1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
/* Copyright (C) 2003, 2004, 2005, 2006, 2008, 2009 Dean Beeler, Jerome Fisher
* Copyright (C) 2011-2022 Dean Beeler, Jerome Fisher, Sergey V. Mikayev
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstdlib>
#include "internals.h"
#include "TVP.h"
#include "Part.h"
#include "Partial.h"
#include "Poly.h"
#include "Synth.h"
#include "TVA.h"
namespace MT32Emu {
// FIXME: Add Explanation
static Bit16u lowerDurationToDivisor[] = {34078, 37162, 40526, 44194, 48194, 52556, 57312, 62499};
// These values represent unique options with no consistent pattern, so we have to use something like a table in any case.
// The table matches exactly what the manual claims (when divided by 8192):
// -1, -1/2, -1/4, 0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1, 5/4, 3/2, 2, s1, s2
// ...except for the last two entries, which are supposed to be "1 cent above 1" and "2 cents above 1", respectively. They can only be roughly approximated with this integer math.
static Bit16s pitchKeyfollowMult[] = {-8192, -4096, -2048, 0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192, 10240, 12288, 16384, 8198, 8226};
// Note: Keys < 60 use keyToPitchTable[60 - key], keys >= 60 use keyToPitchTable[key - 60].
// FIXME: This table could really be shorter, since we never use e.g. key 127.
static Bit16u keyToPitchTable[] = {
0, 341, 683, 1024, 1365, 1707, 2048, 2389,
2731, 3072, 3413, 3755, 4096, 4437, 4779, 5120,
5461, 5803, 6144, 6485, 6827, 7168, 7509, 7851,
8192, 8533, 8875, 9216, 9557, 9899, 10240, 10581,
10923, 11264, 11605, 11947, 12288, 12629, 12971, 13312,
13653, 13995, 14336, 14677, 15019, 15360, 15701, 16043,
16384, 16725, 17067, 17408, 17749, 18091, 18432, 18773,
19115, 19456, 19797, 20139, 20480, 20821, 21163, 21504,
21845, 22187, 22528, 22869
};
// We want to do processing 4000 times per second. FIXME: This is pretty arbitrary.
static const int NOMINAL_PROCESS_TIMER_PERIOD_SAMPLES = SAMPLE_RATE / 4000;
// In all hardware units we emulate, the main clock frequency of the MCU is 12MHz.
// However, the MCU used in the 3rd-gen sound modules (like CM-500 and LAPC-N)
// is significantly faster. Importantly, the software timer also works faster,
// yet this fact has been seemingly missed. To be more specific, the software timer
// ticks each 8 "state times", and 1 state time equals to 3 clock periods
// for 8095 and 8098 but 2 clock periods for 80C198. That is, on MT-32 and CM-32L,
// the software timer tick rate is 12,000,000 / 3 / 8 = 500kHz, but on the 3rd-gen
// devices it's 12,000,000 / 2 / 8 = 750kHz instead.
// For 1st- and 2nd-gen devices, the timer ticks at 500kHz. This is how much to increment
// timeElapsed once 16 samples passes. We multiply by 16 to get rid of the fraction
// and deal with just integers.
static const int PROCESS_TIMER_TICKS_PER_SAMPLE_X16_1N2_GEN = (500000 << 4) / SAMPLE_RATE;
// For 3rd-gen devices, the timer ticks at 750kHz. This is how much to increment
// timeElapsed once 16 samples passes. We multiply by 16 to get rid of the fraction
// and deal with just integers.
