1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2022 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstddef>
#include "internals.h"
#include "BReverbModel.h"
#include "Synth.h"
// Analysing of state of reverb RAM address lines gives exact sizes of the buffers of filters used. This also indicates that
// the reverb model implemented in the real devices consists of three series allpass filters preceded by a non-feedback comb (or a delay with a LPF)
// and followed by three parallel comb filters
namespace MT32Emu {
// Because LA-32 chip makes it's output available to process by the Boss chip with a significant delay,
// the Boss chip puts to the buffer the LA32 dry output when it is ready and performs processing of the _previously_ latched data.
// Of course, the right way would be to use a dedicated variable for this, but our reverb model is way higher level,
// so we can simply increase the input buffer size.
static const Bit32u PROCESS_DELAY = 1;
static const Bit32u MODE_3_ADDITIONAL_DELAY = 1;
static const Bit32u MODE_3_FEEDBACK_DELAY = 1;
// Avoid denormals degrading performance, using biased input
static const FloatSample BIAS = 1e-20f;
struct BReverbSettings {
const Bit32u numberOfAllpasses;
const Bit32u * const allpassSizes;
const Bit32u numberOfCombs;
const Bit32u * const combSizes;
const Bit32u * const outLPositions;
const Bit32u * const outRPositions;
const Bit8u * const filterFactors;
const Bit8u * const feedbackFactors;
const Bit8u * const dryAmps;
const Bit8u * const wetLevels;
const Bit8u lpfAmp;
};
// Default reverb settings for "new" reverb model implemented in CM-32L / LAPC-I.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
static const BReverbSettings &getCM32L_LAPCSettings(const ReverbMode mode) {
static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Well, actually there are 3 comb filters, but the entrance LPF + delay can be processed via a hacked comb.
static const Bit32u MODE_0_COMBS[] = {705 + PROCESS_DELAY, 2349, 2839, 3632};
static const Bit32u MODE_0_OUTL[] = {2349, 141, 1960};
static const Bit32u MODE_0_OUTR[] = {1174, 1570, 145};
static const Bit8u MODE_0_COMB_FACTOR[] = {0xA0, 0x60, 0x60, 0x60};
static const Bit8u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit8u MODE_0_DRY_AMP[] = {0xA0, 0xA0, 0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xD0};
static const Bit8u MODE_0_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit8u MODE_0_LPF_AMP = 0x60;
static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit8u MODE_1_COMB_FACTOR[] = {0x80, 0x60, 0x60, 0x60};
static const Bit8u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit8u MODE_1_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xB0, 0xE0};
static const Bit8u MODE_1_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit8u MODE_1_LPF_AMP = 0x60;
static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as for mode 0 above
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit8u MODE_2_COMB_FACTOR[] = {0, 0x20, 0x20, 0x20};
static const Bit8u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0,
0x30, 0x58, 0x78, 0x88, 0xA0, 0xB8, 0xC0, 0xD0};
static const Bit8u MODE_2_DRY_AMP[] = {0xA0, 0xA0, 0xB0, 0xB0, 0xB0, 0xB0, 0xC0, 0xE0};
static const Bit8u MODE_2_WET_AMP[] = {0x10, 0x30, 0x50, 0x70, 0x90, 0xC0, 0xF0, 0xF0};
static const Bit8u MODE_2_LPF_AMP = 0x80;
static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0;
static const Bit32u MODE_3_NUMBER_OF_COMBS = 1;
static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY};
static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000};
static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000};
static const Bit8u MODE_3_COMB_FACTOR[] = {0x68};
static const Bit8u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60};
static const Bit8u MODE_3_DRY_AMP[] = {0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50,
0x20, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50};
static const Bit8u MODE_3_WET_AMP[] = {0x18, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8};
static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP};
static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP};
static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP};
static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0};
static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS};
return *REVERB_SETTINGS[mode];
}
// Default reverb settings for "old" reverb model implemented in MT-32.
