1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
|
/* gzio.c - decompression support for gzip */
/*
* GRUB -- GRand Unified Bootloader
* Copyright (C) 1999,2005,2006,2007,2009 Free Software Foundation, Inc.
*
* GRUB is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GRUB is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GRUB. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Most of this file was originally the source file "inflate.c", written
* by Mark Adler. It has been very heavily modified. In particular, the
* original would run through the whole file at once, and this version can
* be stopped and restarted on any boundary during the decompression process.
*
* The license and header comments that file are included here.
*/
/* inflate.c -- Not copyrighted 1992 by Mark Adler
version c10p1, 10 January 1993 */
/* You can do whatever you like with this source file, though I would
prefer that if you modify it and redistribute it that you include
comments to that effect with your name and the date. Thank you.
*/
#include "common/debug.h"
#include "common/endian.h"
#include "common/stream.h"
#include "common/ptr.h"
#include "common/memstream.h"
#include "common/textconsole.h"
#include "common/compression/deflate.h"
/* Compression methods (see algorithm.doc) */
#define GZ_DEFLATED 8
/* gzip flag byte */
#define GZ_ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
#define GZ_CRC 0x02 /* bit 1 set: crc present */
#define GZ_EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
#define GZ_ORIG_NAME 0x08 /* bit 3 set: original file name present */
#define GZ_COMMENT 0x10 /* bit 4 set: file comment present */
#define GZ_RESERVED 0xE0 /* bit 5,6,7: reserved */
/* inflate block codes */
#define INFLATE_STORED 0
#define INFLATE_FIXED 1
#define INFLATE_DYNAMIC 2
namespace Common {
typedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
/* Huffman code lookup table entry--this entry is four bytes for machines
that have 16-bit pointers (e.g. PC's in the small or medium model).
Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
means that v is a literal, 16 < e < 32 means that v is a pointer to
the next table, which codes e - 16 bits, and lastly e == 99 indicates
an unused code. If a code with e == 99 is looked up, this implies an
error in the data. */
struct huft
{
uch e; /* number of extra bits or operation */
uch b; /* number of bits in this code or subcode */
union
{
ush n; /* literal, length base, or distance base */
struct huft *t; /* pointer to next level of table */
}
v;
};
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
stream to find repeated byte strings. This is implemented here as a
circular buffer. The index is updated simply by incrementing and then
and'ing with 0x7fff (32K-1). */
/* It is left to other modules to supply the 32K area. It is assumed
to be usable as if it were declared "uch slide[32768];" or as just
"uch *slide;" and then malloc'ed in the latter case. The definition
must be in unzip.h, included above. */
/* Tables for deflate from PKZIP's appnote.txt. */
static const unsigned bitorder_zlib[] =
{ /* Order of the bit length code lengths */
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
static const unsigned bitorder_clickteam[] =
{ /* Order of the bit length code lengths */
18, 17, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
static const ush cplens[] =
{ /* Copy lengths for literal codes 257..285 */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
/* note: see note #13 above about the 258 in this list. */
static const ush cplext[] =
{ /* Extra bits for literal codes 257..285 */
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
static const ush cpdist[] =
{ /* Copy offsets for distance codes 0..29 */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
static const ush cpdext[] =
{ /* Extra bits for distance codes */
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
static const int lbits = 9; /* bits in base literal/length lookup table */
static const int dbits = 6; /* bits in base distance lookup table */
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16 /* maximum bit length of any code (16 for explode) */
#define N_MAX 288 /* maximum number of codes in any set */
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(j)
x = b & mask_bits[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed, and are initialized at the beginning of a
routine that uses these macros from a global bit buffer and count.
If we assume that EOB will be the longest code, then we will never
ask for bits with NEEDBITS that are beyond the end of the stream.
So, NEEDBITS should not read any more bytes than are needed to
meet the request. Then no bytes need to be "returned" to the buffer
at the end of the last block.
