1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
#include "ags/lib/allegro/rotate.h"
#include "ags/lib/allegro/gfx.h"
#include "common/scummsys.h"
namespace AGS3 {
/* rotate_scale_coordinates:
* Calculates the coordinates for the rotated, scaled and flipped sprite,
* and passes them on to the given function.
*/
void rotate_scale_coordinates(fixed w, fixed h,
fixed x, fixed y, fixed cx, fixed cy,
fixed angle,
fixed scale_x, fixed scale_y,
fixed xs[4], fixed ys[4])
{
// Setting angle to the range -180...180 degrees makes sin & cos more numerically stable.
// (Yes, this does have an effect for big angles!)
// Note that using "real" sin() and cos() gives much better precision than fixsin() and fixcos().
angle = angle & 0xffffff;
if (angle >= 0x800000)
angle -= 0x1000000;
double angle_radian = angle * (M_PI / (double)0x800000);
double sin_angle = sin(angle_radian);
double cos_angle = cos(angle_radian);
fixed fix_cos, fix_sin;
if (cos_angle >= 0)
fix_cos = (int)(cos_angle * 0x10000 + 0.5);
else
fix_cos = (int)(cos_angle * 0x10000 - 0.5);
if (sin_angle >= 0)
fix_sin = (int)(sin_angle * 0x10000 + 0.5);
else
fix_sin = (int)(sin_angle * 0x10000 - 0.5);
/* Decide what order to take corners in. */
int tl = 0, tr = 1, bl = 3, br = 2;
/* Calculate new coordinates of all corners. */
w = fixmul(w, scale_x);
h = fixmul(h, scale_y);
cx = fixmul(cx, scale_x);
cy = fixmul(cy, scale_y);
fixed xofs = x - fixmul(cx, fix_cos) + fixmul(cy, fix_sin);
fixed yofs = y - fixmul(cx, fix_sin) - fixmul(cy, fix_cos);
xs[tl] = xofs;
ys[tl] = yofs;
xs[tr] = xofs + fixmul(w, fix_cos);
ys[tr] = yofs + fixmul(w, fix_sin);
xs[bl] = xofs - fixmul(h, fix_sin);
ys[bl] = yofs + fixmul(h, fix_cos);
xs[br] = xs[tr] + xs[bl] - xs[tl];
ys[br] = ys[tr] + ys[bl] - ys[tl];
}
/* parallelogram_map:
* Worker routine for drawing rotated and/or scaled and/or flipped sprites:
* It actually maps the sprite to any parallelogram-shaped area of the
* bitmap. The top left corner is mapped to (xs[0], ys[0]), the top right to
* (xs[1], ys[1]), the bottom right to x (xs[2], ys[2]), and the bottom left
* to (xs[3], ys[3]). The corners are assumed to form a perfect
* parallelogram, i.e. xs[0]+xs[2] = xs[1]+xs[3]. The corners are given in
* fixed point format, so xs[] and ys[] are coordinates of the outer corners
* of corner pixels in clockwise order beginning with top left.
* All coordinates begin with 0 in top left corner of pixel (0, 0). So a
* rotation by 0 degrees of a sprite to the top left of a bitmap can be
* specified with coordinates (0, 0) for the top left pixel in source
* bitmap. With the default scanline drawer, a pixel in the destination
* bitmap is drawn if and only if its center is covered by any pixel in the
* sprite. The color of this covering sprite pixel is used to draw.
*/
void parallelogram_map(BITMAP *bmp, const BITMAP *spr, fixed xs[4], fixed ys[4]) {
// Get index of topmost point.
int top_index = 0;
if (ys[1] < ys[0])
top_index = 1;
if (ys[2] < ys[top_index])
top_index = 2;
if (ys[3] < ys[top_index])
top_index = 3;
// Get direction of points: clockwise or anti-clockwise.
int right_index = (double)(xs[(top_index+1) & 3] - xs[top_index]) *
(double)(ys[(top_index-1) & 3] - ys[top_index]) >
(double)(xs[(top_index-1) & 3] - xs[top_index]) *
(double)(ys[(top_index+1) & 3] - ys[top_index]) ? 1 : -1;
// Get coordinates of the corners.