static const int PROCESS_TIMER_TICKS_PER_SAMPLE_X16_3_GEN = (750000 << 4) / SAMPLE_RATE;
TVP::TVP(const Partial *usePartial) :
partial(usePartial),
system(&usePartial->getSynth()->mt32ram.system),
processTimerTicksPerSampleX16(
partial->getSynth()->controlROMFeatures->quirkFastPitchChanges
? PROCESS_TIMER_TICKS_PER_SAMPLE_X16_3_GEN
: PROCESS_TIMER_TICKS_PER_SAMPLE_X16_1N2_GEN)
{}
static Bit16s keyToPitch(unsigned int key) {
// We're using a table to do: return round_to_nearest_or_even((key - 60) * (4096.0 / 12.0))
// Banker's rounding is just slightly annoying to do in C++
int k = int(key);
Bit16s pitch = keyToPitchTable[abs(k - 60)];
return key < 60 ? -pitch : pitch;
}
static inline Bit32s coarseToPitch(Bit8u coarse) {
return (coarse - 36) * 4096 / 12; // One semitone per coarse offset
}
static inline Bit32s fineToPitch(Bit8u fine) {
return (fine - 50) * 4096 / 1200; // One cent per fine offset
}
static Bit32u calcBasePitch(const Partial *partial, const TimbreParam::PartialParam *partialParam, const MemParams::PatchTemp *patchTemp, unsigned int key, const ControlROMFeatureSet *controlROMFeatures) {
Bit32s basePitch = keyToPitch(key);
basePitch = (basePitch * pitchKeyfollowMult[partialParam->wg.pitchKeyfollow]) >> 13; // PORTABILITY NOTE: Assumes arithmetic shift
basePitch += coarseToPitch(partialParam->wg.pitchCoarse);
basePitch += fineToPitch(partialParam->wg.pitchFine);
if (controlROMFeatures->quirkKeyShift) {
// NOTE:Mok: This is done on MT-32, but not LAPC-I:
basePitch += coarseToPitch(patchTemp->patch.keyShift + 12);
}
basePitch += fineToPitch(patchTemp->patch.fineTune);
const ControlROMPCMStruct *controlROMPCMStruct = partial->getControlROMPCMStruct();
if (controlROMPCMStruct != NULL) {
basePitch += (Bit32s(controlROMPCMStruct->pitchMSB) << 8) | Bit32s(controlROMPCMStruct->pitchLSB);
} else {
if ((partialParam->wg.waveform & 1) == 0) {
basePitch += 37133; // This puts Middle C at around 261.64Hz (assuming no other modifications, masterTune of 64, etc.)
} else {
// Sawtooth waves are effectively double the frequency of square waves.
// Thus we add 4096 less than for square waves here, which results in halving the frequency.
basePitch += 33037;
}
}
// MT-32 GEN0 does 16-bit calculations here, allowing an integer overflow.
// This quirk is observable playing the patch defined for timbre "HIT BOTTOM" in Larry 3.
// Note, the upper bound isn't checked either.
if (controlROMFeatures->quirkBasePitchOverflow) {
basePitch = basePitch & 0xffff;
} else if (basePitch < 0) {
basePitch = 0;
} else if (basePitch > 59392) {
basePitch = 59392;
}
return Bit32u(basePitch);
}
static Bit32u calcVeloMult(Bit8u veloSensitivity, unsigned int velocity) {
if (veloSensitivity == 0) {
return 21845; // aka floor(4096 / 12 * 64), aka ~64 semitones
}
unsigned int reversedVelocity = 127 - velocity;
unsigned int scaledReversedVelocity;
if (veloSensitivity > 3) {
// Note that on CM-32L/LAPC-I veloSensitivity is never > 3, since it's clipped to 3 by the max tables.
// MT-32 GEN0 has a bug here that leads to unspecified behaviour. We assume it is as follows.
scaledReversedVelocity = (reversedVelocity << 8) >> ((3 - veloSensitivity) & 0x1f);
} else {
scaledReversedVelocity = reversedVelocity << (5 + veloSensitivity);
}
// When velocity is 127, the multiplier is 21845, aka ~64 semitones (regardless of veloSensitivity).
// The lower the velocity, the lower the multiplier. The veloSensitivity determines the amount decreased per velocity value.
// The minimum multiplier on CM-32L/LAPC-I (with velocity 0, veloSensitivity 3) is 170 (~half a semitone).
return ((32768 - scaledReversedVelocity) * 21845) >> 15;
}
static Bit32s calcTargetPitchOffsetWithoutLFO(const TimbreParam::PartialParam *partialParam, int levelIndex, unsigned int velocity) {
int veloMult = calcVeloMult(partialParam->pitchEnv.veloSensitivity, velocity);
int targetPitchOffsetWithoutLFO = partialParam->pitchEnv.level[levelIndex] - 50;
targetPitchOffsetWithoutLFO = (targetPitchOffsetWithoutLFO * veloMult) >> (16 - partialParam->pitchEnv.depth); // PORTABILITY NOTE: Assumes arithmetic shift
return targetPitchOffsetWithoutLFO;
}
void TVP::reset(const Part *usePart, const TimbreParam::PartialParam *usePartialParam) {
part = usePart;
partialParam = usePartialParam;
patchTemp = part->getPatchTemp();
unsigned int key = partial->getPoly()->getKey();
unsigned int velocity = partial->getPoly()->getVelocity();
// FIXME: We're using a per-TVP timer instead of a system-wide one for convenience.
