = 1;
		}

		// Because of the symmetry check, xdiff is always positive
		xdiff = x2 - x1;
		x_unit = 1;

		// If the difference is bigger along the x axis
		if (xdiff > ydiff) {
			// Initialize the error term
			error_term = xdiff >> 1;

			// Loop along the x axis and adjust scanY as necessary
			scanX = x1;
			for (i = 0; ((i <= xdiff) && valid && (!finished)); i++) {

				// Check if we have scanned off the edge of the buffer
				if ((scanX >= width) || ((y_unit > 0) && (scanY >= height)) || ((y_unit < 0) && (scanY < 0))) {
					finished = true;
				} else {
					// Else we either haven't yet reached the buffer, or we are on it
					// Make sure we're on the buffer
					if ((scanX >= 0) && (scanY >= 0) && (scanY < height)) {
						// Check to see if this is a valid walking area
						if (!walkCodePtr) {
							walkCodePtr = (uint8 *) & ((walkCodes->data)[scanY * stride + scanX]);
						}
						if ((*walkCodePtr) & 0x10) {
							valid = false;
						}
					}

					// Update scanY if appropriate
					// Update the error term
					error_term += ydiff;

					// If the error_term has exceeded the xdiff, we need to move one unit along the y axis
					if (error_term >= xdiff) {
						// Reset the error term
						error_term -= xdiff;

						// Move along the y axis
						scanY += y_unit;

						// Update the walkCodePtr index if necessary
						if (walkCodePtr) {
							if (y_unit > 0) {
								walkCodePtr += stride;
							} else {
								walkCodePtr -= stride;
							}
						}
					}
				}
				scanX += x_unit;

				// Update the walkCodePtr index if necessary
				if (walkCodePtr) {
					if (x_unit > 0) {
						walkCodePtr++;
					} else {
						walkCodePtr--;
					}
				}
			}
		} else {
			// Else the difference is bigger along the y axis
			// Initialize the error term
			error_term = ydiff >> 1;

			// Loop along the y axis and adjust scanX as necessary
			scanY = y1;
			for (i = 0; ((i <= ydiff) && valid && (!finished)); i++) {
				// Check if we have scanned off the edge of the buffer
				if (((x_unit > 0) && (scanX >= width)) || ((x_unit < 0) && (scanX < 0)) ||
					((y_unit > 0) && (scanY >= height)) || ((y_unit < 0) && (scanY < 0))) {
					finished = true;
				} else {
					// Else we either haven't yet reached the buffer, or we are on it
					// Make sure we're on the buffer
					if ((scanX >= 0) && (scanX < width) && (scanY >= 0) && (scanY < height)) {
						// Check to see if this is a valid walking area
						if (!walkCodePtr) {
							walkCodePtr = (uint8 *) & ((walkCodes->data)[scanY * stride + scanX]);
						}
						if ((*walkCodePtr) & 0x10) {
							valid = false;
						}
					}

					// Update scanX if appropriate
					// Update the error term
					error_term += xdiff;

					// If the error_term has exceeded the xdiff, we need to move one unit along the y axis
					if (error_term >= ydiff) {
						// Reset the error term
						error_term -= ydiff;

						// Move along the x axis
						scanX += x_unit;

						// Update the walkCodePtr index if necessary
						if (walkCodePtr) {
							if (x_unit > 0) {
								walkCodePtr++;
							} else {
								walkCodePtr--;
							}
						}
					}
				}
				scanY += y_unit;

				// Update the walkCodePtr index if necessary
				if (walkCodePtr) {
					if (y_unit > 0) {
						walkCodePtr += stride;
					} else {
						walkCodePtr -= stride;
					}
				}
			}
		}
	}

	// Now that we've checked it against the walk codes, we check if the line passes through
	// any of the forbidden rectangles
	if (valid) {
		if (intr_LinePassesThroughRect(x1, y1, x2, y2)) {
			valid = false;
		}
	}

	// Finally, if the edge is still valid, fill in the edge table with the distance between the nodes.
	if (valid) {
		deltaX = imath_abs(((frac16)(x2 - x1)) << 16);
		deltaY = imath_abs(((frac16)(y2 - y1)) << 16);
		if ((deltaX >= 0x800000) || (deltaY >= 0x800000)) {
			deltaX >>= 16;
			deltaY >>= 16;
			distance = (frac16)(SqrtF16(deltaX * deltaX + deltaY * deltaY) << 16);
		} else {
			distance = SqrtF16(SquareSF16(deltaX) + SquareSF16(deltaY)) << 8;
		}

