File: rdft.cpp

package info (click to toggle)
scummvm 2.9.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 450,268 kB
  • sloc: cpp: 4,297,604; asm: 28,322; python: 12,901; sh: 11,219; java: 8,477; xml: 7,843; perl: 2,633; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (101 lines) | stat: -rw-r--r-- 2,906 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

// Based on eos' (I)RDFT code which is in turn
// Based upon the (I)RDFT code in FFmpeg
// Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>

#include "math/rdft.h"
#include "math/fft.h"
#include "math/utils.h"

namespace Math {

RDFT::RDFT(int bits, TransformType trans) : _bits(bits), _sin(1 << bits), _cos(1 << bits), _fft(nullptr) {
	assert((_bits >= 4) && (_bits <= 16));

	_inverse        = trans == IDFT_C2R || trans == DFT_C2R;
	_signConvention = trans == IDFT_R2C || trans == DFT_C2R ? 1 : -1;

	_fft = new FFT(bits - 1, trans == IDFT_C2R || trans == IDFT_R2C);

	int n = 1 << bits;

	_tSin = _sin.getTable() + (trans == DFT_R2C || trans == DFT_C2R) * (n >> 2);
	_tCos = _cos.getTable();
}

RDFT::~RDFT() {
	delete _fft;
}

void RDFT::calc(float *data) {
	const int n = 1 << _bits;

	const float k1 = 0.5f;
	const float k2 = 0.5f - _inverse;

	if (!_inverse) {
		_fft->permute((Complex *)data);
		_fft->calc   ((Complex *)data);
	}

	Complex ev, od;

	/* i=0 is a special case because of packing, the DC term is real, so we
	   are going to throw the N/2 term (also real) in with it. */

	ev.re = data[0];

	data[0] = ev.re + data[1];
	data[1] = ev.re - data[1];

	int i;
	for (i = 1; i < (n >> 2); i++) {
		int i1 = 2 * i;
		int i2 = n - i1;

		/* Separate even and odd FFTs */
		ev.re =  k1 * (data[i1    ] + data[i2   ]);
		od.im = -k2 * (data[i1    ] - data[i2   ]);
		ev.im =  k1 * (data[i1 + 1] - data[i2 + 1]);
		od.re =  k2 * (data[i1 + 1] + data[i2 + 1]);

		/* Apply twiddle factors to the odd FFT and add to the even FFT */
		data[i1    ] =  ev.re + od.re * _tCos[i] - od.im * _tSin[i];
		data[i1 + 1] =  ev.im + od.im * _tCos[i] + od.re * _tSin[i];
		data[i2    ] =  ev.re - od.re * _tCos[i] + od.im * _tSin[i];
		data[i2 + 1] = -ev.im + od.im * _tCos[i] + od.re * _tSin[i];
	}

	data[2 * i + 1] = _signConvention * data[2 * i + 1];

	if (_inverse) {
		data[0] *= k1;
		data[1] *= k1;

		_fft->permute((Complex *)data);
		_fft->calc   ((Complex *)data);
	}

}

} // End of namespace Math