However, this assumption is not true for fixed blocks--the EOB code
is 7 bits, but the other literal/length codes can be 8 or 9 bits.
(The EOB code is shorter than other codes because fixed blocks are
generally short. So, while a block always has an EOB, many other
literal/length codes have a significantly lower probability of
showing up at all.) However, by making the first table have a
lookup of seven bits, the EOB code will be found in that first
lookup, and so will not require that too many bits be pulled from
the stream.
*/
static const ush mask_bits[] =
{
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#define NEEDBITS(n) do {while(k<(n)){b|=((ulg)parentGetByte())<<k;k+=8;}} while (0)
#define DUMPBITS(n) do {b>>=(n);k-=(n);} while (0)
/* The state stored in filesystem-specific data. */
class GzioReadStream : public Common::SeekableReadStream
{
public:
enum class Mode { ZLIB, CLICKTEAM } _mode;
GzioReadStream(Common::SeekableReadStream *parent, DisposeAfterUse::Flag disposeParent, uint64 uncompressedSize, Mode mode, const byte *dict = nullptr, uint32 dict_size = 0) :
_dataOffset(parent->pos()), _blockType(0), _blockLen(0),
_lastBlock(0), _codeState (0), _inflateN(0),
_inflateD(0), _bb(0), _bk(0), _wp(0), _tl(nullptr),
_td(nullptr), _bl(0),
_bd(0), _savedOffset(0), _err(false), _mode(mode), _input(parent, disposeParent),
_inbufD(0), _inbufSize(0), _uncompressedSize(uncompressedSize), _streamPos(0), _eos(false) {
if (dict && dict_size) {
dict_size = MIN<uint32>(dict_size, sizeof(_slide));
memcpy(_slide + sizeof(_slide) - dict_size, dict, dict_size);
}
}
uint32 read(void *dataPtr, uint32 dataSize) override;
bool eos() const override { return _eos; }
bool err() const override { return _err; }
void clearErr() override { _eos = false; _err = false; }
int64 pos() const override { return _streamPos; }
int64 size() const override { return _uncompressedSize; }
bool seek(int64 offs, int whence = SEEK_SET) override;
void initialize_tables();
bool test_zlib_header();
bool test_gzip_header();
private:
/*
* Window Size
*
* This must be a power of two, and at least 32K for zip's deflate method
*/
static const int WSIZE = 0x8000;
static const int INBUFSIZ = 0x2000;
/* If input is in memory following fields are used instead of file. */
Common::DisposablePtr<Common::SeekableReadStream> _input;
/* The offset at which the data starts in the underlying file. */
int64 _dataOffset;
/* The type of current block. */
int _blockType;
/* The length of current block. */
int _blockLen;
/* The flag of the last block. */
int _lastBlock;
/* The flag of codes. */
int _codeState;
/* The length of a copy. */
unsigned _inflateN;
/* The index of a copy. */
unsigned _inflateD;
/* The bit buffer. */
unsigned long _bb;
/* The bits in the bit buffer. */
unsigned _bk;
/* The sliding window in uncompressed data. */
uint8 _slide[WSIZE];
/* Current position in the slide. */
unsigned _wp;
/* The literal/length code table. */
struct huft *_tl;
/* The distance code table. */
struct huft *_td;
/* The lookup bits for the literal/length code table. */
int _bl;
/* The lookup bits for the distance code table. */
int _bd;
/* The original offset value. */
int64 _savedOffset;
bool _err;
/* The input buffer. */
byte _inbuf[INBUFSIZ];
int _inbufD;
int _inbufSize;
uint64 _uncompressedSize;
uint64 _streamPos;
bool _eos;
void inflate_window();
void get_new_block();
byte parentGetByte();
void parentSeek(int64 off);
void init_fixed_block();
int inflate_codes_in_window();
void init_dynamic_block ();
void init_stored_block ();
int32 readAtOffset(int64 offset, byte *buf, uint32 len);
};
byte
GzioReadStream::parentGetByte ()
{
if (_inbufD >= _inbufSize)
{
_inbufD = 0;
_inbufSize = _input->read(_inbuf, INBUFSIZ);
if (_inbufSize <= 0) {
_inbufSize = 0;
return 0;
}
}
return _inbuf[_inbufD++];
}
void
GzioReadStream::parentSeek(int64 off)
{
_inbufSize = 0;
_inbufD = 0;
_input->seek(off);
}
/* more function prototypes */
static int huft_build (unsigned *, unsigned, unsigned, const ush *, const ush *,
struct huft **, int *);
static int huft_free (struct huft *);