timeElapsed = 0;
processTimerIncrement = 0;
basePitch = calcBasePitch(partial, partialParam, patchTemp, key, partial->getSynth()->controlROMFeatures);
currentPitchOffset = calcTargetPitchOffsetWithoutLFO(partialParam, 0, velocity);
targetPitchOffsetWithoutLFO = currentPitchOffset;
phase = 0;
if (partialParam->pitchEnv.timeKeyfollow) {
timeKeyfollowSubtraction = Bit32s(key - 60) >> (5 - partialParam->pitchEnv.timeKeyfollow); // PORTABILITY NOTE: Assumes arithmetic shift
} else {
timeKeyfollowSubtraction = 0;
}
lfoPitchOffset = 0;
counter = 0;
pitch = basePitch;
// These don't really need to be initialised, but it aids debugging.
pitchOffsetChangePerBigTick = 0;
targetPitchOffsetReachedBigTick = 0;
shifts = 0;
}
Bit32u TVP::getBasePitch() const {
return basePitch;
}
void TVP::updatePitch() {
Bit32s newPitch = basePitch + currentPitchOffset;
if (!partial->isPCM() || (partial->getControlROMPCMStruct()->len & 0x01) == 0) { // FIXME: Use !partial->pcmWaveEntry->unaffectedByMasterTune instead
// FIXME: There are various bugs not yet emulated
// 171 is ~half a semitone.
newPitch += partial->getSynth()->getMasterTunePitchDelta();
}
if ((partialParam->wg.pitchBenderEnabled & 1) != 0) {
newPitch += part->getPitchBend();
}
// MT-32 GEN0 does 16-bit calculations here, allowing an integer overflow.
// This quirk is exploited e.g. in Colonel's Bequest timbres "Lightning" and "SwmpBackgr".
if (partial->getSynth()->controlROMFeatures->quirkPitchEnvelopeOverflow) {
newPitch = newPitch & 0xffff;
} else if (newPitch < 0) {
newPitch = 0;
}
// This check is present in every unit.
if (newPitch > 59392) {
newPitch = 59392;
}
pitch = Bit16u(newPitch);
// FIXME: We're doing this here because that's what the CM-32L does - we should probably move this somewhere more appropriate in future.
partial->getTVA()->recalcSustain();
}
void TVP::targetPitchOffsetReached() {
currentPitchOffset = targetPitchOffsetWithoutLFO + lfoPitchOffset;
switch (phase) {
case 3:
case 4:
{
int newLFOPitchOffset = (part->getModulation() * partialParam->pitchLFO.modSensitivity) >> 7;
newLFOPitchOffset = (newLFOPitchOffset + partialParam->pitchLFO.depth) << 1;
if (pitchOffsetChangePerBigTick > 0) {
// Go in the opposite direction to last time
newLFOPitchOffset = -newLFOPitchOffset;
}
lfoPitchOffset = newLFOPitchOffset;
int targetPitchOffset = targetPitchOffsetWithoutLFO + lfoPitchOffset;
setupPitchChange(targetPitchOffset, 101 - partialParam->pitchLFO.rate);
updatePitch();
break;
}
case 6:
updatePitch();
break;
default:
nextPhase();
}
}
void TVP::nextPhase() {
phase++;
int envIndex = phase == 6 ? 4 : phase;
targetPitchOffsetWithoutLFO = calcTargetPitchOffsetWithoutLFO(partialParam, envIndex, partial->getPoly()->getVelocity()); // pitch we'll reach at the end
int changeDuration = partialParam->pitchEnv.time[envIndex - 1];
changeDuration -= timeKeyfollowSubtraction;
if (changeDuration > 0) {
setupPitchChange(targetPitchOffsetWithoutLFO, changeDuration); // changeDuration between 0 and 112 now
updatePitch();
} else {
targetPitchOffsetReached();
}
}
// Shifts val to the left until bit 31 is 1 and returns the number of shifts
static Bit8u normalise(Bit32u &val) {
Bit8u leftShifts;
for (leftShifts = 0; leftShifts < 31; leftShifts++) {
if ((val & 0x80000000) != 0) {
break;
}
val = val << 1;
}
return leftShifts;
}
void TVP::setupPitchChange(int targetPitchOffset, Bit8u changeDuration) {
bool negativeDelta = targetPitchOffset < currentPitchOffset;
Bit32s pitchOffsetDelta = targetPitchOffset - currentPitchOffset;
if (pitchOffsetDelta > 32767 || pitchOffsetDelta < -32768) {
pitchOffsetDelta = 32767;
}
if (negativeDelta) {
