1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "common/debug-channels.h"
#include "ags/shared/ac/common.h"
#include "ags/engine/ac/dynobj/cc_dynamic_array.h"
#include "ags/engine/ac/dynobj/managed_object_pool.h"
#include "ags/engine/ac/dynobj/dynobj_manager.h"
#include "ags/shared/gui/gui_defines.h"
#include "ags/shared/script/cc_common.h"
#include "ags/engine/script/cc_instance.h"
#include "ags/engine/debugging/debug_log.h"
#include "ags/shared/debugging/out.h"
#include "ags/engine/script/script.h"
#include "ags/engine/script/script_runtime.h"
#include "ags/engine/script/system_imports.h"
#include "ags/shared/util/bbop.h"
#include "ags/shared/util/file.h"
#include "ags/shared/util/stream.h"
#include "ags/shared/util/text_stream_writer.h"
#include "ags/engine/ac/dynobj/script_string.h"
#include "ags/engine/ac/dynobj/script_user_object.h"
#include "ags/engine/ac/sys_events.h"
#include "ags/shared/util/memory.h"
#include "ags/shared/util/string_utils.h" // linux strnicmp definition
#include "ags/detection.h"
#include "ags/globals.h"
namespace AGS3 {
using namespace AGS::Shared;
using namespace AGS::Shared::Memory;
enum ScriptOpArgIsReg {
kScOpNoArgIsReg = 0,
kScOpArg1IsReg = 0x0001,
kScOpArg2IsReg = 0x0002,
kScOpArg3IsReg = 0x0004,
kScOpOneArgIsReg = kScOpArg1IsReg,
kScOpTwoArgsAreReg = kScOpArg1IsReg | kScOpArg2IsReg,
kScOpTreeArgsAreReg = kScOpArg1IsReg | kScOpArg2IsReg | kScOpArg3IsReg
};
struct ScriptCommandInfo {
ScriptCommandInfo(const int32_t code, const char *cmdname, const int arg_count, const ScriptOpArgIsReg arg_is_reg)
: Code(code), CmdName(cmdname), ArgCount(arg_count), ArgIsReg{
(arg_is_reg & kScOpArg1IsReg) != 0,
(arg_is_reg & kScOpArg2IsReg) != 0,
(arg_is_reg & kScOpArg3IsReg) != 0
}
{}
const int32_t Code = 0;
const char *CmdName = nullptr;
const int ArgCount = 0;
const bool ArgIsReg[3]{};
};
struct ScriptCommands {
const ScriptCommandInfo _items[CC_NUM_SCCMDS] = {
ScriptCommandInfo(0 , "NULL" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_ADD , "addi" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_SUB , "subi" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_REGTOREG , "mov" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_WRITELIT , "memwritelit" , 2, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_RET , "ret" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_LITTOREG , "movl" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMREAD , "memread4" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMWRITE , "memwrite4" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MULREG , "mul" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_DIVREG , "div" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_ADDREG , "add" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_SUBREG , "sub" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_BITAND , "and" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_BITOR , "or" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_ISEQUAL , "cmpeq" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_NOTEQUAL , "cmpne" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_GREATER , "gt" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_LESSTHAN , "lt" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_GTE , "gte" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_LTE , "lte" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_AND , "land" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_OR , "lor" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_CALL , "call" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMREADB , "memread1" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMREADW , "memread2" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMWRITEB , "memwrite1" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMWRITEW , "memwrite2" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_JZ , "jzi" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_PUSHREG , "push" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_POPREG , "pop" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_JMP , "jmpi" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_MUL , "muli" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_CALLEXT , "farcall" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_PUSHREAL , "farpush" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_SUBREALSTACK , "farsubsp" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_LINENUM , "sourceline" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_CALLAS , "callscr" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_THISBASE , "thisaddr" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_NUMFUNCARGS , "setfuncargs" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_MODREG , "mod" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_XORREG , "xor" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_NOTREG , "not" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_SHIFTLEFT , "shl" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_SHIFTRIGHT , "shr" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_CALLOBJ , "callobj" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_CHECKBOUNDS , "checkbounds" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMWRITEPTR , "memwrite.ptr" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMREADPTR , "memread.ptr" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_MEMZEROPTR , "memwrite.ptr.0" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_MEMINITPTR , "meminit.ptr" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_LOADSPOFFS , "load.sp.offs" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_CHECKNULL , "checknull.ptr" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_FADD , "faddi" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_FSUB , "fsubi" , 2, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_FMULREG , "fmul" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FDIVREG , "fdiv" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FADDREG , "fadd" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FSUBREG , "fsub" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FGREATER , "fgt" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FLESSTHAN , "flt" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FGTE , "fgte" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_FLTE , "flte" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_ZEROMEMORY , "zeromem" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_CREATESTRING , "newstring" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_STRINGSEQUAL , "streq" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_STRINGSNOTEQ , "strne" , 2, kScOpTwoArgsAreReg),
ScriptCommandInfo(SCMD_CHECKNULLREG , "checknull" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_LOOPCHECKOFF , "loopcheckoff" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_MEMZEROPTRND , "memwrite.ptr.0.nd" , 0, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_JNZ , "jnzi" , 1, kScOpNoArgIsReg),
ScriptCommandInfo(SCMD_DYNAMICBOUNDS , "dynamicbounds" , 1, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_NEWARRAY , "newarray" , 3, kScOpOneArgIsReg),
ScriptCommandInfo(SCMD_NEWUSEROBJECT , "newuserobject" , 2, kScOpOneArgIsReg),
};
const ScriptCommandInfo &operator[](uint idx) {
return _items[idx];
}
};
static ScriptCommands *g_commands;
void script_commands_init() {
g_commands = new ScriptCommands();
}
void script_commands_free() {
delete g_commands;
}
const char *regnames[] = { "null", "sp", "mar", "ax", "bx", "cx", "op", "dx" };
const char *fixupnames[] = { "null", "fix_gldata", "fix_func", "fix_string", "fix_import", "fix_datadata", "fix_stack" };
String cc_get_callstack(int max_lines) {
String callstack;
for (auto sci = _GP(InstThreads).crbegin(); sci != _GP(InstThreads).crend(); ++sci) {
if (callstack.IsEmpty())
callstack.Append("in the active script:\n");
else
callstack.Append("in the waiting script:\n");
callstack.Append((*sci)->GetCallStack(max_lines));
}
return callstack;
}
// Function call stack is used to temporarily store
// values before passing them to script function
#define MAX_FUNC_PARAMS 20
// An inverted parameter stack
struct FunctionCallStack {
FunctionCallStack() {
Head = MAX_FUNC_PARAMS - 1;
Count = 0;
}
inline RuntimeScriptValue *GetHead() {
return &Entries[Head];
}
inline RuntimeScriptValue *GetTail() {
return &Entries[Head + Count];
}
RuntimeScriptValue Entries[MAX_FUNC_PARAMS + 1];
int Head;
int Count;
};
ccInstance *ccInstance::GetCurrentInstance() {
return _GP(InstThreads).size() > 0 ? _GP(InstThreads).back() : nullptr;
}
void ccInstance::FreeInstanceStack() {
_GP(InstThreads).clear();
}
ccInstance *ccInstance::CreateFromScript(PScript scri) {
return CreateEx(scri, nullptr);
}
ccInstance *ccInstance::CreateEx(PScript scri, const ccInstance *joined) {
// allocate and copy all the memory with data, code and strings across
ccInstance *cinst = new ccInstance();
if (!cinst->_Create(scri, joined)) {
delete cinst;
return nullptr;
}
return cinst;
}
void ccInstance::SetExecTimeout(const unsigned sys_poll_ms, const unsigned abort_ms, const unsigned abort_loops) {
_G(timeoutCheckMs) = sys_poll_ms;
_G(timeoutAbortMs) = abort_ms;
_G(maxWhileLoops) = abort_loops;
}
ccInstance::ccInstance() {
flags = 0;
globaldata = nullptr;
globaldatasize = 0;
code = nullptr;
runningInst = nullptr;
codesize = 0;
strings = nullptr;
stringssize = 0;
exports = nullptr;
stack = nullptr;
num_stackentries = 0;
stackdata = nullptr;
stackdatasize = 0;
stackdata_ptr = nullptr;
pc = 0;
line_number = 0;
callStackSize = 0;
loadedInstanceId = 0;
returnValue = 0;
numimports = 0;
resolved_imports = nullptr;
code_fixups = nullptr;
memset(callStackLineNumber, 0, sizeof(callStackLineNumber));
memset(callStackAddr, 0, sizeof(callStackAddr));
memset(callStackCodeInst, 0, sizeof(callStackCodeInst));
}
ccInstance::~ccInstance() {
Free();
}
ccInstance *ccInstance::Fork() {
return CreateEx(instanceof, this);
}
void ccInstance::Abort() {
if (pc != 0) {
flags |= INSTF_ABORTED;
}
}
void ccInstance::AbortAndDestroy() {
Abort();
flags |= INSTF_FREE;
}
// ASSERT_CC_OP tests for the internal function call return value and
// returns failure on error
#if (DEBUG_CC_EXEC)
#define CC_ERROR_IF(COND, ERROR, ...) \
if (COND) \
{ \
cc_error(ERROR, ##__VA_ARGS__); \
return; \
}
#define CC_ERROR_IF_RETCODE(COND, ERROR, ...) \
if (COND) \
{ \
cc_error(ERROR, ##__VA_ARGS__); \
return -1; \
}
#define CC_ERROR_IF_RETVAL(COND, T, ERROR, ...) \
if (COND) \
{ \
cc_error(ERROR, ##__VA_ARGS__); \
return T(); \
}
#define ASSERT_CC_ERROR() \
if (cc_has_error()) \
{ \
return -1; \
}
#else
#define CC_ERROR_IF(COND, ERROR, ...)