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory. */
static int
huft_build (unsigned *b, /* code lengths in bits (all assumed <= BMAX) */
unsigned n, /* number of codes (assumed <= N_MAX) */
unsigned s, /* number of simple-valued codes (0..s-1) */
const ush * d, /* list of base values for non-simple codes */
const ush * e, /* list of extra bits for non-simple codes */
struct huft **t, /* result: starting table */
int *m) /* maximum lookup bits, returns actual */
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX + 1]; /* bit length count table */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
unsigned i; /* counter, current code */
unsigned j; /* counter */
int k; /* number of bits in current code */
int l; /* bits per table (returned in m) */
unsigned *p; /* pointer into c[], b[], or v[] */
struct huft *q; /* points to current table */
struct huft r = {0, 0, {0}}; /* table entry for structure assignment */
struct huft *u[BMAX]; /* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
int w; /* bits before this table == (l * h) */
unsigned x[BMAX + 1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length */
memset ((char *) c, 0, sizeof (c));
p = b;
i = n;
do
{
c[*p]++; /* assume all entries <= BMAX */
p++; /* Can't combine with above line (Solaris bug) */
}
while (--i);
if (c[0] == n) /* null input--all zero length codes */
{
*t = (struct huft *) NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
l = *m;
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if ((unsigned) l < j)
l = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if ((unsigned) l > i)
l = i;
*m = l;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= c[i]) < 0)
return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1;
xp = x + 2;
while (--i)
{ /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
for (i = 0; i < N_MAX; i++)
v[i] = N_MAX;
p = b;
i = 0;
do
{
if ((j = *p++) != 0)
v[x[j]++] = i;
}
while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = -l; /* bits decoded == (l * h) */
u[0] = (struct huft *) NULL; /* just to keep compilers happy */
q = (struct huft *) NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = c[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l)
{
h++;
w += l; /* previous table always l bits */
/* compute minimum size table less than or equal to l bits */
z = (z = (unsigned) (g - w)) > (unsigned) l ? (unsigned) l : z; /* upper limit on table size */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = c + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
z = 1 << j; /* table entries for j-bit table */
/* allocate and link in new table */
q = (struct huft *) calloc (z + 1, sizeof (struct huft));
if (! q)
{
if (h)
huft_free (u[0]);
return 3;
}
*t = q + 1; /* link to list for huft_free() */
*(t = &(q->v.t)) = (struct huft *) NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
x[h] = i; /* save pattern for backing up */
r.b = (uch) l; /* bits to dump before this table */
r.e = (uch) (16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = i >> (w - l); /* (get around Turbo C bug) */
u[h - 1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (uch) (k - w);
if (p >= v + n)
r.e = 99; /* out of values--invalid code */
else if (*p < s)
{
r.e = (uch) (*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = (ush) (*p); /* simple code is just the value */
p++; /* one compiler does not like *p++ */
}
else if (*p < N_MAX)
{
r.e = (uch) e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
else
{
if (h >= 0)
huft_free (u[0]);
return 2;
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
{
h--; /* don't need to update q */
w -= l;
}
}
}
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
/* Free the malloc'ed tables built by huft_build(), which makes a linked
list of the tables it made, with the links in a dummy first entry of
each table. */
static int
huft_free (struct huft *t)
{
struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *) NULL)
{
q = (--p)->v.t;
free ((char *) p);
p = q;
}
return 0;
}
/*
* inflate (decompress) the codes in a deflated (compressed) block.