		_G(rails).myEdges[index] = (int16)(distance >> 16);
	}
}


void RestoreNodeEdges(int32 nodeID, Buffer *walkCodes) {
	int32 i;
	for (i = 0; i < MAXRAILNODES; i++) {
		CreateEdge(i, nodeID, walkCodes);
	}
}


void RestoreEdgeList(Buffer *walkCodes) {
	int32 i, j;
	for (i = 0; i < MAXRAILNODES; i++) {
		for (j = i + 1; j < MAXRAILNODES; j++) {
			CreateEdge(i, j, walkCodes);
		}
	}
}

int32 AddRailNode(int32 x, int32 y, Buffer *walkCodes, bool restoreEdges) {
	int32 i, j;
	railNode *newNode;

	if ((!_G(rails).myNodes) || (!_G(rails).myEdges)) {
		return -1;
	}
	for (i = 0; (i < MAXRAILNODES) && _G(rails).myNodes[i]; i++) {
	}

	if (i < MAXRAILNODES) {
		if ((newNode = (railNode *)mem_alloc(sizeof(railNode), "railNode")) == nullptr) {
			return -1;
		}
		newNode->nodeID = (Byte)i;
		newNode->x = (int16)x;
		newNode->y = (int16)y;
		_G(rails).myNodes[i] = newNode;

		if (restoreEdges) {
			for (j = 0; j < MAXRAILNODES; j++) {
				if (_G(rails).myNodes[j]) CreateEdge(i, j, walkCodes);
			}
		}

		return i;
	}
	return -1;
}

void MoveRailNode(int32 nodeID, int32 x, int32 y, Buffer *walkCodes, bool restoreEdges) {
	if ((!_G(rails).myNodes) || (!_G(rails).myEdges) || (nodeID < 0) || (nodeID >= MAXRAILNODES) || (!_G(rails).myNodes[nodeID])) {
		return;
	}
	_G(rails).myNodes[nodeID]->x = (int16)x;
	_G(rails).myNodes[nodeID]->y = (int16)y;

	if (restoreEdges) {
		RestoreNodeEdges(nodeID, walkCodes);
	}
}

bool RemoveRailNode(int32 nodeID, Buffer *walkCodes, bool restoreEdges) {
	if ((nodeID < 0) || (nodeID >= MAXRAILNODES)) {
		return false;
	}
	if ((!_G(rails).myNodes) || (!_G(rails).myNodes[nodeID]) || (!_G(rails).myEdges)) {
		return false;
	}
	mem_free((void *)_G(rails).myNodes[nodeID]);
	_G(rails).myNodes[nodeID] = nullptr;

	if (restoreEdges) {
		RestoreNodeEdges(nodeID, walkCodes);
	}

	return true;
}

bool RailNodeExists(int32 nodeID, int32 *nodeX, int32 *nodeY) {
	if ((nodeID < 0) || (nodeID >= MAXRAILNODES) || (!_G(rails).myNodes) || (!_G(rails).myNodes[nodeID])) {
		return false;
	}
	if (nodeX) {
		*nodeX = _G(rails).myNodes[nodeID]->x;
	}
	if (nodeY) {
		*nodeY = _G(rails).myNodes[nodeID]->y;
	}
	return true;
}

int16 GetEdgeLength(int32 node1, int32 node2) {
	int32 temp;
	int32 index;
	if (!_G(rails).myEdges) return 0;
	if (node1 == node2) return 0;
	if (node2 < node1) {
		temp = node1;
		node1 = node2;
		node2 = temp;
	}
	// If node1 is y and node2 is x, first find table entry ie. tableWidth * y + x, the subtract
	// n(n+1)/2  since only the upper triangle of the table is stored...
	index = (MAXRAILNODES - 1) * node1 + node2 - 1 - (node1 * (node1 + 1) >> 1);
	return _G(rails).myEdges[index];
}


void DisposePath(railNode *pathStart) {
	railNode *tempNode;

	tempNode = pathStart;
	while (tempNode) {
		pathStart = pathStart->shortPath;
		mem_free((void *)tempNode);
		tempNode = pathStart;
	}
}


static railNode *DuplicatePath(railNode *pathStart) {
	railNode *newNode, *firstNode, *prevNode, *pathNode;