#define CC_ERROR_IF_RETCODE(COND, ERROR, ...)
#define CC_ERROR_IF_RETVAL(COND, T, ERROR, ...)
#define ASSERT_CC_ERROR()
#endif // DEBUG_CC_EXEC
// Two stack assertions that are always enabled:
// ASSERT_STACK_SPACE_AVAILABLE tests that we do not exceed stack limit
#define ASSERT_STACK_SPACE_AVAILABLE(N_VALS, N_BYTES) \
if ((registers[SREG_SP].RValue + N_VALS - &stack[0]) >= CC_STACK_SIZE || \
(stackdata_ptr + N_BYTES - stackdata) >= (uint32_t)CC_STACK_DATA_SIZE) \
{ \
cc_error("stack overflow, attempted to grow from %d by %d bytes", (stackdata_ptr - stackdata), N_BYTES); \
return -1; \
}
// ASSERT_STACK_SPACE_BYTES tests that we do not exceed stack limit
// if we are going to add N_BYTES bytes to stack
#define ASSERT_STACK_SPACE_BYTES(N_BYTES) ASSERT_STACK_SPACE_AVAILABLE(1, N_BYTES)
// ASSERT_STACK_SPACE_VALS tests that we do not exceed stack limit
// if we are going to add N_VALS values, sizeof(int32) each
#define ASSERT_STACK_SPACE_VALS(N_VALS) ASSERT_STACK_SPACE_AVAILABLE(N_VALS, sizeof(int32_t) * N_VALS)
// ASSERT_STACK_SIZE tests that we do not unwind stack past its beginning
#define ASSERT_STACK_SIZE(N) \
if (registers[SREG_SP].RValue - N < &stack[0]) \
{ \
cc_error("stack underflow"); \
return -1; \
}
// ASSERT_STACK_UNWINDED tests that the stack pointer is at the expected position
#define ASSERT_STACK_UNWINDED(STACK_VAL, DATA_PTR) \
if ((registers[SREG_SP].RValue > STACK_VAL.RValue) || \
(stackdata_ptr > DATA_PTR)) \
{ \
cc_error("stack is not unwinded after function call, %d bytes remain", (stackdata_ptr - DATA_PTR)); \
return -1; \
}
int ccInstance::CallScriptFunction(const char *funcname, int32_t numargs, const RuntimeScriptValue *params) {
cc_clear_error();
_G(currentline) = 0;
if (numargs > 0 && !params) {
cc_error("internal error in ccInstance::CallScriptFunction");
return -1; // TODO: correct error value
}
if ((numargs >= MAX_FUNCTION_PARAMS) || (numargs < 0)) {
cc_error("too many arguments to function");
return -3;
}
if (pc != 0) {
cc_error("instance already being executed");
return -4;
}
// NOTE: passing more parameters than expected by the function is fine:
// the function args are pushed to the stack in REVERSE order, first
// parameters are always the last, so function code knows how to find them
// using negative offsets, and does not care about any preceding entries.
int32_t startat = -1;
char mangledName[200];
const size_t mangled_len = snprintf(mangledName, sizeof(mangledName), "%s$", funcname);
int32_t export_args = numargs;
for (int k = 0; k < instanceof->numexports; k++) {
const char *thisExportName = instanceof->exports[k];
bool match = false;
// check for a mangled name match
if (strncmp(thisExportName, mangledName, mangled_len) == 0) {
// found, compare the number of parameters
export_args = atoi(thisExportName + mangled_len);
if (export_args > numargs) {
cc_error("Not enough parameters to exported function '%s' (expected %d, supplied %d)",
funcname, export_args, numargs);
return -1;
}
match = true;
}
// check for an exact match (if the script was compiled with an older version)
if (match || (strcmp(thisExportName, funcname) == 0)) {
const int32_t etype = (instanceof->export_addr[k] >> 24L) & 0x000ff;
if (etype != EXPORT_FUNCTION) {
cc_error("symbol is not a function");
return -1;
}
startat = (instanceof->export_addr[k] & 0x00ffffff);
break;
}
}
if (startat < 0) {
cc_error("function '%s' not found", funcname);
return -2;
}
// Prepare instance for run
flags &= ~INSTF_ABORTED;
// Allow to pass less parameters if script callback has less declared args
numargs = MIN(numargs, export_args);
// object pointer needs to start zeroed
registers[SREG_OP].SetScriptObject(nullptr, nullptr);
registers[SREG_SP].SetStackPtr(&stack[0]);
stackdata_ptr = stackdata;
// NOTE: Pushing parameters to stack in reverse order
ASSERT_STACK_SPACE_VALS(numargs + 1 /* return address */);
for (int i = numargs - 1; i >= 0; --i) {
PushValueToStack(params[i]);
}
// Push placeholder for the return value (it will be popped before ret)
PushValueToStack(RuntimeScriptValue().SetInt32(0));
_GP(InstThreads).push_back(this); // push instance thread
runningInst = this;
const int reterr = Run(startat);
// Cleanup before returning, even if error
ASSERT_STACK_SIZE(numargs);
PopValuesFromStack(numargs);
pc = 0;
_G(currentline) = 0;
_GP(InstThreads).pop_back(); // pop instance thread
if (reterr != 0)
return reterr;
// NOTE that if proper multithreading is added this will need
// to be reconsidered, since the GC could be run in the middle
// of a RET from a function or something where there is an
// object with ref count 0 that is in use
_GP(pool).RunGarbageCollectionIfAppropriate();
if (_G(new_line_hook))
_G(new_line_hook)(nullptr, 0);
if (flags & INSTF_ABORTED) {
flags &= ~INSTF_ABORTED;
if (flags & INSTF_FREE)
Free();
return 100;
}
ASSERT_STACK_UNWINDED(registers[SREG_SP], stackdata);
return cc_has_error();
}
// Macros to maintain the call stack
#define PUSH_CALL_STACK \
if (callStackSize >= MAX_CALL_STACK) { \
cc_error("CallScriptFunction stack overflow (recursive call error?)"); \
return -1; \
} \
callStackLineNumber[callStackSize] = line_number; \
callStackCodeInst[callStackSize] = runningInst; \
callStackAddr[callStackSize] = pc; \
callStackSize++
#define POP_CALL_STACK \
if (callStackSize < 1) { \
cc_error("CallScriptFunction stack underflow -- internal error"); \
return -1; \
} \
callStackSize--;\
line_number = callStackLineNumber[callStackSize];\
_G(currentline) = line_number
// Return stack ptr at given offset from stack head;
// Offset is in data bytes; program stack ptr is __not__ changed
inline RuntimeScriptValue GetStackPtrOffsetFw(RuntimeScriptValue *stack, int32_t fw_offset) {
int32_t total_off = 0;
RuntimeScriptValue *stack_entry = stack;
while (total_off < fw_offset && (stack_entry - stack) < CC_STACK_SIZE) {
stack_entry++;
total_off += stack_entry->Size;
}
CC_ERROR_IF_RETVAL(total_off < fw_offset, RuntimeScriptValue, "accessing address %d beyond stack's tail (%d)", fw_offset, total_off);
CC_ERROR_IF_RETVAL(total_off > fw_offset, RuntimeScriptValue, "stack offset forward (%d): trying to access stack data inside stack entry (%d), stack corrupted?", fw_offset, total_off);
RuntimeScriptValue stack_ptr;
stack_ptr.SetStackPtr(stack_entry);
return stack_ptr;
}
// Applies a runtime fixup to the given arg;
// Fixup of type `fixup` is applied to the `code` value,
// the result is assigned to the `arg`.
inline bool FixupArgument(RuntimeScriptValue &arg, const int fixup, const uintptr code, RuntimeScriptValue *stack, const char *strings) {
// could be relative pointer or import address
switch (fixup) {
case FIXUP_NOFIXUP:
return true;
case FIXUP_GLOBALDATA: {
ScriptVariable *gl_var = (ScriptVariable *)code;
arg.SetGlobalVar(&gl_var->RValue);
}
return true;
case FIXUP_FUNCTION:
// originally commented -- CHECKME: could this be used in very old versions of AGS?