// Found by tracing reverb RAM data lines (thanks go to Lord_Nightmare & balrog).
static const BReverbSettings &getMT32Settings(const ReverbMode mode) {
static const Bit32u MODE_0_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_0_ALLPASSES[] = {994, 729, 78};
static const Bit32u MODE_0_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_0_COMBS[] = {575 + PROCESS_DELAY, 2040, 2752, 3629};
static const Bit32u MODE_0_OUTL[] = {2040, 687, 1814};
static const Bit32u MODE_0_OUTR[] = {1019, 2072, 1};
static const Bit8u MODE_0_COMB_FACTOR[] = {0xB0, 0x60, 0x60, 0x60};
static const Bit8u MODE_0_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit8u MODE_0_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit8u MODE_0_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit8u MODE_0_LPF_AMP = 0x80;
static const Bit32u MODE_1_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_1_ALLPASSES[] = {1324, 809, 176};
static const Bit32u MODE_1_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_1_COMBS[] = {961 + PROCESS_DELAY, 2619, 3545, 4519};
static const Bit32u MODE_1_OUTL[] = {2618, 1760, 4518};
static const Bit32u MODE_1_OUTR[] = {1300, 3532, 2274};
static const Bit8u MODE_1_COMB_FACTOR[] = {0x90, 0x60, 0x60, 0x60};
static const Bit8u MODE_1_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit8u MODE_1_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit8u MODE_1_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit8u MODE_1_LPF_AMP = 0x80;
static const Bit32u MODE_2_NUMBER_OF_ALLPASSES = 3;
static const Bit32u MODE_2_ALLPASSES[] = {969, 644, 157};
static const Bit32u MODE_2_NUMBER_OF_COMBS = 4; // Same as above in the new model implementation
static const Bit32u MODE_2_COMBS[] = {116 + PROCESS_DELAY, 2259, 2839, 3539};
static const Bit32u MODE_2_OUTL[] = {2259, 718, 1769};
static const Bit32u MODE_2_OUTR[] = {1136, 2128, 1};
static const Bit8u MODE_2_COMB_FACTOR[] = {0, 0x60, 0x60, 0x60};
static const Bit8u MODE_2_COMB_FEEDBACK[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x28, 0x48, 0x60, 0x70, 0x78, 0x80, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98,
0x28, 0x48, 0x60, 0x78, 0x80, 0x88, 0x90, 0x98};
static const Bit8u MODE_2_DRY_AMP[] = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
static const Bit8u MODE_2_WET_AMP[] = {0x10, 0x20, 0x30, 0x40, 0x50, 0x70, 0xA0, 0xE0};
static const Bit8u MODE_2_LPF_AMP = 0x80;
static const Bit32u MODE_3_NUMBER_OF_ALLPASSES = 0;
static const Bit32u MODE_3_NUMBER_OF_COMBS = 1;
static const Bit32u MODE_3_DELAY[] = {16000 + MODE_3_FEEDBACK_DELAY + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY};
static const Bit32u MODE_3_OUTL[] = {400, 624, 960, 1488, 2256, 3472, 5280, 8000};
static const Bit32u MODE_3_OUTR[] = {800, 1248, 1920, 2976, 4512, 6944, 10560, 16000};
static const Bit8u MODE_3_COMB_FACTOR[] = {0x68};
static const Bit8u MODE_3_COMB_FEEDBACK[] = {0x68, 0x60};
static const Bit8u MODE_3_DRY_AMP[] = {0x10, 0x10, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x10, 0x20, 0x20, 0x10, 0x20, 0x10, 0x20, 0x10};
static const Bit8u MODE_3_WET_AMP[] = {0x08, 0x18, 0x28, 0x40, 0x60, 0x80, 0xA8, 0xF8};