* Return an error code or zero if it all goes ok.
*/
int
GzioReadStream::inflate_codes_in_window()
{
unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
ulg b; /* bit buffer */
unsigned k; /* number of bits in bit buffer */
/* make local copies of globals */
d = _inflateD;
n = _inflateN;
b = _bb; /* initialize bit buffer */
k = _bk;
w = _wp; /* initialize window position */
/* inflate the coded data */
ml = mask_bits[_bl]; /* precompute masks for speed */
md = mask_bits[_bd];
for (;;) /* do until end of block */
{
if (! _codeState)
{
if (_tl == NULL)
{
_err = true;
return 1;
}
NEEDBITS ((unsigned) _bl);
if ((e = (t = _tl + ((unsigned) b & ml))->e) > 16)
do
{
if (e == 99)
{
_err = true;
return 1;
}
DUMPBITS (t->b);
e -= 16;
NEEDBITS (e);
}
while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e) > 16);
DUMPBITS (t->b);
if (e == 16) /* then it's a literal */
{
_slide[w++] = (uch) t->v.n;
if (w == WSIZE)
break;
}
else
/* it's an EOB or a length */
{
/* exit if end of block */
if (e == 15)
{
_blockLen = 0;
break;
}
/* get length of block to copy */
NEEDBITS (e);
n = t->v.n + ((unsigned) b & mask_bits[e]);
DUMPBITS (e);
if (_td == NULL)
{
_err = true;
return 1;
}
/* decode distance of block to copy */
NEEDBITS ((unsigned) _bd);
if ((e = (t = _td + ((unsigned) b & md))->e) > 16)
do
{
if (e == 99)
{
_err = true;
return 1;
}
DUMPBITS (t->b);
e -= 16;
NEEDBITS (e);
}
while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e)
> 16);
DUMPBITS (t->b);
NEEDBITS (e);
d = w - t->v.n - ((unsigned) b & mask_bits[e]);
DUMPBITS (e);
_codeState++;
}
}
if (_codeState)
{
/* do the copy */
do
{
n -= (e = (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n
: e);
if (w - d >= e)
{
memcpy (_slide + w, _slide + d, e);
w += e;
d += e;
}
else
/* purposefully use the overlap for extra copies here!! */
{
while (e--)
_slide[w++] = _slide[d++];
}
if (w == WSIZE)
break;
}
while (n);
if (! n)
_codeState--;
/* did we break from the loop too soon? */
if (w == WSIZE)
break;
}
}
/* restore the globals from the locals */
_inflateD = d;
_inflateN = n;
_wp = w; /* restore global window pointer */
_bb = b; /* restore global bit buffer */
_bk = k;
return ! _blockLen;
}
/* get header for an inflated type 0 (stored) block. */
void
GzioReadStream::init_stored_block ()
{
ulg b; /* bit buffer */
unsigned k; /* number of bits in bit buffer */
/* make local copies of globals */
b = _bb; /* initialize bit buffer */
k = _bk;
/* go to byte boundary */
DUMPBITS (k & 7);
/* get the length and its complement */
NEEDBITS (16);
_blockLen = ((unsigned) b & 0xffff);
DUMPBITS (16);
if (_mode != GzioReadStream::Mode::CLICKTEAM) {
NEEDBITS (16);
if (_blockLen != (int) ((~b) & 0xffff))
_err = true;
DUMPBITS (16);
}
/* restore global variables */
_bb = b;
_bk = k;
}
/* get header for an inflated type 1 (fixed Huffman codes) block. We should