	// Initialize pointers
	firstNode = prevNode = nullptr;

	// This routine assumes a valid path from _G(rails).myNodes[origID] following _G(rails).myNodes[]->shortPath until nullptr
	pathNode = pathStart;

	// Loop until nullptr - end of path
	while (pathNode) {

		// Create a new railNode, and duplicate values
		if ((newNode = (railNode *)mem_alloc(sizeof(railNode), "+RAIL")) == nullptr) {
			error_show(FL, 'OOM!', "Could not alloc railNode");
			return nullptr;
		}
		newNode->x = pathNode->x;
		newNode->y = pathNode->y;
		newNode->shortPath = nullptr;

		// Link into the new list
		if (!firstNode) {
			firstNode = newNode;
		} else {
			prevNode->shortPath = newNode;
		}
		prevNode = newNode;

		// Get the next in the list
		pathNode = pathNode->shortPath;
	}

	return firstNode;
}


railNode *CreateCustomPath(int coord, ...) {
	va_list argPtr;
	railNode *firstNode, *prevNode = nullptr, *newNode;
	int32 x, y;

	// Initialize firstNode
	firstNode = nullptr;

	// Set argPtr to point to the beginning of the variable arg list
	va_start(argPtr, coord);

	// Loop until coord == -1
	while (coord != -1) {
		// Set x
		x = coord;

		// Read the next arg off the arg list, and set y
		coord = va_arg(argPtr, int);
		y = coord;


		// Create a new node struct
		if ((newNode = (railNode *)mem_alloc(sizeof(railNode), "railNode")) == nullptr) {
			error_show(FL, 'OOM!', "could not alloc railNode");
			return nullptr;
		}

		// Set the new node values...
		newNode->x = x;
		newNode->y = y;
		newNode->shortPath = nullptr;

		// Link into path list
		if (!firstNode) {
			firstNode = newNode;
		} else {
			assert(prevNode);
			prevNode->shortPath = newNode;
		}
		prevNode = newNode;

		// Read another arg, should be the next "x" for the next pair of args
		if (coord != -1) {
			coord = va_arg(argPtr, int);
		}
	}

	// Restore the stack
	va_end(argPtr);

	return firstNode;
}


bool GetShortestPath(int32 origID, int32 destID, railNode **shortPath) {
	pathNode *thePath, *tempPathNode;
	railNode **checkStackTop, *currNode, *tempNode;
	int16 edgeDist, shortcutWeight;
	uint32 currPathNodes;
	int32 i, prevID, maxNodeID;

	*shortPath = nullptr;

	// Check that we have two valid and different nodes to walk between
	if ((!_G(rails).myNodes) || (!_G(rails).myEdges)) {
		return false;
	}
	if (origID == destID) {
		return true;
	}
	if ((!_G(rails).myNodes[origID]) || (!_G(rails).myNodes[destID])) {
		return false;
	}
	if ((_G(rails).myNodes[origID]->x == _G(rails).myNodes[destID]->x) && (_G(rails).myNodes[origID]->y == _G(rails).myNodes[destID]->y)) {
		return true;
	}

	// Set the end of the shortest path
	_G(rails).myNodes[destID]->shortPath = nullptr;

	// Check to see if we can walk directly from oridID to destID
	edgeDist = GetEdgeLength(origID, destID);
	if (edgeDist > 0) {
		_G(rails).myNodes[origID]->shortPath = _G(rails).myNodes[destID];
		_G(rails).myNodes[destID]->pathWeight = edgeDist;
		*shortPath = DuplicatePath(_G(rails).myNodes[origID]->shortPath);
		return true;
	}

	// Otherwise, run the algorithm to determine the shortest path

	// Initialize the railNodes and find the largest node ID to speed up for loops
	maxNodeID = 0;
	for (i = 0; i < MAXRAILNODES; i++) {
		tempNode = _G(rails).myNodes[i];
		if (tempNode) {
			maxNodeID = i;
			tempNode->shortPath = nullptr;
			tempNode->pathWeight = 32767;
		}
	}

	// Initialize the stack
	_G(rails).stackTop = _G(rails).stackBottom;

	// Initialize the bitmask of the nodes and the current path list
	currPathNodes = 0;
	thePath = nullptr;