static const BReverbSettings REVERB_MODE_0_SETTINGS = {MODE_0_NUMBER_OF_ALLPASSES, MODE_0_ALLPASSES, MODE_0_NUMBER_OF_COMBS, MODE_0_COMBS, MODE_0_OUTL, MODE_0_OUTR, MODE_0_COMB_FACTOR, MODE_0_COMB_FEEDBACK, MODE_0_DRY_AMP, MODE_0_WET_AMP, MODE_0_LPF_AMP};
static const BReverbSettings REVERB_MODE_1_SETTINGS = {MODE_1_NUMBER_OF_ALLPASSES, MODE_1_ALLPASSES, MODE_1_NUMBER_OF_COMBS, MODE_1_COMBS, MODE_1_OUTL, MODE_1_OUTR, MODE_1_COMB_FACTOR, MODE_1_COMB_FEEDBACK, MODE_1_DRY_AMP, MODE_1_WET_AMP, MODE_1_LPF_AMP};
static const BReverbSettings REVERB_MODE_2_SETTINGS = {MODE_2_NUMBER_OF_ALLPASSES, MODE_2_ALLPASSES, MODE_2_NUMBER_OF_COMBS, MODE_2_COMBS, MODE_2_OUTL, MODE_2_OUTR, MODE_2_COMB_FACTOR, MODE_2_COMB_FEEDBACK, MODE_2_DRY_AMP, MODE_2_WET_AMP, MODE_2_LPF_AMP};
static const BReverbSettings REVERB_MODE_3_SETTINGS = {MODE_3_NUMBER_OF_ALLPASSES, NULL, MODE_3_NUMBER_OF_COMBS, MODE_3_DELAY, MODE_3_OUTL, MODE_3_OUTR, MODE_3_COMB_FACTOR, MODE_3_COMB_FEEDBACK, MODE_3_DRY_AMP, MODE_3_WET_AMP, 0};
static const BReverbSettings * const REVERB_SETTINGS[] = {&REVERB_MODE_0_SETTINGS, &REVERB_MODE_1_SETTINGS, &REVERB_MODE_2_SETTINGS, &REVERB_MODE_3_SETTINGS};
return *REVERB_SETTINGS[mode];
}
static inline IntSample weirdMul(IntSample sample, Bit8u addMask, Bit8u carryMask) {
#if MT32EMU_BOSS_REVERB_PRECISE_MODE
// This algorithm tries to emulate exactly Boss multiplication operation (at least this is what we see on reverb RAM data lines).
Bit8u mask = 0x80;
IntSampleEx res = 0;
for (int i = 0; i < 8; i++) {
IntSampleEx carry = (sample < 0) && (mask & carryMask) > 0 ? sample & 1 : 0;
sample >>= 1;
res += (mask & addMask) > 0 ? sample + carry : 0;
mask >>= 1;
}
return IntSample(res);
#else
(void)carryMask;
return IntSample((IntSampleEx(sample) * addMask) >> 8);
#endif
}
static inline FloatSample weirdMul(FloatSample sample, Bit8u addMask, Bit8u carryMask) {
(void)carryMask;
return sample * addMask / 256.0f;
}
static inline IntSample halveSample(IntSample sample) {
return sample >> 1;
}
static inline FloatSample halveSample(FloatSample sample) {
return 0.5f * sample;
}
static inline IntSample quarterSample(IntSample sample) {
#if MT32EMU_BOSS_REVERB_PRECISE_MODE
return (sample >> 1) / 2;
#else
return sample >> 2;
#endif
}
static inline FloatSample quarterSample(FloatSample sample) {
return 0.25f * sample;
}
static inline IntSample addDCBias(IntSample sample) {
return sample;
}
static inline FloatSample addDCBias(FloatSample sample) {
return sample + BIAS;
}
static inline IntSample addAllpassNoise(IntSample sample) {
#if MT32EMU_BOSS_REVERB_PRECISE_MODE
// This introduces reverb noise which actually makes output from the real Boss chip nondeterministic
return sample - 1;
#else
return sample;
#endif
}
static inline FloatSample addAllpassNoise(FloatSample sample) {
return sample;
}
/* NOTE:
* Thanks to Mok for discovering, the adder in BOSS reverb chip is found to perform addition with saturation to avoid integer overflow.
* Analysing of the algorithm suggests that the overflow is most probable when the combs output is added below.
* So, despite this isn't actually accurate, we only add the check here for performance reasons.