either replace this with a custom decoder, or at least precompute the
Huffman tables. */
void
GzioReadStream::init_fixed_block ()
{
int i; /* temporary variable */
unsigned l[288]; /* length list for huft_build */
/* set up literal table */
for (i = 0; i < 144; i++)
l[i] = 8;
for (; i < 256; i++)
l[i] = 9;
for (; i < 280; i++)
l[i] = 7;
for (; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
_bl = 7;
if (huft_build (l, 288, 257, cplens, cplext, &_tl, &_bl) != 0)
{
_err = true;
return;
}
/* set up distance table */
for (i = 0; i < 30; i++) /* make an incomplete code set */
l[i] = 5;
_bd = 5;
if (huft_build (l, 30, 0, cpdist, cpdext, &_td, &_bd) > 1)
{
_err = true;
huft_free (_tl);
_tl = 0;
return;
}
/* indicate we're now working on a block */
_codeState = 0;
_blockLen++;
}
/* get header for an inflated type 2 (dynamic Huffman codes) block. */
void
GzioReadStream::init_dynamic_block ()
{
int i; /* temporary variables */
unsigned j;
unsigned l; /* last length */
unsigned m; /* mask for bit lengths table */
unsigned n; /* number of lengths to get */
unsigned nb; /* number of bit length codes */
unsigned nl; /* number of literal/length codes */
unsigned nd; /* number of distance codes */
unsigned ll[286 + 30]; /* literal/length and distance code lengths */
ulg b; /* bit buffer */
unsigned k; /* number of bits in bit buffer */
const unsigned *bitorder = (_mode == GzioReadStream::Mode::CLICKTEAM) ? bitorder_clickteam : bitorder_zlib;
/* make local bit buffer */
b = _bb;
k = _bk;
/* read in table lengths */
NEEDBITS (5);
nl = 257 + ((unsigned) b & 0x1f); /* number of literal/length codes */
DUMPBITS (5);
NEEDBITS (5);
nd = 1 + ((unsigned) b & 0x1f); /* number of distance codes */
DUMPBITS (5);
NEEDBITS (4);
nb = 4 + ((unsigned) b & 0xf); /* number of bit length codes */
DUMPBITS (4);
if (nl > 286 || nd > 30)
{
_err = true;
return;
}
/* read in bit-length-code lengths */
for (j = 0; j < nb; j++)
{
NEEDBITS (3);
ll[bitorder[j]] = (unsigned) b & 7;
DUMPBITS (3);
}
for (; j < 19; j++)
ll[bitorder[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
_bl = 7;
if (huft_build (ll, 19, 19, NULL, NULL, &_tl, &_bl) != 0)
{
_err = true;
return;
}
/* read in literal and distance code lengths */
n = nl + nd;
m = mask_bits[_bl];
i = l = 0;
if (_tl == NULL)
{
_err = true;
return;
}
while ((unsigned) i < n)
{
NEEDBITS ((unsigned) _bl);
j = (_td = _tl + ((unsigned) b & m))->b;
DUMPBITS (j);
j = _td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
NEEDBITS (2);
j = 3 + ((unsigned) b & 3);
DUMPBITS (2);
if ((unsigned) i + j > n)
{
_err = true;
goto fail;
}
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
NEEDBITS (3);
j = 3 + ((unsigned) b & 7);
DUMPBITS (3);
if ((unsigned) i + j > n)
{
_err = true;
goto fail;
}
while (j--)
ll[i++] = 0;
l = 0;
}
else
/* j == 18: 11 to 138 zero length codes */
{
NEEDBITS (7);