	// Put the first node onto the stack (the address of, actually)
	_G(rails).myNodes[origID]->pathWeight = 0;
	*_G(rails).stackTop++ = _G(rails).myNodes[origID];

	// While there are still nodes on the stack keep processing
	while (_G(rails).stackTop > _G(rails).stackBottom) {

		// Take the first node off the stack
		currNode = *(--_G(rails).stackTop);

		// See if it is adjacent to the destination node - always 0 the first time through...
		edgeDist = GetEdgeLength(currNode->nodeID, destID);

		// Yes it is, therefore, we have a valid path, maybe the shortest...
		if (edgeDist > 0) {
			// Check whether the pathweight of the second last node + the edge to get to the last
			// is less than the pathweight of the previously found shortest path
			if (currNode->pathWeight + edgeDist < _G(rails).myNodes[destID]->pathWeight) {
				// If so, store the new shortest path weight, and complete the path link
				_G(rails).myNodes[destID]->pathWeight = (int16)(currNode->pathWeight + edgeDist);
				_G(rails).myNodes[currNode->nodeID]->shortPath = _G(rails).myNodes[destID];

				// Now we follow "thePath" back to the origID, updating the bitMask, and setting shortPath links
				// initialize variables used in the loop
				prevID = currNode->nodeID;
				currPathNodes = 0;
				tempPathNode = thePath;

				// Loop through to the end of the path
				while (tempPathNode) {

					// Link up the nodes in the shortPath
					_G(rails).myNodes[tempPathNode->nodeID]->shortPath = _G(rails).myNodes[prevID];

					// Or in the bitmask
					currPathNodes |= (1 << prevID);

					// Setup for the next link
					prevID = tempPathNode->nodeID;
					tempPathNode = tempPathNode->next;
				}
			}

			// Set the stackTop to point at the node preceding currNode, which precedes destID
			// we want to check the contents of the stack from the top, and stackTop always point to
			// the next available location, not directly at the top element.
			_G(rails).stackTop--;

			// Setup temp Ptr
			tempPathNode = thePath;

			// While the top of the stack point at a node directly in thePath -
			// we remove all the nodes in thePath from the top of the stack until we come across
			// one that is not in thePath.  This one that is not in thePath will not yet have been
			// checked.
			while ((tempPathNode) && (tempPathNode->nodeID == (*_G(rails).stackTop)->nodeID)) {
				_G(rails).stackTop--;
				thePath = thePath->next;
				mem_free_to_stash((void *)tempPathNode, _G(rails).memtypePATHN);
				tempPathNode = thePath;
			}

			// Since thePath cannot have more elements than are on the stack, we will never have
			// a stack underflow, but when the _G(rails).stackTop points to a node not in thePath, or
			// if the entire thePath was on the stack, thus the stack was completely emptied,
			// we must reset the _G(rails).stackTop to point to the next available location.
			_G(rails).stackTop++;
		} else {
			// Else the currNode is not adjacent to the dest node
			// Put currNode back onto the stack
			_G(rails).stackTop++;

			// Setup a temporary pointer, so we know whether any neighbors of the currNode were stacked...
			checkStackTop = _G(rails).stackTop;

			// Check to see whether the path leading to currNode is at least shorter than the current shortest path
			if (currNode->pathWeight < _G(rails).myNodes[destID]->pathWeight) {
				// If so, loop through all the nodes
				for (i = 0; i <= maxNodeID; i++) {
					if (_G(rails).myNodes[i]) {
						// For each different valid node, check to see if the currNode is adjacent to it
						edgeDist = GetEdgeLength(currNode->nodeID, i);

						// If it is a neighbor, and the pathweight reaching it through currNode is
						// less than the weight of any previous path that reached the same neighbor...
						if ((edgeDist > 0) && ((currNode->pathWeight + edgeDist) < _G(rails).myNodes[i]->pathWeight)) {
							// Now see if that neighbor is already part of the current shortest path
							if (currPathNodes & (1 << i)) {
								// If so, the path from node i to the destination node will already have been created
								// therefore the entire path will become shorter by the original weight to reach node i
								// minus (the weight to get to the currNode plus the weight of the edge to
								// get from the currNode to node i).
								shortcutWeight = (int16)(_G(rails).myNodes[i]->pathWeight - (currNode->pathWeight + edgeDist));