*/
static inline IntSample mixCombs(IntSample out1, IntSample out2, IntSample out3) {
#if MT32EMU_BOSS_REVERB_PRECISE_MODE
return Synth::clipSampleEx(Synth::clipSampleEx(Synth::clipSampleEx(Synth::clipSampleEx(IntSampleEx(out1) + (IntSampleEx(out1) >> 1)) + IntSampleEx(out2)) + (IntSampleEx(out2) >> 1)) + IntSampleEx(out3));
#else
return Synth::clipSampleEx(IntSampleEx(out1) + (IntSampleEx(out1) >> 1) + IntSampleEx(out2) + (IntSampleEx(out2) >> 1) + IntSampleEx(out3));
#endif
}
static inline FloatSample mixCombs(FloatSample out1, FloatSample out2, FloatSample out3) {
return 1.5f * (out1 + out2) + out3;
}
template <class Sample>
class RingBuffer {
static inline Sample sampleValueThreshold();
protected:
Sample *buffer;
const Bit32u size;
Bit32u index;
public:
RingBuffer(const Bit32u newsize) : size(newsize), index(0) {
buffer = new Sample[size];
}
virtual ~RingBuffer() {
delete[] buffer;
buffer = NULL;
}
Sample next() {
if (++index >= size) {
index = 0;
}
return buffer[index];
}
bool isEmpty() const {
if (buffer == NULL) return true;
Sample *buf = buffer;
for (Bit32u i = 0; i < size; i++) {
if (*buf < -sampleValueThreshold() || *buf > sampleValueThreshold()) return false;
buf++;
}
return true;
}
void mute() {
Synth::muteSampleBuffer(buffer, size);
}
};
template<>
IntSample RingBuffer<IntSample>::sampleValueThreshold() {
return 8;
}
template<>
FloatSample RingBuffer<FloatSample>::sampleValueThreshold() {
return 0.001f;
}
template <class Sample>
class AllpassFilter : public RingBuffer<Sample> {
public:
AllpassFilter(const Bit32u useSize) : RingBuffer<Sample>(useSize) {}
// This model corresponds to the allpass filter implementation of the real CM-32L device
// found from sample analysis
Sample process(const Sample in) {
const Sample bufferOut = this->next();
// store input - feedback / 2
this->buffer[this->index] = in - halveSample(bufferOut);
// return buffer output + feedforward / 2
return bufferOut + halveSample(this->buffer[this->index]);
}
};
template <class Sample>
class CombFilter : public RingBuffer<Sample> {
protected:
const Bit8u filterFactor;
Bit8u feedbackFactor;
public:
CombFilter(const Bit32u useSize, const Bit8u useFilterFactor) : RingBuffer<Sample>(useSize), filterFactor(useFilterFactor) {}
// This model corresponds to the comb filter implementation of the real CM-32L device
void process(const Sample in) {
// the previously stored value
const Sample last = this->buffer[this->index];
// prepare input + feedback
const Sample filterIn = in + weirdMul(this->next(), feedbackFactor, 0xF0);
// store input + feedback processed by a low-pass filter
this->buffer[this->index] = weirdMul(last, filterFactor, 0xC0) - filterIn;
}
Sample getOutputAt(const Bit32u outIndex) const {
return this->buffer[(this->size + this->index - outIndex) % this->size];
}
void setFeedbackFactor(const Bit8u useFeedbackFactor) {
feedbackFactor = useFeedbackFactor;
}
};
template <class Sample>
class DelayWithLowPassFilter : public CombFilter<Sample> {
Bit8u amp;
public:
DelayWithLowPassFilter(const Bit32u useSize, const Bit8u useFilterFactor, const Bit8u useAmp)
: CombFilter<Sample>(useSize, useFilterFactor), amp(useAmp) {}
void process(const Sample in) {
// the previously stored value
const Sample last = this->buffer[this->index];
// move to the next index
this->next();
// low-pass filter process
Sample lpfOut = weirdMul(last, this->filterFactor, 0xFF) + in;
// store lpfOut multiplied by LPF amp factor
this->buffer[this->index] = weirdMul(lpfOut, amp, 0xFF);
}
};
template <class Sample>
class TapDelayCombFilter : public CombFilter<Sample> {
Bit32u outL;
Bit32u outR;
public:
TapDelayCombFilter(const Bit32u useSize, const Bit8u useFilterFactor) : CombFilter<Sample>(useSize, useFilterFactor) {}