// Coordinates in bmp and sprite ordered as top-right-bottom-left.
fixed corner_bmp_x[4], corner_bmp_y[4];
fixed corner_spr_x[4], corner_spr_y[4];
int index = top_index;
for (int i = 0; i < 4; i++) {
corner_bmp_x[i] = xs[index];
corner_bmp_y[i] = ys[index];
if (index < 2)
corner_spr_y[i] = 0;
else
// Need `- 1' since otherwise it would be outside sprite.
corner_spr_y[i] = (spr->h << 16) - 1;
if ((index == 0) || (index == 3))
corner_spr_x[i] = 0;
else
corner_spr_x[i] = (spr->w << 16) - 1;
index = (index + right_index) & 3;
}
// Get scanline starts, ends and deltas, and clipping coordinates.
#define top_bmp_y corner_bmp_y[0]
#define right_bmp_y corner_bmp_y[1]
#define bottom_bmp_y corner_bmp_y[2]
#define left_bmp_y corner_bmp_y[3]
#define top_bmp_x corner_bmp_x[0]
#define right_bmp_x corner_bmp_x[1]
#define bottom_bmp_x corner_bmp_x[2]
#define left_bmp_x corner_bmp_x[3]
#define top_spr_y corner_spr_y[0]
#define right_spr_y corner_spr_y[1]
#define bottom_spr_y corner_spr_y[2]
#define left_spr_y corner_spr_y[3]
#define top_spr_x corner_spr_x[0]
#define right_spr_x corner_spr_x[1]
#define bottom_spr_x corner_spr_x[2]
#define left_spr_x corner_spr_x[3]
// Calculate left and right clipping.
fixed clip_left, clip_right;
if (bmp->clip) {
clip_left = bmp->cl << 16;
clip_right = (bmp->cr << 16) - 1;
} else {
clip_left = 0;
clip_right = (bmp->w << 16) - 1;
}
// Stop if we're totally outside.
if ((left_bmp_x > clip_right) && (top_bmp_x > clip_right) && (bottom_bmp_x > clip_right))
return;
if ((right_bmp_x < clip_left) && (top_bmp_x < clip_left) && (bottom_bmp_x < clip_left))
return;
// Bottom clipping.
int clip_bottom_i = (bottom_bmp_y + 0x8000) >> 16;
if (bmp->clip) {
if (clip_bottom_i > bmp->cb)
clip_bottom_i = bmp->cb;
}
// Calculate y coordinate of first scanline.
int bmp_y_i = (top_bmp_y + 0x8000) >> 16;
if (bmp->clip) {
if (bmp_y_i < bmp->ct)
bmp_y_i = bmp->ct;
}
// Sprite is above or below bottom clipping area.
if (bmp_y_i >= clip_bottom_i)
return;
// Vertical gap between top corner and centre of topmost scanline.
fixed extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - top_bmp_y;
// Calculate x coordinate of beginning of scanline in bmp.
fixed l_bmp_dx = fixdiv(left_bmp_x - top_bmp_x, left_bmp_y - top_bmp_y);
fixed l_bmp_x = top_bmp_x + fixmul(extra_scanline_fraction, l_bmp_dx);
// Calculate x coordinate of beginning of scanline in spr.
// note: all these are rounded down which is probably a Good Thing (tm)
fixed l_spr_dx = fixdiv(left_spr_x - top_spr_x, left_bmp_y - top_bmp_y);
fixed l_spr_x = top_spr_x + fixmul(extra_scanline_fraction, l_spr_dx);
// Calculate y coordinate of beginning of scanline in spr.
fixed l_spr_dy = fixdiv(left_spr_y - top_spr_y, left_bmp_y - top_bmp_y);
fixed l_spr_y = top_spr_y + fixmul(extra_scanline_fraction, l_spr_dy);
// Calculate left loop bound.
int l_bmp_y_bottom_i = (left_bmp_y + 0x8000) >> 16;
if (l_bmp_y_bottom_i > clip_bottom_i)
l_bmp_y_bottom_i = clip_bottom_i;
// Calculate x coordinate of end of scanline in bmp.
fixed r_bmp_dx = fixdiv(right_bmp_x - top_bmp_x, right_bmp_y - top_bmp_y);
fixed r_bmp_x = top_bmp_x + fixmul(extra_scanline_fraction, r_bmp_dx);
// Calculate right loop bound.
int r_bmp_y_bottom_i = (right_bmp_y + 0x8000) >> 16;
// Get dx and dy, the offsets to add to the source coordinates as we move
// one pixel rightwards along a scanline. This formula can be derived by
// considering the 2x2 matrix that transforms the sprite to the
// parallelogram.