// code[fixup] += (long)&code[0];
// This is a program counter value, presumably will be used as SCMD_CALL argument
arg.SetInt32(static_cast<int32_t>(code));
return true;
case FIXUP_STRING:
arg.SetStringLiteral(strings + code);
return true;
case FIXUP_IMPORT: {
const ScriptImport *import = _GP(simp).getByIndex(static_cast<uint32_t>(code));
if (import) {
arg = import->Value;
} else {
cc_error("cannot resolve import, key = %ld", code);
return false;
}
}
return true;
case FIXUP_DATADATA:
return false; // placeholder, fail at this as not supposed to be here
case FIXUP_STACK:
arg = GetStackPtrOffsetFw(stack, static_cast<int32_t>(code));
return true;
default:
cc_error("internal fixup type error: %d", fixup);
return false;
}
}
#define MAXNEST 50 // number of recursive function calls allowed
int ccInstance::Run(int32_t curpc) {
pc = curpc;
returnValue = -1;
if ((curpc < 0) || (curpc >= runningInst->codesize)) {
cc_error("specified code offset is not valid");
return -1;
}
int32_t thisbase[MAXNEST], funcstart[MAXNEST];
int was_just_callas = -1;
int curnest = 0;
int num_args_to_func = -1;
int next_call_needs_object = 0;
thisbase[0] = 0;
funcstart[0] = pc;
ccInstance *codeInst = runningInst;
ScriptOperation codeOp;
FunctionCallStack func_callstack;
#if DEBUG_CC_EXEC
const bool dump_opcodes = (ccGetOption(SCOPT_DEBUGRUN) != 0) ||
(gDebugLevel > 0 && DebugMan.isDebugChannelEnabled(::AGS::kDebugScript));
#endif
int loopIterationCheckDisabled = 0;
unsigned loopIterations = 0u; // any loop iterations (needed for timeout test)
unsigned loopCheckIterations = 0u; // loop iterations accumulated only if check is enabled
const auto timeout = std::chrono::milliseconds(_G(timeoutCheckMs));
_lastAliveTs = AGS_Clock::now();
/* Main bytecode execution loop */
//=====================================================================
while ((flags & INSTF_ABORTED) == 0) {
// WARNING: a time-critical code ahead;
// trying to pick some of the code out to separate function(s)
// may lead to a performance loss in script-heavy games.
// always compare execution speed before applying any major changes!
//
/* Read operation */
//=====================================================================
codeOp.Instruction.Code = codeInst->code[pc];
codeOp.Instruction.InstanceId = (codeOp.Instruction.Code >> INSTANCE_ID_SHIFT) & INSTANCE_ID_MASK;
codeOp.Instruction.Code &= INSTANCE_ID_REMOVEMASK; // now this is pure instruction code
CC_ERROR_IF_RETCODE((codeOp.Instruction.Code < 0 || codeOp.Instruction.Code >= CC_NUM_SCCMDS),
"invalid instruction %d found in code stream", codeOp.Instruction.Code);
codeOp.ArgCount = (*g_commands)[codeOp.Instruction.Code].ArgCount;
CC_ERROR_IF_RETCODE(pc + codeOp.ArgCount >= codeInst->codesize,
"unexpected end of code data (%d; %d)", pc + codeOp.ArgCount, codeInst->codesize);
// Read arguments; use switch as it proved to be faster than the loop
switch (codeOp.ArgCount) {
case 3:
codeOp.Args[2].SetInt32(static_cast<int32_t>(codeInst->code[pc + 3]));
/* fall-through */
case 2:
codeOp.Args[1].SetInt32(static_cast<int32_t>(codeInst->code[pc + 2]));
/* fall-through */
case 1:
codeOp.Args[0].SetInt32(static_cast<int32_t>(codeInst->code[pc + 1]));
break;
default:
break;
}
//---------------------------------------------------------------------
/* End read operation */
//=====================================================================
#if (DEBUG_CC_EXEC)
if (dump_opcodes) {
DumpInstruction(codeOp);
}
#endif
/* Perform operation */
//=====================================================================
switch (codeOp.Instruction.Code) {
case SCMD_LINENUM:
line_number = codeOp.Arg1i();
_G(currentline) = line_number;
if (_G(new_line_hook))
_G(new_line_hook)(this, _G(currentline));
break;
case SCMD_ADD: {
const auto arg_reg = codeOp.Arg1i();
const auto arg_lit = codeOp.Arg2i();
auto ®1 = registers[arg_reg];
// If the register is SREG_SP, we are allocating new variable on the stack
if (arg_reg == SREG_SP) {
// Only allocate new data if current stack entry is invalid;
// in some cases this may be advancing over value that was written by MEMWRITE*
// FIXME: this is bad, but seemed to be the way to separate PushValue and PushData
// find if it's possible to do this in a uniform way (always same operation),
// and don't rely on stack entries being valid/invalid beyond the stack ptr.
ASSERT_STACK_SPACE_AVAILABLE(1, arg_lit);
if (reg1.RValue->IsValid()) {
// TODO: perhaps should add a flag here to ensure this happens only after MEMWRITE-ing to stack
registers[SREG_SP].RValue++;
stackdata_ptr += arg_lit; // formality, to keep data ptr consistent
} else {
PushDataToStack(arg_lit);
ASSERT_CC_ERROR();
}
} else {
reg1.IValue += arg_lit;
}
break;
}
case SCMD_SUB: {
const auto arg_reg = codeOp.Arg1i();
const auto arg_lit = codeOp.Arg2i();
auto ®1 = registers[arg_reg];
if (reg1.Type == kScValStackPtr) {
// If this is SREG_SP, this is stack pop, which frees local variables;
// Other than SREG_SP this may be AGS 2.x method to offset stack in SREG_MAR;
// quote JJS:
// // AGS 2.x games also perform relative stack access by copying SREG_SP to SREG_MAR
// // and then subtracting from that.
// FIXME: try to do this in uniform way, call same func, save result in reg1
if (arg_reg == SREG_SP) {
PopDataFromStack(arg_lit);
} else {
// This is practically LOADSPOFFS
reg1 = GetStackPtrOffsetRw(arg_lit);
}
ASSERT_CC_ERROR();
} else {
reg1.IValue -= arg_lit;
}
break;
}
case SCMD_REGTOREG: {
const auto ®1 = registers[codeOp.Arg1i()];
auto ®2 = registers[codeOp.Arg2i()];
reg2 = reg1;
break;
}
case SCMD_WRITELIT: {
// Take the data address from reg[MAR] and copy there arg1 bytes from arg2 address
//
// NOTE: since it reads directly from arg2 (which originally was
// long, or rather int32 due x32 build), written value may normally
// be only up to 4 bytes large;
// I guess that's an obsolete way to do WRITE, WRITEW and WRITEB
const auto arg_size = codeOp.Arg1i();
FixupArgument(codeOp.Args[1], codeInst->code_fixups[pc + 2], codeInst->code[pc + 2], this->stack, codeInst->strings);
ASSERT_CC_ERROR();
const auto &arg_value = codeOp.Arg2();
switch (arg_size) {
case sizeof(char):
registers[SREG_MAR].WriteByte(arg_value.IValue);
break;
case sizeof(int16_t):
registers[SREG_MAR].WriteInt16(arg_value.IValue);
break;
case sizeof(int32_t):
// We do not know if this is math integer or some pointer, etc
registers[SREG_MAR].WriteValue(arg_value);
break;
default:
warning("unexpected data size for WRITELIT op: %d", arg_size);
break;
}
break;
}
case SCMD_RET: {
if (loopIterationCheckDisabled > 0)
loopIterationCheckDisabled--;
ASSERT_STACK_SIZE(1);
RuntimeScriptValue rval = PopValueFromStack();
curnest--;
pc = rval.IValue;
if (pc == 0) {
returnValue = registers[SREG_AX].IValue;
return 0;
}
POP_CALL_STACK;
continue; // continue so that the PC doesn't get overwritten
}
case SCMD_LITTOREG: {
auto ®1 = registers[codeOp.Arg1i()];
FixupArgument(codeOp.Args[1], codeInst->code_fixups[pc + 2], codeInst->code[pc + 2], this->stack, codeInst->strings);
ASSERT_CC_ERROR();
const auto &arg_value = codeOp.Arg2();
reg1 = arg_value;
break;
}
case SCMD_MEMREAD: {
// Take the data address from reg[MAR] and copy int32_t to reg[arg1]
auto ®1 = registers[codeOp.Arg1i()];
reg1 = registers[SREG_MAR].ReadValue();
break;
}
case SCMD_MEMWRITE: {
// Take the data address from reg[MAR] and copy there int32_t from reg[arg1]
const auto ®1 = registers[codeOp.Arg1i()];
registers[SREG_MAR].WriteValue(reg1);
break;
}
case SCMD_LOADSPOFFS: {
const auto arg_off = codeOp.Arg1i();
registers[SREG_MAR] = GetStackPtrOffsetRw(arg_off);
ASSERT_CC_ERROR();
break;
}
case SCMD_MULREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue * reg2.IValue);
break;
}
case SCMD_DIVREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
if (reg2.IValue == 0) {
cc_error("!Integer divide by zero");