j = 11 + ((unsigned) b & 0x7f);
DUMPBITS (7);
if ((unsigned) i + j > n)
{
_err = true;
goto fail;
}
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
huft_free (_tl);
_td = 0;
_tl = 0;
/* restore the global bit buffer */
_bb = b;
_bk = k;
/* build the decoding tables for literal/length and distance codes */
_bl = lbits;
if (huft_build (ll, nl, 257, cplens, cplext, &_tl, &_bl) != 0)
{
_err = true;
_tl = 0;
return;
}
_bd = dbits;
if (huft_build (ll + nl, nd, 0, cpdist, cpdext, &_td, &_bd) != 0)
{
huft_free (_tl);
_tl = 0;
_td = 0;
_err = true;
return;
}
/* indicate we're now working on a block */
_codeState = 0;
_blockLen++;
return;
fail:
huft_free (_tl);
_td = NULL;
_tl = NULL;
}
void
GzioReadStream::get_new_block()
{
ulg b; /* bit buffer */
unsigned k; /* number of bits in bit buffer */
/* make local bit buffer */
b = _bb;
k = _bk;
if (_mode == GzioReadStream::Mode::CLICKTEAM) {
/* read in block type */
NEEDBITS (3);
switch ((unsigned) b & 7) {
case 5:
_blockType = INFLATE_FIXED;
break;
case 6:
_blockType = INFLATE_DYNAMIC;
break;
case 7:
_blockType = INFLATE_STORED;
break;
default:
error("Unsupported clickteam block type %d", (int)(b & 7));
}
DUMPBITS (3);
/* read in last block bit */
NEEDBITS (1);
_lastBlock = (int) b & 1;
DUMPBITS (1);
} else {
/* read in last block bit */
NEEDBITS (1);
_lastBlock = (int) b & 1;
DUMPBITS (1);
/* read in block type */
NEEDBITS (2);
_blockType = (unsigned) b & 3;
DUMPBITS (2);
}
/* restore the global bit buffer */
_bb = b;
_bk = k;
switch (_blockType)
{
case INFLATE_STORED:
init_stored_block ();
break;
case INFLATE_FIXED:
init_fixed_block ();
break;
case INFLATE_DYNAMIC:
init_dynamic_block ();
break;
default:
break;
}
}
void
GzioReadStream::inflate_window ()
{
/* initialize window */
_wp = 0;
/*
* Main decompression loop.
*/
while (_wp < WSIZE && !_err)
{
if (! _blockLen)
{
if (_lastBlock)
break;
if (_inbufD == _inbufSize && _input->eos())
{
/* No buffer anymore on a block boundary */
_lastBlock = true;
break;
}
get_new_block ();
}
if (_blockType > INFLATE_DYNAMIC)
_err = true;
if (_err)
return;
/*
* Expand stored block here.
*/
if (_blockType == INFLATE_STORED)
{
int w = _wp;
/*
* This is basically a glorified pass-through
*/
while (_blockLen && w < WSIZE && !_err)
{
_slide[w++] = parentGetByte ();
_blockLen--;
}
_wp = w;
continue;
}
/*
* Expand other kind of block.
*/
if (inflate_codes_in_window ())
{
huft_free (_tl);
huft_free (_td);
_tl = 0;
_td = 0;
}
}
_savedOffset += _wp;
}
void
GzioReadStream::initialize_tables()
{
_savedOffset = 0;
parentSeek (_dataOffset);
/* Initialize the bit buffer. */
_bk = 0;
_bb = 0;
/* Reset partial decompression code. */
_lastBlock = 0;
_blockLen = 0;
/* Reset memory allocation stuff. */
huft_free (_tl);
huft_free (_td);
_tl = NULL;
_td = NULL;
}
static uint8
mod_31 (uint16 v)
{
/* At most 2 iterations for any number that
we can get here.