// We'd better use double to get this as exact as possible, since any
// errors will be accumulated along the scanline.
fixed spr_dx = (fixed)((ys[3] - ys[0]) * 65536.0 * (65536.0 * spr->w) /
((xs[1] - xs[0]) * (double)(ys[3] - ys[0]) - (xs[3] - xs[0]) * (double)(ys[1] - ys[0])));
fixed spr_dy = (fixed)((ys[1] - ys[0]) * 65536.0 * (65536.0 * spr->h) /
((xs[3] - xs[0]) * (double)(ys[1] - ys[0]) - (xs[1] - xs[0]) * (double)(ys[3] - ys[0])));
bool sameFormat = (spr->format == bmp->format);
uint32 transColor = 0, alphaMask = 0xff;
if (spr->format.bytesPerPixel != 1) {
transColor = spr->format.ARGBToColor(0, 255, 0, 255);
alphaMask = spr->format.ARGBToColor(255, 0, 0, 0);
alphaMask = ~alphaMask;
}
// Loop through scanlines.
while (1) {
// Has beginning of scanline passed a corner?
if (bmp_y_i >= l_bmp_y_bottom_i) {
// Are we done?
if (bmp_y_i >= clip_bottom_i)
break;
// Vertical gap between left corner and centre of scanline.
extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - left_bmp_y;
// Update x coordinate of beginning of scanline in bmp.
l_bmp_dx = fixdiv(bottom_bmp_x - left_bmp_x, bottom_bmp_y - left_bmp_y);
l_bmp_x = left_bmp_x + fixmul(extra_scanline_fraction, l_bmp_dx);
// Update x coordinate of beginning of scanline in spr.
l_spr_dx = fixdiv(bottom_spr_x - left_spr_x, bottom_bmp_y - left_bmp_y);
l_spr_x = left_spr_x + fixmul(extra_scanline_fraction, l_spr_dx);
// Update y coordinate of beginning of scanline in spr.
l_spr_dy = fixdiv(bottom_spr_y - left_spr_y, bottom_bmp_y - left_bmp_y);
l_spr_y = left_spr_y + fixmul(extra_scanline_fraction, l_spr_dy);
// Update loop bound.
l_bmp_y_bottom_i = (bottom_bmp_y + 0x8000) >> 16;
if (l_bmp_y_bottom_i > clip_bottom_i)
l_bmp_y_bottom_i = clip_bottom_i;
}
// Has end of scanline passed a corner?
if (bmp_y_i >= r_bmp_y_bottom_i) {
// Vertical gap between right corner and centre of scanline.
extra_scanline_fraction = (bmp_y_i << 16) + 0x8000 - right_bmp_y;
// Update x coordinate of end of scanline in bmp.
r_bmp_dx = fixdiv(bottom_bmp_x - right_bmp_x, bottom_bmp_y - right_bmp_y);
r_bmp_x = right_bmp_x + fixmul(extra_scanline_fraction, r_bmp_dx);
// Update loop bound: We aren't supposed to use this any more, so
// just set it to some big enough value.
r_bmp_y_bottom_i = clip_bottom_i;
}
// Make left bmp coordinate be an integer and clip it.
fixed l_bmp_x_rounded;
l_bmp_x_rounded = (l_bmp_x + 0x8000) & ~0xffff;
if (l_bmp_x_rounded < clip_left)
l_bmp_x_rounded = clip_left;
// ... and move starting point in sprite accordingly.
fixed l_spr_x_rounded = l_spr_x + fixmul(l_bmp_x_rounded + 0x7fff - l_bmp_x, spr_dx);
fixed l_spr_y_rounded = l_spr_y + fixmul(l_bmp_x_rounded + 0x7fff - l_bmp_x, spr_dy);
// Make right bmp coordinate be an integer and clip it.
fixed r_bmp_x_rounded = (r_bmp_x - 0x8000) & ~0xffff;
if (r_bmp_x_rounded > clip_right)
r_bmp_x_rounded = clip_right;
// Draw!
if (l_bmp_x_rounded <= r_bmp_x_rounded) {
/* The bodies of these ifs are only reached extremely seldom,
it's an ugly hack to avoid reading outside the sprite when
the rounding errors are accumulated the wrong way. It would
be nicer if we could ensure that this never happens by making
all multiplications and divisions be rounded up or down at
the correct places.