void process(const Sample in) {
// the previously stored value
const Sample last = this->buffer[this->index];
// move to the next index
this->next();
// prepare input + feedback
// Actually, the size of the filter varies with the TIME parameter, the feedback sample is taken from the position just below the right output
const Sample filterIn = in + weirdMul(this->getOutputAt(outR + MODE_3_FEEDBACK_DELAY), this->feedbackFactor, 0xF0);
// store input + feedback processed by a low-pass filter
this->buffer[this->index] = weirdMul(last, this->filterFactor, 0xF0) - filterIn;
}
Sample getLeftOutput() const {
return this->getOutputAt(outL + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
Sample getRightOutput() const {
return this->getOutputAt(outR + PROCESS_DELAY + MODE_3_ADDITIONAL_DELAY);
}
void setOutputPositions(const Bit32u useOutL, const Bit32u useOutR) {
outL = useOutL;
outR = useOutR;
}
};
template <class Sample>
class BReverbModelImpl : public BReverbModel {
public:
AllpassFilter<Sample> **allpasses;
CombFilter<Sample> **combs;
const BReverbSettings ¤tSettings;
const bool tapDelayMode;
Bit8u dryAmp;
Bit8u wetLevel;
BReverbModelImpl(const ReverbMode mode, const bool mt32CompatibleModel) :
allpasses(NULL), combs(NULL),
currentSettings(mt32CompatibleModel ? getMT32Settings(mode) : getCM32L_LAPCSettings(mode)),
tapDelayMode(mode == REVERB_MODE_TAP_DELAY)
{}
~BReverbModelImpl() {
close();
}
bool isOpen() const {
return combs != NULL;
}
void open() {
if (isOpen()) return;
if (currentSettings.numberOfAllpasses > 0) {
allpasses = new AllpassFilter<Sample>*[currentSettings.numberOfAllpasses];
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i] = new AllpassFilter<Sample>(currentSettings.allpassSizes[i]);
}
}
combs = new CombFilter<Sample>*[currentSettings.numberOfCombs];
if (tapDelayMode) {
*combs = new TapDelayCombFilter<Sample>(*currentSettings.combSizes, *currentSettings.filterFactors);
} else {
combs[0] = new DelayWithLowPassFilter<Sample>(currentSettings.combSizes[0], currentSettings.filterFactors[0], currentSettings.lpfAmp);
for (Bit32u i = 1; i < currentSettings.numberOfCombs; i++) {
combs[i] = new CombFilter<Sample>(currentSettings.combSizes[i], currentSettings.filterFactors[i]);
}
}
mute();
}
void close() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (allpasses[i] != NULL) {
delete allpasses[i];
allpasses[i] = NULL;
}
}
delete[] allpasses;
allpasses = NULL;
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (combs[i] != NULL) {
delete combs[i];
combs[i] = NULL;
}
}
delete[] combs;
combs = NULL;
}
}
void mute() {
if (allpasses != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
allpasses[i]->mute();
}
}
if (combs != NULL) {
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
combs[i]->mute();
}
}
}
void setParameters(Bit8u time, Bit8u level) {
if (!isOpen()) return;
level &= 7;
time &= 7;
if (tapDelayMode) {
TapDelayCombFilter<Sample> *comb = static_cast<TapDelayCombFilter<Sample> *> (*combs);
comb->setOutputPositions(currentSettings.outLPositions[time], currentSettings.outRPositions[time & 7]);
comb->setFeedbackFactor(currentSettings.feedbackFactors[((level < 3) || (time < 6)) ? 0 : 1]);
} else {
for (Bit32u i = 1; i < currentSettings.numberOfCombs; i++) {
combs[i]->setFeedbackFactor(currentSettings.feedbackFactors[(i << 3) + time]);
}
}
if (time == 0 && level == 0) {
dryAmp = wetLevel = 0;
} else {
if (tapDelayMode && ((time == 0) || (time == 1 && level == 1))) {
// Looks like MT-32 implementation has some minor quirks in this mode:
// for odd level values, the output level changes sometimes depending on the time value which doesn't seem right.