In any case faster than real division. */
while (v > 0x1f)
v = (v & 0x1f) + (v >> 5);
if (v == 0x1f)
return 0;
return v;
}
bool
GzioReadStream::test_zlib_header ()
{
uint8 cmf, flg;
cmf = parentGetByte ();
flg = parentGetByte ();
/* Check that compression method is DEFLATE. */
if ((cmf & 0xf) != GZ_DEFLATED)
{
return false;
}
/* Usually it would be: (cmf * 256 + flg) % 31 != 0. */
/* But 256 == 8 (31). */
/* By multiplying by 4 and using 32 == 1 (31). We get our formula. */
if (mod_31 (cmf + flg * 4) != 0)
{
return false;
}
/* Dictionary isn't supported. */
if (flg & 0x20)
{
return false;
}
_dataOffset += 2;
return true;
}
bool
GzioReadStream::test_gzip_header ()
{
uint8 hdr[2];
uint8 cm, flg;
hdr[0] = parentGetByte ();
hdr[1] = parentGetByte ();
if (hdr[0] != 0x1F || hdr[1] != 0x8B)
{
return false;
}
cm = parentGetByte ();
/* Check that compression method is DEFLATE. */
if (cm != GZ_DEFLATED)
{
return false;
}
flg = parentGetByte ();
// time
parentGetByte ();
parentGetByte ();
parentGetByte ();
parentGetByte ();
// XFL & OS
parentGetByte ();
parentGetByte ();
_dataOffset += 10;
// Invalid flags set
if (flg & GZ_RESERVED)
{
return false;
}
// Extra field
if (flg & GZ_EXTRA_FIELD)
{
uint16 xlen = parentGetByte () << 8;
xlen |= parentGetByte ();
_dataOffset += 2;
while (xlen--)
{
parentGetByte ();
_dataOffset++;
}
}
// File name
if (flg & GZ_ORIG_NAME)
{
while (parentGetByte ())
_dataOffset++;
_dataOffset++;
}
// Comment
if (flg & GZ_COMMENT)
{
while (parentGetByte ())
_dataOffset++;
_dataOffset++;
}
// CRC
if (flg & GZ_CRC)
{
parentGetByte ();
parentGetByte ();
_dataOffset += 2;
}
return true;
}
int32
GzioReadStream::readAtOffset (int64 offset, byte *buf, uint32 len)
{
int32 ret = 0;
/* Do we reset decompression to the beginning of the file? */
if (_savedOffset > offset + WSIZE)
initialize_tables();
/*
* This loop operates upon uncompressed data only. The only
* special thing it does is to make sure the decompression
* window is within the range of data it needs.
*/
while (len > 0 && !_err)
{
uint32 size;
char *srcaddr;
while (offset >= _savedOffset)
{
inflate_window ();
if (_wp == 0)
goto out;
}
if (_wp == 0)
goto out;
srcaddr = (char *) ((offset & (WSIZE - 1)) + _slide);
size = _savedOffset - offset;
if (size > len)
size = len;
memcpy (buf, srcaddr, size);
buf += size;
len -= size;
ret += size;
offset += size;
}
out:
if (_err)
ret = -1;
return ret;
}
uint32 GzioReadStream::read(void *dataPtr, uint32 dataSize) {
int32 actualRead = readAtOffset(_streamPos, (byte *)dataPtr, dataSize);
if (actualRead < 0) {
_err = true;
return 0;
}
_streamPos += actualRead;
if (_lastBlock && (uint32)actualRead < dataSize)
_eos = true;
return actualRead;
}
bool GzioReadStream::seek(int64 offs, int whence) {
// Pre-Condition
assert(_uncompressedSize == 0 || _streamPos <= _uncompressedSize);
switch (whence) {
case SEEK_END:
assert(_uncompressedSize != 0);
_streamPos = _uncompressedSize + offs;
break;
case SEEK_SET:
default:
_streamPos = offs;
break;
case SEEK_CUR:
_streamPos += offs;
break;
}
// Post-Condition
assert(_uncompressedSize == 0 || _streamPos <= _uncompressedSize);
// Reset end-of-stream flag on a successful seek
_eos = false;
return true;
}
#ifndef USE_ZLIB