I did try another approach: recalculate the edges of the
scanline from scratch each scanline rather than incrementally.
Drawing a sprite with that routine took about 25% longer time
though.
*/
if ((unsigned)(l_spr_x_rounded >> 16) >= (unsigned)spr->w) {
if (((l_spr_x_rounded < 0) && (spr_dx <= 0)) || ((l_spr_x_rounded > 0) && (spr_dx >= 0))) {
// This can happen.
goto skip_draw;
} else {
// I don't think this can happen, but I can't prove it.
do {
l_spr_x_rounded += spr_dx;
l_bmp_x_rounded += 65536;
if (l_bmp_x_rounded > r_bmp_x_rounded)
goto skip_draw;
} while ((unsigned)(l_spr_x_rounded >> 16) >= (unsigned)spr->w);
}
}
int right_edge_test = l_spr_x_rounded + ((r_bmp_x_rounded - l_bmp_x_rounded) >> 16) * spr_dx;
if ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->w) {
if (((right_edge_test < 0) && (spr_dx <= 0)) || ((right_edge_test > 0) && (spr_dx >= 0))) {
// This can happen.
do {
r_bmp_x_rounded -= 65536;
right_edge_test -= spr_dx;
if (l_bmp_x_rounded > r_bmp_x_rounded)
goto skip_draw;
} while ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->w);
} else {
// I don't think this can happen, but I can't prove it.
goto skip_draw;
}
}
if ((unsigned)(l_spr_y_rounded >> 16) >= (unsigned)spr->h) {
if (((l_spr_y_rounded < 0) && (spr_dy <= 0)) || ((l_spr_y_rounded > 0) && (spr_dy >= 0))) {
// This can happen.
goto skip_draw;
} else {
// I don't think this can happen, but I can't prove it.
do {
l_spr_y_rounded += spr_dy;
l_bmp_x_rounded += 65536;
if (l_bmp_x_rounded > r_bmp_x_rounded)
goto skip_draw;
} while (((unsigned)l_spr_y_rounded >> 16) >= (unsigned)spr->h);
}
}
right_edge_test = l_spr_y_rounded + ((r_bmp_x_rounded - l_bmp_x_rounded) >> 16) * spr_dy;
if ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->h) {
if (((right_edge_test < 0) && (spr_dy <= 0)) || ((right_edge_test > 0) && (spr_dy >= 0))) {
// This can happen.
do {
r_bmp_x_rounded -= 65536;
right_edge_test -= spr_dy;
if (l_bmp_x_rounded > r_bmp_x_rounded)
goto skip_draw;
} while ((unsigned)(right_edge_test >> 16) >= (unsigned)spr->h);
} else {
// I don't think this can happen, but I can't prove it.
goto skip_draw;
}
}
// draw scanline
int r_bmp_x_i = (r_bmp_x_rounded >> 16);
int l_bmp_x_i = (l_bmp_x_rounded >> 16);
for (; l_bmp_x_i <= r_bmp_x_i; ++l_bmp_x_i) {
uint32 c = (uint32)getpixel(spr, l_spr_x_rounded >> 16, l_spr_y_rounded >> 16);
if ((c & alphaMask) != transColor) {
if (!sameFormat) {
uint8 a, r, g, b;
spr->format.colorToARGB(c, a, r, g, b);
c = bmp->format.ARGBToColor(a, r, g, b);
}
putpixel(bmp, l_bmp_x_i, bmp_y_i, c);
}
l_spr_x_rounded += spr_dx;
l_spr_y_rounded += spr_dy;
}
}
// I'm not going to apoligize for this label and its gotos.
// to get rid of it would just make the code look worse.
skip_draw:
// Jump to next scanline.
bmp_y_i++;
// Update beginning of scanline.
l_bmp_x += l_bmp_dx;
l_spr_x += l_spr_dx;
l_spr_y += l_spr_dy;
// Update end of scanline.
r_bmp_x += r_bmp_dx;
}
}
void pivot_scaled_sprite(BITMAP *bmp, const BITMAP *sprite, fixed x, fixed y, fixed cx, fixed cy, fixed angle, fixed scale) {
fixed xs[4], ys[4];
rotate_scale_coordinates(sprite->w << 16, sprite->h << 16,
x, y, cx, cy, angle, scale, scale, xs, ys);
parallelogram_map(bmp, sprite, xs, ys);
}
} // namespace AGS3
|