pitchOffsetDelta = -pitchOffsetDelta;
}
// We want to maximise the number of bits of the Bit16s "pitchOffsetChangePerBigTick" we use in order to get the best possible precision later
Bit32u absPitchOffsetDelta = (pitchOffsetDelta & 0xFFFF) << 16;
Bit8u normalisationShifts = normalise(absPitchOffsetDelta); // FIXME: Double-check: normalisationShifts is usually between 0 and 15 here, unless the delta is 0, in which case it's 31
absPitchOffsetDelta = absPitchOffsetDelta >> 1; // Make room for the sign bit
changeDuration--; // changeDuration's now between 0 and 111
unsigned int upperDuration = changeDuration >> 3; // upperDuration's now between 0 and 13
shifts = normalisationShifts + upperDuration + 2;
Bit16u divisor = lowerDurationToDivisor[changeDuration & 7];
Bit16s newPitchOffsetChangePerBigTick = ((absPitchOffsetDelta & 0xFFFF0000) / divisor) >> 1; // Result now fits within 15 bits. FIXME: Check nothing's getting sign-extended incorrectly
if (negativeDelta) {
newPitchOffsetChangePerBigTick = -newPitchOffsetChangePerBigTick;
}
pitchOffsetChangePerBigTick = newPitchOffsetChangePerBigTick;
int currentBigTick = timeElapsed >> 8;
int durationInBigTicks = divisor >> (12 - upperDuration);
if (durationInBigTicks > 32767) {
durationInBigTicks = 32767;
}
// The result of the addition may exceed 16 bits, but wrapping is fine and intended here.
targetPitchOffsetReachedBigTick = currentBigTick + durationInBigTicks;
}
void TVP::startDecay() {
phase = 5;
lfoPitchOffset = 0;
targetPitchOffsetReachedBigTick = timeElapsed >> 8; // FIXME: Afaict there's no good reason for this - check
}
Bit16u TVP::nextPitch() {
// We emulate MCU software timer using these counter and processTimerIncrement variables.
// The value of NOMINAL_PROCESS_TIMER_PERIOD_SAMPLES approximates the period in samples
// between subsequent firings of the timer that normally occur.
// However, accurate emulation is quite complicated because the timer is not guaranteed to fire in time.
// This makes pitch variations on real unit non-deterministic and dependent on various factors.
if (counter == 0) {
timeElapsed = (timeElapsed + processTimerIncrement) & 0x00FFFFFF;
// This roughly emulates pitch deviations observed on real units when playing a single partial that uses TVP/LFO.
counter = NOMINAL_PROCESS_TIMER_PERIOD_SAMPLES + (rand() & 3);
processTimerIncrement = (processTimerTicksPerSampleX16 * counter) >> 4;
process();
}
counter--;
return pitch;
}
void TVP::process() {
if (phase == 0) {
targetPitchOffsetReached();
return;
}
if (phase == 5) {
nextPhase();
return;
}
if (phase > 7) {
updatePitch();
return;
}
Bit16s negativeBigTicksRemaining = (timeElapsed >> 8) - targetPitchOffsetReachedBigTick;
if (negativeBigTicksRemaining >= 0) {
// We've reached the time for a phase change
targetPitchOffsetReached();
return;
}
// FIXME: Write explanation for this stuff
// NOTE: Value of shifts may happily exceed the maximum of 31 specified for the 8095 MCU.
// We assume the device performs a shift with the rightmost 5 bits of the counter regardless of argument size,
// since shift instructions of any size have the same maximum.
int rightShifts = shifts;
if (rightShifts > 13) {
rightShifts -= 13;
negativeBigTicksRemaining = negativeBigTicksRemaining >> (rightShifts & 0x1F); // PORTABILITY NOTE: Assumes arithmetic shift
rightShifts = 13;
}
int newResult = (negativeBigTicksRemaining * pitchOffsetChangePerBigTick) >> (rightShifts & 0x1F); // PORTABILITY NOTE: Assumes arithmetic shift
newResult += targetPitchOffsetWithoutLFO + lfoPitchOffset;
currentPitchOffset = newResult;
updatePitch();
}
} // namespace MT32Emu
|