								// Loop from node i to the dest node, subtract the shortcutWeight, and or the bitmask
								currPathNodes = 0;
								tempNode = _G(rails).myNodes[i];
								while (tempNode) {
									currPathNodes |= (1 << tempNode->nodeID);
									tempNode->pathWeight -= shortcutWeight;
									tempNode = tempNode->shortPath;
								}

								// Link the currNode to node i
								_G(rails).myNodes[currNode->nodeID]->shortPath = _G(rails).myNodes[i];

								// ThePath is a linked list that lists the nodeIDs
								//		FROM: the node leading up to the currNode
								//		TO: the origID (ie. backwards)
								// Loop through backwards, linking up the new shortPath, and ORing the bitmask
								prevID = currNode->nodeID;
								tempPathNode = thePath;
								while (tempPathNode) {
									_G(rails).myNodes[tempPathNode->nodeID]->shortPath = _G(rails).myNodes[prevID];
									currPathNodes |= (1 << prevID);
									prevID = tempPathNode->nodeID;
									tempPathNode = tempPathNode->next;
								}
							} else {
								// Else we don't know whether we can reach the destID from node i
								// Set the pathweight of node i to the smaller value, and place it on the stack
								_G(rails).myNodes[i]->pathWeight = (int16)(currNode->pathWeight + edgeDist);
								*_G(rails).stackTop++ = _G(rails).myNodes[i];
							}
						}
					}
				}
			}

			// If we put neighbors of the currNode onto the stack...
			if (_G(rails).stackTop != checkStackTop) {
				// Create a pathNode, and place in the list.
				tempPathNode = (pathNode *)mem_get_from_stash(_G(rails).memtypePATHN, "+PATH");
				tempPathNode->nodeID = currNode->nodeID;
				tempPathNode->next = thePath;
				thePath = tempPathNode;
			} else {
				// Otherwise currNode had no neighbors such that it is not known whether traversing
				// through it's neighbor is shorter.  currNode is either a dead end, or is in the path

				// Take currNode off the stack top
				_G(rails).stackTop--;

				// Set the _G(rails).stackTop to point at the node preceding currNode
				// we want to check the contents of the stack from the top, and _G(rails).stackTop always point to
				// the next available location, not directly at the top element.
				_G(rails).stackTop--;

				//setup temp Ptr
				tempPathNode = thePath;

				// While the top of the stack point at a node directly in thePath -
				// we remove all the nodes in thePath from the top of the stack until we come across
				// one that is not in thePath.  This one that is not in thePath will not yet have been
				// checked.
				while ((tempPathNode) && (tempPathNode->nodeID == (*_G(rails).stackTop)->nodeID)) {
					_G(rails).stackTop--;
					thePath = thePath->next;
					mem_free_to_stash((void *)tempPathNode, _G(rails).memtypePATHN);
					tempPathNode = thePath;
				}

				// Since thePath cannot have more elements than are on the stack, we will never have
				// a stack underflow, but when the _G(rails).stackTop points to a node not in thePath, or
				// if the entire thePath was on the stack, thus the stack was completely emptied,
				// we must reset the _G(rails).stackTop to point to the next available location.
				_G(rails).stackTop++;

			}
		}
	}

	// We've completed the enhanced breadth-first search of the rail nodes.  return the result
	if (_G(rails).myNodes[destID]->pathWeight < 32767) {
		*shortPath = DuplicatePath(_G(rails).myNodes[origID]->shortPath);
		return true;
	} else {
		return false;
	}
}

bool intr_PathCrossesLine(int32 startX, int32 startY, railNode *pathStart,
	int32 line_x1, int32 line_y1, int32 line_x2, int32 line_y2) {
	railNode *tempNode;
	bool intersected;
	int32 prevX, prevY;

	intersected = false;
	prevX = startX;
	prevY = startY;

	// Loop through the path nodes. Each node is the end of line segment started at (prevX, prevY)
	tempNode = pathStart;
	while (tempNode && (!intersected)) {
		intersected = intr_LinesCross(line_x1, line_y1, line_x2, line_y2, prevX, prevY, tempNode->x, tempNode->y);
		prevX = tempNode->x;
		prevY = tempNode->y;
		tempNode = tempNode->shortPath;
	}

	return intersected;
}

} // End of namespace M4