dryAmp = currentSettings.dryAmps[level + 8];
} else {
dryAmp = currentSettings.dryAmps[level];
}
wetLevel = currentSettings.wetLevels[level];
}
}
bool isActive() const {
if (!isOpen()) return false;
for (Bit32u i = 0; i < currentSettings.numberOfAllpasses; i++) {
if (!allpasses[i]->isEmpty()) return true;
}
for (Bit32u i = 0; i < currentSettings.numberOfCombs; i++) {
if (!combs[i]->isEmpty()) return true;
}
return false;
}
bool isMT32Compatible(const ReverbMode mode) const {
return ¤tSettings == &getMT32Settings(mode);
}
template <class SampleEx>
void produceOutput(const Sample *inLeft, const Sample *inRight, Sample *outLeft, Sample *outRight, Bit32u numSamples) {
if (!isOpen()) {
Synth::muteSampleBuffer(outLeft, numSamples);
Synth::muteSampleBuffer(outRight, numSamples);
return;
}
while ((numSamples--) > 0) {
Sample dry;
if (tapDelayMode) {
dry = halveSample(*(inLeft++)) + halveSample(*(inRight++));
} else {
dry = quarterSample(*(inLeft++)) + quarterSample(*(inRight++));
}
// Looks like dryAmp doesn't change in MT-32 but it does in CM-32L / LAPC-I
dry = weirdMul(addDCBias(dry), dryAmp, 0xFF);
if (tapDelayMode) {
TapDelayCombFilter<Sample> *comb = static_cast<TapDelayCombFilter<Sample> *>(*combs);
comb->process(dry);
if (outLeft != NULL) {
*(outLeft++) = weirdMul(comb->getLeftOutput(), wetLevel, 0xFF);
}
if (outRight != NULL) {
*(outRight++) = weirdMul(comb->getRightOutput(), wetLevel, 0xFF);
}
} else {
DelayWithLowPassFilter<Sample> * const entranceDelay = static_cast<DelayWithLowPassFilter<Sample> *>(combs[0]);
// If the output position is equal to the comb size, get it now in order not to lose it
Sample link = entranceDelay->getOutputAt(currentSettings.combSizes[0] - 1);
// Entrance LPF. Note, comb.process() differs a bit here.
entranceDelay->process(dry);
link = allpasses[0]->process(addAllpassNoise(link));
link = allpasses[1]->process(link);
link = allpasses[2]->process(link);
// If the output position is equal to the comb size, get it now in order not to lose it
Sample outL1 = combs[1]->getOutputAt(currentSettings.outLPositions[0] - 1);
combs[1]->process(link);
combs[2]->process(link);
combs[3]->process(link);
if (outLeft != NULL) {
Sample outL2 = combs[2]->getOutputAt(currentSettings.outLPositions[1]);
Sample outL3 = combs[3]->getOutputAt(currentSettings.outLPositions[2]);
Sample outSample = mixCombs(outL1, outL2, outL3);
*(outLeft++) = weirdMul(outSample, wetLevel, 0xFF);
}
if (outRight != NULL) {
Sample outR1 = combs[1]->getOutputAt(currentSettings.outRPositions[0]);
Sample outR2 = combs[2]->getOutputAt(currentSettings.outRPositions[1]);
Sample outR3 = combs[3]->getOutputAt(currentSettings.outRPositions[2]);
Sample outSample = mixCombs(outR1, outR2, outR3);
*(outRight++) = weirdMul(outSample, wetLevel, 0xFF);
}
} // if (tapDelayMode)
} // while ((numSamples--) > 0)
} // produceOutput
bool process(const IntSample *inLeft, const IntSample *inRight, IntSample *outLeft, IntSample *outRight, Bit32u numSamples);
bool process(const FloatSample *inLeft, const FloatSample *inRight, FloatSample *outLeft, FloatSample *outRight, Bit32u numSamples);
};
BReverbModel *BReverbModel::createBReverbModel(const ReverbMode mode, const bool mt32CompatibleModel, const RendererType rendererType) {
switch (rendererType)
{
case RendererType_BIT16S:
return new BReverbModelImpl<IntSample>(mode, mt32CompatibleModel);
case RendererType_FLOAT:
return new BReverbModelImpl<FloatSample>(mode, mt32CompatibleModel);
default:
break;
}
return NULL;
}
template <>
bool BReverbModelImpl<IntSample>::process(const IntSample *inLeft, const IntSample *inRight, IntSample *outLeft, IntSample *outRight, Bit32u numSamples) {
produceOutput<IntSampleEx>(inLeft, inRight, outLeft, outRight, numSamples);
return true;
}
template <>
bool BReverbModelImpl<IntSample>::process(const FloatSample *, const FloatSample *, FloatSample *, FloatSample *, Bit32u) {
return false;
}
template <>
bool BReverbModelImpl<FloatSample>::process(const IntSample *, const IntSample *, IntSample *, IntSample *, Bit32u) {
return false;
}
template <>
bool BReverbModelImpl<FloatSample>::process(const FloatSample *inLeft, const FloatSample *inRight, FloatSample *outLeft, FloatSample *outRight, Bit32u numSamples) {
produceOutput<FloatSample>(inLeft, inRight, outLeft, outRight, numSamples);
return true;
}
} // namespace MT32Emu
|