SeekableReadStream* wrapCompressedReadStream(Common::SeekableReadStream *parent, DisposeAfterUse::Flag disposeParent, uint64 knownSize) {
if (!parent)
return nullptr;
if (parent->eos() || parent->err() || parent->size() < 2) {
if (disposeParent == DisposeAfterUse::YES) {
delete parent;
}
return nullptr;
}
uint16 header = parent->readUint16BE();
bool isCompressed = (header == 0x1F8B ||
((header & 0x0F00) == 0x0800 &&
header % 31 == 0));
parent->seek(-2, SEEK_CUR);
if (!isCompressed) {
return parent;
}
// Read gzip footer
if (header == 0x1F8B) {
uint64 pos = parent->pos();
// Retrieve the original file size
parent->seek(-4, SEEK_END);
knownSize = parent->readUint32LE();
parent->seek(pos, SEEK_SET);
}
GzioReadStream* gzio = new GzioReadStream(parent, disposeParent, knownSize, GzioReadStream::Mode::ZLIB);
if (header == 0x1F8B) {
if (!gzio->test_gzip_header()) {
delete gzio;
return nullptr;
}
} else {
if (!gzio->test_zlib_header()) {
delete gzio;
return nullptr;
}
}
gzio->initialize_tables();
return gzio;
}
SeekableReadStream* wrapDeflateReadStream(Common::SeekableReadStream *parent, DisposeAfterUse::Flag disposeParent, uint64 knownSize, const byte *dict, uint dictLen) {
if (!parent)
return nullptr;
GzioReadStream *gzio = new GzioReadStream(parent, disposeParent, knownSize, GzioReadStream::Mode::ZLIB, dict, dictLen);
gzio->initialize_tables();
return gzio;
}
WriteStream *wrapCompressedWriteStream(WriteStream *toBeWrapped) {
// Not supported, return stream itself to write uncompressed data
return toBeWrapped;
}
bool inflateZlib(byte *dst, unsigned long *dstLen, const byte *src, unsigned long srcLen) {
Common::ScopedPtr<Common::SeekableReadStream> gzio(wrapCompressedReadStream(new Common::MemoryReadStream(src, srcLen, DisposeAfterUse::NO), DisposeAfterUse::YES, 0));
if (!gzio)
return false;
uint32 readLen = gzio->read(dst, *dstLen);
if (readLen == *dstLen && !gzio->eos()) {
// Make sure we are at the end by forcing EOS (simulate Z_BUF_ERROR)
byte chk;
gzio->read(&chk, sizeof(chk));
}
*dstLen = readLen;
return !gzio->err() && gzio->eos();
}
bool inflateZlibHeaderless(byte *dst, uint *dstLen, const byte *src, uint srcLen, const byte *dict, uint dictLen) {
Common::ScopedPtr<Common::SeekableReadStream> gzio(wrapDeflateReadStream(new Common::MemoryReadStream(src, srcLen, DisposeAfterUse::NO), DisposeAfterUse::YES, 0, dict, dictLen));
if (!gzio)
return false;
*dstLen = gzio->read(dst, *dstLen);
// In zlib version we use Z_SYNC_FLUSH so no error is raised if buffer is not completely consumed
return !gzio->err();
}
#endif
SeekableReadStream* wrapClickteamReadStream(Common::SeekableReadStream *parent, DisposeAfterUse::Flag disposeParent, uint64 uncompressed_size) {
if (!parent)
return nullptr;
GzioReadStream *gzio = new GzioReadStream(parent, disposeParent, uncompressed_size, GzioReadStream::Mode::CLICKTEAM);
gzio->initialize_tables();
return gzio;
}
bool inflateClickteam(byte *dst, uint *dstLen, const byte *src, uint srcLen) {
Common::ScopedPtr<Common::SeekableReadStream> gzio(wrapClickteamReadStream(new Common::MemoryReadStream(src, srcLen, DisposeAfterUse::NO), DisposeAfterUse::YES, 0));
if (!gzio)
return false;
*dstLen = gzio->read(dst, *dstLen);
return !gzio->err();
}
}
|