return -1;
}
reg1.SetInt32(reg1.IValue / reg2.IValue);
break;
}
case SCMD_ADDREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
// This may be pointer arithmetics, in which case IValue stores offset from base pointer
reg1.IValue += reg2.IValue;
break;
}
case SCMD_SUBREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
// This may be pointer arithmetics, in which case IValue stores offset from base pointer
reg1.IValue -= reg2.IValue;
break;
}
case SCMD_BITAND: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue & reg2.IValue);
break;
}
case SCMD_BITOR: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue | reg2.IValue);
break;
}
case SCMD_ISEQUAL: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1 == reg2);
break;
}
case SCMD_NOTEQUAL: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1 != reg2);
break;
}
case SCMD_GREATER: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue > reg2.IValue);
break;
}
case SCMD_LESSTHAN: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue < reg2.IValue);
break;
}
case SCMD_GTE: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue >= reg2.IValue);
break;
}
case SCMD_LTE: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue <= reg2.IValue);
break;
}
case SCMD_AND: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue && reg2.IValue);
break;
}
case SCMD_OR: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32AsBool(reg1.IValue || reg2.IValue);
break;
}
case SCMD_XORREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue ^ reg2.IValue);
break;
}
case SCMD_MODREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
if (reg2.IValue == 0) {
cc_error("!Integer divide by zero");
return -1;
}
reg1.SetInt32(reg1.IValue % reg2.IValue);
break;
}
case SCMD_NOTREG: {
auto ®1 = registers[codeOp.Arg1i()];
reg1 = !(reg1);
break;
}
case SCMD_CALL: {
// Call another function within same script, just save PC
// and continue from there
if (curnest >= MAXNEST - 1) {
cc_error("!call stack overflow, recursive call problem?");
return -1;
}
PUSH_CALL_STACK;
ASSERT_STACK_SPACE_VALS(1);
PushValueToStack(RuntimeScriptValue().SetInt32(pc + codeOp.ArgCount + 1));
const auto ®1 = registers[codeOp.Arg1i()];
if (thisbase[curnest] == 0)
pc = reg1.IValue;
else {
pc = funcstart[curnest];
pc += (reg1.IValue - thisbase[curnest]);
}
next_call_needs_object = 0;
if (loopIterationCheckDisabled)
loopIterationCheckDisabled++;
curnest++;
thisbase[curnest] = 0;
funcstart[curnest] = pc;
continue; // continue so that the PC doesn't get overwritten
}
case SCMD_MEMREADB: {
// Take the data address from reg[MAR] and copy byte to reg[arg1]
auto ®1 = registers[codeOp.Arg1i()];
reg1.SetUInt8(registers[SREG_MAR].ReadByte());
break;
}
case SCMD_MEMREADW: {
// Take the data address from reg[MAR] and copy int16_t to reg[arg1]
auto ®1 = registers[codeOp.Arg1i()];
reg1.SetInt16(registers[SREG_MAR].ReadInt16());
break;
}
case SCMD_MEMWRITEB: {
// Take the data address from reg[MAR] and copy there byte from reg[arg1]
const auto ®1 = registers[codeOp.Arg1i()];
registers[SREG_MAR].WriteByte(reg1.IValue);
break;
}
case SCMD_MEMWRITEW: {
// Take the data address from reg[MAR] and copy there int16_t from reg[arg1]
const auto ®1 = registers[codeOp.Arg1i()];
registers[SREG_MAR].WriteInt16(reg1.IValue);
break;
}
case SCMD_JZ: {
const auto arg_lit = codeOp.Arg1i();
if (registers[SREG_AX].IsNull())
pc += arg_lit;
break;
}
case SCMD_JNZ: {
const auto arg_lit = codeOp.Arg1i();
if (!registers[SREG_AX].IsNull())
pc += arg_lit;
break;
}
case SCMD_PUSHREG: {
// Push reg[arg1] value to the stack
const auto ®1 = registers[codeOp.Arg1i()];
ASSERT_STACK_SPACE_VALS(1);
PushValueToStack(reg1);
break;
}
case SCMD_POPREG: {
auto ®1 = registers[codeOp.Arg1i()];
ASSERT_STACK_SIZE(1);
reg1 = PopValueFromStack();
break;
}
case SCMD_JMP: {
const auto arg_lit = codeOp.Arg1i();
pc += arg_lit;
// Make sure it's not stuck in a While loop
if (arg_lit < 0) {
++loopIterations;
if (flags & INSTF_RUNNING) {
// was notified still running, don't do anything
flags &= ~INSTF_RUNNING;
loopIterations = 0u;
loopCheckIterations = 0u;
} else if ((loopIterationCheckDisabled == 0) && (_G(maxWhileLoops) > 0) && (++loopCheckIterations > _G(maxWhileLoops))) {
cc_error("!Script appears to be hung (a while loop ran %d times). The problem may be in a calling function; check the call stack.", (int)loopCheckIterations);
return -1;
} else if ((loopIterations & 0x3FF) == 0 && // test each 1024 loops (arbitrary)
(std::chrono::duration_cast<std::chrono::milliseconds>(AGS_Clock::now() - _lastAliveTs) > timeout)) {
// minimal timeout occurred
// NOTE: removed timeout_abort check for now: was working *logically* wrong;
sys_evt_process_pending();
_lastAliveTs = AGS_Clock::now();
}
}
break;
}
case SCMD_MUL: {
auto ®1 = registers[codeOp.Arg1i()];
const auto arg_lit = codeOp.Arg2i();
reg1.IValue *= arg_lit;
break;
}
case SCMD_CHECKBOUNDS: {
const auto ®1 = registers[codeOp.Arg1i()];
const auto arg_lit = codeOp.Arg2i();
if ((reg1.IValue < 0) ||
(reg1.IValue >= arg_lit)) {
cc_error("!Array index out of bounds (index: %d, bounds: 0..%d)", reg1.IValue, arg_lit - 1);
return -1;
}
break;
}
case SCMD_DYNAMICBOUNDS: {
const auto ®1 = registers[codeOp.Arg1i()];
// TODO: test reg[MAR] type here;
// That might be dynamic object, but also a non-managed dynamic array, "allocated"
// on global or local memspace (buffer)
void *arr_ptr = registers[SREG_MAR].GetPtrWithOffset();
const auto &hdr = CCDynamicArray::GetHeader(arr_ptr);
if ((reg1.IValue < 0) ||
(static_cast<uint32_t>(reg1.IValue) >= hdr.TotalSize)) {
int elem_count = hdr.ElemCount & (~ARRAY_MANAGED_TYPE_FLAG);
if (elem_count <= 0) {
cc_error("!Array has an invalid size (%d) and cannot be accessed", elem_count);
} else {
int elementSize = (hdr.TotalSize / elem_count);
cc_error("!Array index out of bounds (index: %d, bounds: 0..%d)", reg1.IValue / elementSize, elem_count - 1);
}
return -1;
}
break;
}
// 64 bit: Handles are always 32 bit values. They are not C pointer.
case SCMD_MEMREADPTR: {
auto ®1 = registers[codeOp.Arg1i()];
int32_t handle = registers[SREG_MAR].ReadInt32();
// FIXME: make pool return a ready RuntimeScriptValue with these set?
// or another struct, which may be assigned to RSV
void *object;
IScriptObject *manager;
ScriptValueType obj_type = ccGetObjectAddressAndManagerFromHandle(handle, object, manager);
reg1.SetScriptObject(obj_type, object, manager);
ASSERT_CC_ERROR();
break;
}
case SCMD_MEMWRITEPTR: {
const auto ®1 = registers[codeOp.Arg1i()];
int32_t handle = registers[SREG_MAR].ReadInt32();
void *address;
switch (reg1.Type) {
case kScValStaticArray:
// FIXME: return manager type from interface?
// CC_ERROR_IF_RETCODE(!reg1.ArrMgr->GetDynamicManager(), "internal error: MEMWRITEPTR argument is not a dynamic object");
address = reg1.ArrMgr->GetElementPtr(reg1.Ptr, reg1.IValue);
break;
case kScValScriptObject:
case kScValPluginObject:
address = reg1.Ptr;
break;
case kScValPluginArg:
// FIXME: plugin API is currently strictly 32-bit, so this may break on 64-bit systems
address = Int32ToPtr<char>(reg1.IValue);
break;
default:
// There's one possible case when the reg1 is 0, which means writing nullptr
CC_ERROR_IF_RETCODE(!reg1.IsNull(), "internal error: MEMWRITEPTR argument is not a dynamic object (Type = %d)", reg1.Type);
address = nullptr;
break;
}
int32_t newHandle = ccGetObjectHandleFromAddress(address);
if (newHandle == -1)
return -1;
if (handle != newHandle) {
ccReleaseObjectReference(handle);
ccAddObjectReference(newHandle);
registers[SREG_MAR].WriteInt32(newHandle);
}
// Assign always, avoid leaving undefined value
registers[SREG_MAR].WriteInt32(newHandle);
break;
}
case SCMD_MEMINITPTR: {
void *address;
const auto ®1 = registers[codeOp.Arg1i()];
switch (reg1.Type) {
case kScValStaticArray:
// FIXME: return manager type from interface?
// CC_ERROR_IF_RETCODE(!reg1.ArrMgr->GetDynamicManager(), "internal error: SCMD_MEMINITPTR argument is not a dynamic object");
address = reg1.ArrMgr->GetElementPtr(reg1.Ptr, reg1.IValue);
break;
case kScValScriptObject:
case kScValPluginObject:
address = reg1.Ptr;
break;
case kScValPluginArg:
// FIXME: plugin API is currently strictly 32-bit, so this may break on 64-bit systems
address = Int32ToPtr<uint8_t>(reg1.IValue);
break;
default:
// There's one possible case when the reg1 is 0, which means writing nullptr
CC_ERROR_IF_RETCODE(!reg1.IsNull(), "internal error: SCMD_MEMINITPTR argument is not a dynamic object (Type = %d)", reg1.Type);
address = nullptr;
break;
}
// like memwriteptr, but doesn't attempt to free the old one
int32_t newHandle = ccGetObjectHandleFromAddress(address);
if (newHandle == -1)
return -1;
ccAddObjectReference(newHandle);
registers[SREG_MAR].WriteInt32(newHandle);
break;
}
case SCMD_MEMZEROPTR: {
int32_t handle = registers[SREG_MAR].ReadInt32();
ccReleaseObjectReference(handle);
registers[SREG_MAR].WriteInt32(0);
break;
}
case SCMD_MEMZEROPTRND: {
int32_t handle = registers[SREG_MAR].ReadInt32();
// don't do the Dispose check for the object being returned -- this is
// for returning a String (or other pointer) from a custom function.
// Note: we might be freeing a dynamic array which contains the DisableDispose
// object, that will be handled inside the recursive call to SubRef.
// CHECKME!! what type of data may reg1 point to?
_GP(pool).disableDisposeForObject = registers[SREG_AX].Ptr;
ccReleaseObjectReference(handle);
_GP(pool).disableDisposeForObject = nullptr;
registers[SREG_MAR].WriteInt32(0);
break;
}
case SCMD_CHECKNULL:
if (registers[SREG_MAR].IsNull()) {
cc_error("!Null pointer referenced");
return -1;
}
break;
case SCMD_CHECKNULLREG: {
const auto ®1 = registers[codeOp.Arg1i()];
if (reg1.IsNull()) {
cc_error("!Null string referenced");
return -1;
}
break;
}
case SCMD_NUMFUNCARGS: {
const auto arg_lit = codeOp.Arg1i();
num_args_to_func = arg_lit;
break;
}
case SCMD_CALLAS: {
PUSH_CALL_STACK;
// Call to a function in another script
const auto ®1 = registers[codeOp.Arg1i()];
// If there are nested CALLAS calls, the stack might
// contain 2 calls worth of parameters, so only
// push args for this call
if (num_args_to_func < 0) {
num_args_to_func = func_callstack.Count;
}
ASSERT_STACK_SPACE_VALS(num_args_to_func + 1 /* return address */);
for (const RuntimeScriptValue *prval = func_callstack.GetHead() + num_args_to_func;
prval > func_callstack.GetHead(); --prval) {
PushValueToStack(*prval);
}
const RuntimeScriptValue oldstack = registers[SREG_SP];
const char *oldstackdata = stackdata_ptr;
// Push placeholder for the return value (it will be popped before ret)
PushValueToStack(RuntimeScriptValue().SetInt32(0));
int oldpc = pc;
ccInstance *wasRunning = runningInst;
// extract the instance ID
int32_t instId = codeOp.Instruction.InstanceId;
// determine the offset into the code of the instance we want
runningInst = _G(loadedInstances)[instId];
uintptr_t callAddr = reg1.PtrU8 - reinterpret_cast<uint8_t *>(&runningInst->code[0]);
if (callAddr % sizeof(uintptr_t) != 0) {
cc_error("call address not aligned");
return -1;
}
callAddr /= sizeof(uintptr_t); // size of ccScript::code elements
if (Run(static_cast<int32_t>(callAddr)))
return -1;
runningInst = wasRunning;
if ((flags & INSTF_ABORTED) == 0)
ASSERT_STACK_UNWINDED(oldstack, oldstackdata);
next_call_needs_object = 0;
pc = oldpc;
was_just_callas = func_callstack.Count;
num_args_to_func = -1;
POP_CALL_STACK;
break;
}
case SCMD_CALLEXT: {
// Call to a real 'C' code function
const auto ®1 = registers[codeOp.Arg1i()];
was_just_callas = -1;
if (num_args_to_func < 0) {
num_args_to_func = func_callstack.Count;
}
// Convert pointer arguments to simple types
for (RuntimeScriptValue *prval = func_callstack.GetHead() + num_args_to_func;
prval > func_callstack.GetHead(); --prval) {
prval->DirectPtr();
}
RuntimeScriptValue return_value;
if (reg1.Type == kScValPluginFunction) {
_GP(GlobalReturnValue).Invalidate();
NumberPtr fnResult;
if (next_call_needs_object) {
RuntimeScriptValue obj_rval = registers[SREG_OP];
obj_rval.DirectPtrObj();
fnResult = call_function(reg1.pluginMethod(),
&obj_rval, num_args_to_func, func_callstack.GetHead() + 1);
} else {
fnResult = call_function(reg1.pluginMethod(),
nullptr, num_args_to_func, func_callstack.GetHead() + 1);
}
if (_GP(GlobalReturnValue).IsValid()) {
return_value = _GP(GlobalReturnValue);
} else {
// TODO: Though some plugin methods return pointers, the SetPluginArgument
// call only supports a 32-bit value. This is fine in most cases, since
// methods mostly set the ptr on GlobalReturnValue, so it doesn't reach here.
// But just in case, throw a wobbly if it reaches here with a 64-bit pointer
if (fnResult.full() > static_cast<intptr_t>(0xffffffffu))
error("Unhandled 64-bit pointer result from plugin method call");
return_value.SetPluginArgument(fnResult);
}
} else if (next_call_needs_object) {
// member function call
if (reg1.Type == kScValObjectFunction) {
RuntimeScriptValue obj_rval = registers[SREG_OP];
obj_rval.DirectPtrObj();
return_value = reg1.ObjPfn(obj_rval.Ptr, func_callstack.GetHead() + 1, num_args_to_func);
} else {
cc_error("invalid pointer type for object function call: %d", reg1.Type);
}
} else if (reg1.Type == kScValStaticFunction) {
return_value = reg1.SPfn(func_callstack.GetHead() + 1, num_args_to_func);
} else if (reg1.Type == kScValObjectFunction) {
cc_error("unexpected object function pointer on SCMD_CALLEXT");
} else {
cc_error("invalid pointer type for function call: %d", reg1.Type);
}
if (cc_has_error() || _G(abort_engine)) {
return -1;
}
registers[SREG_AX] = return_value;
next_call_needs_object = 0;
num_args_to_func = -1;
break;
}
case SCMD_PUSHREAL: {
const auto ®1 = registers[codeOp.Arg1i()];
PushToFuncCallStack(func_callstack, reg1);
break;
}
case SCMD_SUBREALSTACK: {
const auto arg_lit = codeOp.Arg1i();
PopFromFuncCallStack(func_callstack, arg_lit);
if (was_just_callas >= 0) {
ASSERT_STACK_SIZE(arg_lit);
PopValuesFromStack(arg_lit);
was_just_callas = -1;
}
break;
}
case SCMD_CALLOBJ: {
// set the OP register
const auto ®1 = registers[codeOp.Arg1i()];
if (reg1.IsNull()) {
cc_error("!Null pointer referenced");
return -1;
}
switch (reg1.Type) {
// This might be a static object, passed to the user-defined extender function
case kScValScriptObject:
case kScValPluginObject:
case kScValPluginArg:
// This might be an object of USER-DEFINED type, calling its MEMBER-FUNCTION.
// Note, that this is the only case known when such object is written into reg[SREG_OP];
// in any other case that would count as error.
case kScValGlobalVar:
case kScValStackPtr:
registers[SREG_OP] = reg1;
break;
case kScValStaticArray:
// FIXME: return manager type from interface?
// CC_ERROR_IF_RETCODE(!reg1.ArrMgr->GetDynamicManager(), "internal error: SCMD_CALLOBJ argument is not a dynamic object");
registers[SREG_OP].SetScriptObject(reg1.ArrMgr->GetElementPtr(reg1.Ptr, reg1.IValue), reg1.ArrMgr->GetObjectManager());
break;
default:
cc_error("internal error: SCMD_CALLOBJ argument is not an object of built-in or user-defined type");
return -1;
}
next_call_needs_object = 1;
break;
}
case SCMD_SHIFTLEFT: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue << reg2.IValue);
break;
}
case SCMD_SHIFTRIGHT: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetInt32(reg1.IValue >> reg2.IValue);
break;
}
case SCMD_THISBASE: {
const auto arg_lit = codeOp.Arg1i();
thisbase[curnest] = arg_lit;
break;
}
case SCMD_NEWARRAY: {
auto ®1 = registers[codeOp.Arg1i()];
const auto arg_elsize = codeOp.Arg2i();
const auto arg_managed = codeOp.Arg3().GetAsBool();
int numElements = reg1.IValue;
if (numElements < 1) {
cc_error("invalid size for dynamic array; requested: %d, range: 1..%d", numElements, INT32_MAX);
return -1;
}
DynObjectRef ref = CCDynamicArray::Create(numElements, arg_elsize, arg_managed);
reg1.SetScriptObject(ref.Obj, &_GP(globalDynamicArray));
break;
}
case SCMD_NEWUSEROBJECT: {
auto ®1 = registers[codeOp.Arg1i()];
const auto arg_size = codeOp.Arg2i();
if (arg_size < 0) {
cc_error("Invalid size for user object; requested: %d (or %d), range: 0..%d", arg_size, arg_size, INT_MAX);
return -1;
}
DynObjectRef ref = ScriptUserObject::Create(arg_size);
reg1.SetScriptObject(ref.Obj, ref.Mgr);
break;
}
case SCMD_FADD: {
auto ®1 = registers[codeOp.Arg1i()];
const auto arg_lit = codeOp.Arg2i();
reg1.SetFloat(reg1.FValue + arg_lit); // arg2 was used as int here originally
break;
}
case SCMD_FSUB: {
auto ®1 = registers[codeOp.Arg1i()];
const auto arg_lit = codeOp.Arg2i();
reg1.SetFloat(reg1.FValue - arg_lit); // arg2 was used as int here originally
break;
}
case SCMD_FMULREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloat(reg1.FValue * reg2.FValue);
break;
}
case SCMD_FDIVREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
if (reg2.FValue == 0.0) {
cc_error("!Floating point divide by zero");
return -1;
}
reg1.SetFloat(reg1.FValue / reg2.FValue);
break;
}
case SCMD_FADDREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloat(reg1.FValue + reg2.FValue);
break;
}
case SCMD_FSUBREG: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloat(reg1.FValue - reg2.FValue);
break;
}
case SCMD_FGREATER: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloatAsBool(reg1.FValue > reg2.FValue);
break;
}
case SCMD_FLESSTHAN: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloatAsBool(reg1.FValue < reg2.FValue);
break;
}
case SCMD_FGTE: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloatAsBool(reg1.FValue >= reg2.FValue);
break;
}
case SCMD_FLTE: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
reg1.SetFloatAsBool(reg1.FValue <= reg2.FValue);
break;
}
case SCMD_ZEROMEMORY: {
const auto arg_size = codeOp.Arg1i();
// Check if we are zeroing at stack tail
if (registers[SREG_MAR] == registers[SREG_SP]) {
// creating a local variable -- check the stack to ensure no mem overrun
ASSERT_STACK_SPACE_BYTES(arg_size);
// NOTE: according to compiler's logic, this is always followed
// by SCMD_ADD, and that is where the data is "allocated", here we
// just clean the place.
memset(stackdata_ptr, 0, arg_size);
} else {
cc_error("internal error: stack tail address expected on SCMD_ZEROMEMORY instruction, reg[MAR] type is %d",
registers[SREG_MAR].Type);
return -1;
}
break;
}
case SCMD_CREATESTRING: {
auto ®1 = registers[codeOp.Arg1i()];
const char *ptr = reinterpret_cast<const char *>(reg1.GetDirectPtr());
DynObjectRef ref = ScriptString::Create(ptr);
reg1.SetScriptObject(ref.Obj, &_GP(myScriptStringImpl));
break;
}
case SCMD_STRINGSEQUAL: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
if ((reg1.IsNull()) || (reg2.IsNull())) {
cc_error("!Null pointer referenced");
return -1;
} else {
const char *ptr1 = reinterpret_cast<const char *>(reg1.GetDirectPtr());
const char *ptr2 = reinterpret_cast<const char *>(reg2.GetDirectPtr());
reg1.SetInt32AsBool(strcmp(ptr1, ptr2) == 0);
}
break;
}
case SCMD_STRINGSNOTEQ: {
auto ®1 = registers[codeOp.Arg1i()];
const auto ®2 = registers[codeOp.Arg2i()];
if ((reg1.IsNull()) || (reg2.IsNull())) {
cc_error("!Null pointer referenced");
return -1;
} else {
const char *ptr1 = reinterpret_cast<const char *>(reg1.GetDirectPtr());
const char *ptr2 = reinterpret_cast<const char *>(reg2.GetDirectPtr());
reg1.SetInt32AsBool(strcmp(ptr1, ptr2) != 0);
}
break;
}
case SCMD_LOOPCHECKOFF:
if (loopIterationCheckDisabled == 0)
loopIterationCheckDisabled++;
break;
default:
cc_error("instruction %d is not implemented", codeOp.Instruction.Code);
return -1;
}
/* End perform operation */
//=====================================================================
pc += codeOp.ArgCount + 1;
}
return 0;
}
String ccInstance::GetCallStack(const int maxLines) const {
String buffer = String::FromFormat("in \"%s\", line %d\n", runningInst->instanceof->GetSectionName(pc), line_number);
int linesDone = 0;
for (int j = callStackSize - 1; (j >= 0) && (linesDone < maxLines); j--, linesDone++) {
String lineBuffer = String::FromFormat("from \"%s\", line %d\n",
callStackCodeInst[j]->instanceof->GetSectionName(callStackAddr[j]), callStackLineNumber[j]);
buffer.Append(lineBuffer);
if (linesDone == maxLines - 1)
buffer.Append("(and more...)\n");
}
return buffer;
}
void ccInstance::GetScriptPosition(ScriptPosition &script_pos) const {
script_pos.Section = runningInst->instanceof->GetSectionName(pc);
script_pos.Line = line_number;
}
// get a pointer to a variable or function exported by the script
RuntimeScriptValue ccInstance::GetSymbolAddress(const char *symname) const {
char altName[200];
snprintf(altName, sizeof(altName), "%s$", symname);
RuntimeScriptValue rval_null;
const size_t len_altName = strlen(altName);
for (int k = 0; k < instanceof->numexports; k++) {
if (strcmp(instanceof->exports[k], symname) == 0)
return exports[k];
// mangled function name
if (strncmp(instanceof->exports[k], altName, len_altName) == 0)
return exports[k];
}
return rval_null;
}
void ccInstance::DumpInstruction(const ScriptOperation &op) const {
// line_num local var should be shared between all the instances
static int line_num = 0;
if (op.Instruction.Code == SCMD_LINENUM) {
line_num = op.Args[0].IValue;
return;
}
debugN("Line %3d, IP:%8d (SP:%p) ", line_num, pc, (void *)(registers[SREG_SP].RValue));
const ScriptCommandInfo &cmd_info = (*g_commands)[op.Instruction.Code];
debugN("%s", cmd_info.CmdName);
for (int i = 0; i < cmd_info.ArgCount; ++i) {
if (i > 0) {
debugN(",");
}
if (cmd_info.ArgIsReg[i]) {
debugN(" %s", regnames[op.Args[i].IValue]);
} else {
RuntimeScriptValue arg = op.Args[i];
if (arg.Type == kScValStackPtr || arg.Type == kScValGlobalVar) {
arg = *arg.RValue;
}
switch (arg.Type) {
case kScValInteger:
case kScValPluginArg:
debugN(" %d", arg.IValue);
break;
case kScValFloat:
debugN(" %f", arg.FValue);
break;
case kScValStringLiteral:
debugN(" \"%s\"", (char *)arg.Ptr);
break;
case kScValStackPtr:
case kScValGlobalVar:
debugN(" %p", (void *)(arg.RValue));
break;
case kScValData:
case kScValCodePtr:
debugN(" %p", (void *)arg.GetPtrWithOffset());
break;
case kScValStaticArray:
case kScValScriptObject:
case kScValStaticFunction:
case kScValObjectFunction:
case kScValPluginFunction:
case kScValPluginObject: {
String name = _GP(simp).findName(arg);
if (!name.IsEmpty()) {
debugN(" &%s", name.GetCStr());
} else {
debugN(" %p", (void *)arg.GetPtrWithOffset());
}
}
break;
case kScValUndefined:
debugN("undefined");
break;
}
}
}
debugN("\n");
}
bool ccInstance::IsBeingRun() const {
return pc != 0;
}
void ccInstance::NotifyAlive() {
flags |= INSTF_RUNNING;
_lastAliveTs = AGS_Clock::now();
}
bool ccInstance::_Create(PScript scri, const ccInstance *joined) {
_G(currentline) = -1;
if ((scri == nullptr) && (joined != nullptr))
scri = joined->instanceof;
if (scri == nullptr) {
cc_error("null pointer passed");
return false;
}
if (joined != nullptr) {
// share memory space with an existing instance (ie. this is a thread/fork)
globalvars = joined->globalvars;
globaldatasize = joined->globaldatasize;
globaldata = joined->globaldata;
code = joined->code;
codesize = joined->codesize;
} else {
// create own memory space
// NOTE: globalvars are created in CreateGlobalVars()
globalvars.reset(new ScVarMap());
globaldatasize = scri->globaldatasize;
globaldata = nullptr;
if (globaldatasize > 0) {
globaldata = static_cast<char *>(malloc(globaldatasize));
memcpy(globaldata, scri->globaldata, globaldatasize);
}
codesize = scri->codesize;
code = nullptr;
if (codesize > 0) {
code = static_cast<intptr_t *>(malloc(codesize * sizeof(intptr_t)));
// 64 bit: Read code into 8 byte array, necessary for being able to perform
// relocations on the references.
for (int i = 0; i < codesize; ++i)
code[i] = scri->code[i];
}
}
// just use the pointer to the strings since they don't change
strings = scri->strings;
stringssize = scri->stringssize;
// create a stack
stackdatasize = CC_STACK_DATA_SIZE;
// This is quite a random choice; there's no way to deduce number of stack
// entries needed without knowing amount of local variables (at least)
num_stackentries = CC_STACK_SIZE;
stack = new RuntimeScriptValue[num_stackentries];
stackdata = new char[stackdatasize];
if (stack == nullptr || stackdata == nullptr) {
cc_error("not enough memory to allocate stack");
return false;
}
// find a LoadedInstance slot for it
for (int i = 0; i < MAX_LOADED_INSTANCES; i++) {
if (_G(loadedInstances)[i] == nullptr) {
_G(loadedInstances)[i] = this;
loadedInstanceId = i;
break;
}
if (i == MAX_LOADED_INSTANCES - 1) {
cc_error("too many active instances");
return false;
}
}
if (joined) {
resolved_imports = joined->resolved_imports;
code_fixups = joined->code_fixups;
} else {
if (!CreateGlobalVars(scri.get())) {
return false;
}
if (!CreateRuntimeCodeFixups(scri.get())) {
return false;
}
}
exports = new RuntimeScriptValue[scri->numexports];
// find the real address of the exports
for (int i = 0; i < scri->numexports; i++) {
const int32_t etype = (scri->export_addr[i] >> 24L) & 0x000ff;
const int32_t eaddr = (scri->export_addr[i] & 0x00ffffff);
if (etype == EXPORT_FUNCTION) {
// NOTE: unfortunately, there seems to be no way to know if
// that's an extender function that expects object pointer
exports[i].SetCodePtr(reinterpret_cast<uint8_t *>(&code[0]) + (static_cast<uintptr_t>(eaddr) * sizeof(uintptr_t)));
} else if (etype == EXPORT_DATA) {
ScriptVariable *gl_var = FindGlobalVar(eaddr);
if (gl_var) {
exports[i].SetGlobalVar(&gl_var->RValue);
} else {
cc_error("cannot resolve global variable, key = %d", eaddr);
return false;
}
} else {
cc_error("internal export fixup error");
return false;
}
}
instanceof = scri;
pc = 0;
flags = 0;
if (joined != nullptr)
flags = INSTF_SHAREDATA;
scri->instances++;
if ((scri->instances == 1) && (ccGetOption(SCOPT_AUTOIMPORT) != 0)) {
// import all the exported stuff from this script
for (int i = 0; i < scri->numexports; i++) {
if (!ccAddExternalScriptSymbol(scri->exports[i], exports[i], this)) {
cc_error("Export table overflow at '%s'", scri->exports[i]);
return false;
}
}
}
return true;
}
void ccInstance::Free() {
// When the base script has no more "instances",
// remove all script exports
if (instanceof != nullptr) {
instanceof->instances--;
if (instanceof->instances == 0) {
_GP(simp).RemoveScriptExports(this);
}
}
// remove from the Active Instances list
if (_G(loadedInstances)[loadedInstanceId] == this)
_G(loadedInstances)[loadedInstanceId] = nullptr;
if ((flags & INSTF_SHAREDATA) == 0) {
if (globaldata)
free(globaldata);
if (code)
free(code);
}
globalvars.reset();
globaldata = nullptr;
code = nullptr;
strings = nullptr;
delete[] stack;
delete[] stackdata;
delete[] exports;
stack = nullptr;
stackdata = nullptr;
exports = nullptr;
if ((flags & INSTF_SHAREDATA) == 0) {
delete[] resolved_imports;
delete[] code_fixups;
}
resolved_imports = nullptr;
code_fixups = nullptr;
}
bool ccInstance::ResolveScriptImports(const ccScript *scri) {
// Script keeps the information of what imports are used as an array of names.
// When an import is referenced in the code, it's addressed by its index in this
// array. Different scripts have differing arrays of imports; indexes
// into 'imports[]' are NOT unique and relative to the respective script only.
// To allow real-time import use, the sequence of imports in 'imports[]'
// and 'resolved_imports[]' should not be modified.
numimports = scri->numimports;
if (numimports == 0) {
// [PGB] AFAICS there's nothing wrong with not having any imports, and
// it doesn't lead to trouble. However, if it turns out that we do need
// to return 'false' here, we should also report why with a 'Debug::Printf()' call.
resolved_imports = nullptr;
return true;
}
resolved_imports = new uint32_t[numimports];
size_t errors = 0, last_err_idx = 0;
for (int import_idx = 0; import_idx < scri->numimports; ++import_idx) {
if (scri->imports[import_idx] == nullptr) {
resolved_imports[import_idx] = UINT32_MAX;
continue;
}
resolved_imports[import_idx] = _GP(simp).get_index_of(scri->imports[import_idx]);
if (resolved_imports[import_idx] == UINT32_MAX) {
Debug::Printf(kDbgMsg_Error, "unresolved import '%s' in '%s'", scri->imports[import_idx], scri->numSections > 0 ? scri->sectionNames[0] : "<unknown>");
errors++;
last_err_idx = import_idx;
}
}
if (errors > 0)
cc_error("in %s: %d unresolved imports (last: %s)",
scri->numSections > 0 ? scri->sectionNames[0] : "<unknown>",
errors,
scri->imports[last_err_idx]);
return errors == 0;
}
// TODO: it is possible to deduce global var's size at start with
// certain accuracy after all global vars are registered. Each
// global var's size would be limited by closest next var's ScAddress
// and globaldatasize.
bool ccInstance::CreateGlobalVars(const ccScript *scri) {
ScriptVariable glvar;
// Step One: deduce global variables from fixups
for (int i = 0; i < scri->numfixups; ++i) {
switch (scri->fixuptypes[i]) {
case FIXUP_GLOBALDATA:
// GLOBALDATA fixup takes relative address of global data element from code array;
// this is the address of actual data
glvar.ScAddress = (int32_t)code[scri->fixups[i]];
glvar.RValue.SetData(globaldata + glvar.ScAddress, 0);
break;
case FIXUP_DATADATA: {
// DATADATA fixup takes relative address of global data element from fixups array;
// this is the address of element, which stores address of actual data
glvar.ScAddress = scri->fixups[i];
const int32_t data_addr = BBOp::Int32FromLE(*(int32_t *)&globaldata[glvar.ScAddress]);
if (glvar.ScAddress - data_addr != 200 /* size of old AGS string */) {
// CHECKME: probably replace with mere warning in the log?
cc_error("unexpected old-style string's alignment");
return false;
}
// TODO: register this explicitly as a string instead (can do this later)
glvar.RValue.SetScriptObject(globaldata + data_addr, &_GP(GlobalStaticManager));
}
break;
default:
// other fixups are of no use here
continue;
}
AddGlobalVar(glvar);
}
// Step Two: deduce global variables from exports
for (int i = 0; i < scri->numexports; ++i) {
const int32_t etype = (scri->export_addr[i] >> 24L) & 0x000ff;
const int32_t eaddr = (scri->export_addr[i] & 0x00ffffff);
if (etype == EXPORT_DATA) {
// NOTE: old-style strings could not be exported in AGS,
// no need to worry about these here
glvar.ScAddress = eaddr;
glvar.RValue.SetData(globaldata + glvar.ScAddress, 0);
AddGlobalVar(glvar);
}
}
return true;
}
bool ccInstance::AddGlobalVar(const ScriptVariable &glvar) {
// NOTE:
// We suppress the error here, because unfortunately at least one existing
// game ("Metal Dead", built with AGS 3.21.1115) fails to pass this check.
// It has been found that this may be caused by a global variable of zero
// size (an instance of empty struct) placed in the end of the script.
// TODO: invent some workaround?
// TODO: enable the error back in AGS 4, as this is not a normal behavior.
if (glvar.ScAddress < 0 || glvar.ScAddress >= globaldatasize) {
/* return false; */
Debug::Printf(kDbgMsg_Warn, "WARNING: global variable refers to data beyond allocated buffer (%d, %d)", glvar.ScAddress, globaldatasize);
}
globalvars->insert(std::make_pair(glvar.ScAddress, glvar));
return true;
}
ScriptVariable *ccInstance::FindGlobalVar(const int32_t var_addr) {
// NOTE: see comment for AddGlobalVar()
if (var_addr < 0 || var_addr >= globaldatasize) {
/*
return NULL;
*/
Debug::Printf(kDbgMsg_Warn, "WARNING: looking up for global variable beyond allocated buffer (%d, %d)", var_addr, globaldatasize);
}
const ScVarMap::iterator it = globalvars->find(var_addr);
return it != globalvars->end() ? &it->_value : nullptr;
}
static int DetermineScriptLine(const int32_t *code, const size_t codesz, const size_t at_pc) {
int line = -1;
for (size_t pc = 0; (pc <= at_pc) && (pc < codesz); ++pc) {
const int op = code[pc] & INSTANCE_ID_REMOVEMASK;
if (op < 0 || op >= CC_NUM_SCCMDS) return -1;
if (pc + (*g_commands)[op].ArgCount >= codesz) return -1;
if (op == SCMD_LINENUM)
line = code[pc + 1];
pc += (*g_commands)[op].ArgCount;
}
return line;
}
static void cc_error_fixups(const ccScript *scri, const size_t pc, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
const String displbuf = String::FromFormatV(fmt, ap);
va_end(ap);
const char *scname = scri->numSections > 0 ? scri->sectionNames[0] : "?";
if (pc == SIZE_MAX) {
cc_error("in script %s: %s", scname, displbuf.GetCStr());
} else {
const int line = DetermineScriptLine(scri->code, scri->codesize, pc);
cc_error("in script %s around line %d: %s", scname, line, displbuf.GetCStr());
}
}
bool ccInstance::CreateRuntimeCodeFixups(const ccScript *scri) {
code_fixups = new char[scri->codesize]();
for (int i = 0; i < scri->numfixups; ++i) {
if (scri->fixuptypes[i] == FIXUP_DATADATA) {
continue;
}
const int32_t fixup = scri->fixups[i];
if (fixup < 0 || fixup >= scri->codesize) {
cc_error_fixups(scri, SIZE_MAX, "bad fixup at %d (fixup type %d, bytecode pos %d, bytecode range is 0..%d)",
i, scri->fixuptypes[i], fixup, scri->codesize);
return false;
}
code_fixups[fixup] = scri->fixuptypes[i];
switch (scri->fixuptypes[i]) {
case FIXUP_GLOBALDATA: {
ScriptVariable *gl_var = FindGlobalVar(static_cast<int32_t>(code[fixup]));
if (!gl_var) {
cc_error_fixups(scri, fixup, "cannot resolve global variable (bytecode pos %d, key %d)", fixup, static_cast<int32_t>(code[fixup]));
return false;
}
code[fixup] = (intptr_t)gl_var;
}
break;
case FIXUP_FUNCTION:
case FIXUP_STRING:
case FIXUP_STACK:
case FIXUP_IMPORT:
break; // do nothing yet
default:
cc_error_fixups(scri, UINT32_MAX, "unknown fixup type: %d (fixup num %d)", scri->fixuptypes[i], i);
return false;
}
}
return true;
}
bool ccInstance::ResolveImportFixups(const ccScript *scri) {
for (int fixup_idx = 0; fixup_idx < scri->numfixups; ++fixup_idx) {
if (scri->fixuptypes[fixup_idx] != FIXUP_IMPORT)
continue;
uint32_t const fixup = scri->fixups[fixup_idx];
uint32_t const import_index = resolved_imports[code[fixup]];
ScriptImport const *import = _GP(simp).getByIndex(import_index);
if (!import) {
cc_error_fixups(scri, fixup, "cannot resolve import (bytecode pos %d, key %d)", fixup, import_index);
return false;
}
code[fixup] = import_index;
// If the call is to another script function next CALLEXT
// must be replaced with CALLAS
if (import->InstancePtr != nullptr && (code[fixup + 1] & INSTANCE_ID_REMOVEMASK) == SCMD_CALLEXT)
code[fixup + 1] = SCMD_CALLAS | (import->InstancePtr->loadedInstanceId << INSTANCE_ID_SHIFT);
}
return true;
}
void ccInstance::PushValueToStack(const RuntimeScriptValue &rval) {
// Write value to the stack tail and advance stack ptr
registers[SREG_SP].WriteValue(rval);
stackdata_ptr += sizeof(int32_t); // formality, to keep data ptr consistent
registers[SREG_SP].RValue++;
}
void ccInstance::PushDataToStack(const int32_t num_bytes) {
CC_ERROR_IF(registers[SREG_SP].RValue->IsValid(), "internal error: valid data (%d bytes) beyond stack ptr", num_bytes);
// Assign pointer to data block to the stack tail, advance both stack ptr and stack data ptr
// NOTE: memory is zeroed by SCMD_ZEROMEMORY
registers[SREG_SP].RValue->SetData(stackdata_ptr, num_bytes);
stackdata_ptr += num_bytes;
registers[SREG_SP].RValue++;
}
RuntimeScriptValue ccInstance::PopValueFromStack() {
// rewind stack ptr to the last valid value, decrement stack data ptr if needed and invalidate the stack tail
registers[SREG_SP].RValue--;
const RuntimeScriptValue rval = *registers[SREG_SP].RValue; // save before invalidating
stackdata_ptr -= sizeof(int32_t); // formality, to keep data ptr consistent
registers[SREG_SP].RValue->Invalidate(); // FIXME: bad, this is used to separate PushValue and PushData
return rval;
}
void ccInstance::PopValuesFromStack(const int32_t num_entries = 1) {
for (int i = 0; i < num_entries; ++i) {
// rewind stack ptr to the last valid value, decrement stack data ptr if needed and invalidate the stack tail
registers[SREG_SP].RValue--;
stackdata_ptr -= sizeof(int32_t); // formality, to keep data ptr consistent
registers[SREG_SP].RValue->Invalidate(); // FIXME: bad, this is used to separate PushValue and PushData
}
}
void ccInstance::PopDataFromStack(const int32_t num_bytes) {
int32_t total_pop = 0;
while (total_pop < num_bytes && registers[SREG_SP].RValue > &stack[0]) {
// rewind stack ptr to the last valid value, decrement stack data ptr if needed and invalidate the stack tail
registers[SREG_SP].RValue--;
stackdata_ptr -= registers[SREG_SP].RValue->Size;
// remember popped bytes count
total_pop += registers[SREG_SP].RValue->Size;
registers[SREG_SP].RValue->Invalidate(); // FIXME: bad, this is used to separate PushValue and PushData
}
CC_ERROR_IF(total_pop < num_bytes, "stack underflow: %d bytes popped of %d total", total_pop, num_bytes);
CC_ERROR_IF(total_pop > num_bytes, "stack pointer points inside local variable after pop (%d bytes), stack corrupted?", total_pop);
}
RuntimeScriptValue ccInstance::GetStackPtrOffsetRw(const int32_t rw_offset) {
int32_t total_off = 0;
RuntimeScriptValue *stack_entry = registers[SREG_SP].RValue;
while (total_off < rw_offset && stack_entry >= &stack[0]) {
stack_entry--;
total_off += stack_entry->Size;
}
CC_ERROR_IF_RETVAL(total_off < rw_offset, RuntimeScriptValue, "accessing address (off: %d) before stack's head (%d)", rw_offset, total_off);
RuntimeScriptValue stack_ptr;
stack_ptr.SetStackPtr(stack_entry);
stack_ptr.IValue += total_off - rw_offset; // possibly offset to the mid-array
// Could be accessing array element, so state error only if stack entry does not refer to data array
CC_ERROR_IF_RETVAL((total_off > rw_offset) && (stack_entry->Type != kScValData), RuntimeScriptValue,
"stack offset backward: trying to access stack data (off: %d) inside stack entry (tot: %d), stack corrupted?", rw_offset, total_off);
return stack_ptr;
}
void ccInstance::PushToFuncCallStack(FunctionCallStack &func_callstack, const RuntimeScriptValue &rval) {
if (func_callstack.Count >= MAX_FUNC_PARAMS) {
cc_error("function callstack overflow");
return;
}
func_callstack.Entries[func_callstack.Head] = rval;
func_callstack.Head--;
func_callstack.Count++;
}
void ccInstance::PopFromFuncCallStack(FunctionCallStack &func_callstack, int32_t num_entries) {
if (func_callstack.Count == 0) {
cc_error("function callstack underflow");
return;
}
func_callstack.Head += num_entries;
func_callstack.Count -= num_entries;
}
} // namespace AGS3
|