File: surface_neon.cpp

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (989 lines) | stat: -rw-r--r-- 46,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
/* ScummVM - Graphic Adventure Engine
 *
 * ScummVM is the legal property of its developers, whose names
 * are too numerous to list here. Please refer to the COPYRIGHT
 * file distributed with this source distribution.
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#include "ags/ags.h"

// Without this ifdef the iOS backend breaks, please do not remove
#ifdef SCUMMVM_NEON

#include "ags/globals.h"
#include "ags/lib/allegro/color.h"
#include "ags/lib/allegro/flood.h"
#include "ags/lib/allegro/gfx.h"
#include "common/textconsole.h"
#include "graphics/screen.h"

#include <arm_neon.h>

#if !defined(__aarch64__) && !defined(__ARM_NEON)

#if defined(__clang__)
#pragma clang attribute push (__attribute__((target("neon"))), apply_to=function)
#elif defined(__GNUC__)
#pragma GCC push_options
#pragma GCC target("fpu=neon")
#endif

#endif // !defined(__aarch64__) && !defined(__ARM_NEON)

namespace AGS3 {

class DrawInnerImpl_NEON {

static inline uint32x4_t simd2BppTo4Bpp(uint16x4_t pixels) {
	uint32x4_t x = vmovl_u16(pixels);

	// c is the extracted 5/6 bit color from the image
	uint32x4_t c = vshrq_n_u32(x, 11);

	// We convert it back to normal by shifting it thrice over, naturally, and then using the 2 most
	// sinificant bits in the original color for the least significant bits in the new one
	uint32x4_t r = vshlq_n_u32(vorrq_u32(vshlq_n_u32(c, 3), vshrq_n_u32(c, 2)), 16);
	c = vshrq_n_u32(vandq_u32(x, vmovq_n_u32(0x07e0)), 5);
	uint32x4_t g = vshlq_n_u32(vorrq_u32(vshlq_n_u32(c, 2), vshrq_n_u32(c, 4)), 8);
	c = vandq_u32(x, vmovq_n_u32(0x001f));
	uint32x4_t b = vorrq_u32(vshlq_n_u32(c, 3), vshrq_n_u32(c, 2));

	// By default 2bpp to 4bpp makes the alpha channel 255
	return vorrq_u32(vorrq_u32(vorrq_u32(r, g), b), vmovq_n_u32(0xff000000));
}

static inline uint16x4_t simd4BppTo2Bpp(uint32x4_t pixels) {
	// x is the final 16 bit rgb pixel
	uint32x4_t x = vshrq_n_u32(vandq_u32(pixels, vmovq_n_u32(0x000000ff)), 3);
	x = vorrq_u32(x, vshlq_n_u32(vshrq_n_u32(vandq_u32(pixels, vmovq_n_u32(0x0000ff00)), 8+2), 5));
	x = vorrq_u32(x, vshlq_n_u32(vshrq_n_u32(vandq_u32(pixels, vmovq_n_u32(0x00ff0000)), 16+3), 11));
	return vmovn_u32(x);
}

static inline uint16x8_t rgbBlendSIMD2Bpp(uint16x8_t srcCols, uint16x8_t destCols, uint16x8_t alphas) {
	// Here we add 1 to alphas if its 0. This is what the original blender function did
	alphas = vaddq_u16(alphas, vandq_u16(vceqq_u16(alphas, vmovq_n_u16(0)), vmovq_n_u16(1)));

	// Split the components into rgb
	uint16x8_t srcComps[] = {
		vandq_u16(srcCols, vmovq_n_u16(0x1f)),					// B
		vandq_u16(vshrq_n_u16(srcCols, 5), vmovq_n_u16(0x3f)),	// G
		vshrq_n_u16(srcCols, 11),								// R
	}, destComps[] = {
		vandq_u16(destCols, vmovq_n_u16(0x1f)),					// B
		vandq_u16(vshrq_n_u16(destCols, 5), vmovq_n_u16(0x3f)), // G
		vshrq_n_u16(destCols, 11),								// R
	};

	// At some point I made it so that it would put them into their 8bit depth format
	// to keep the function as 1-1 with the original, but it didn't seem to help much
	//srcComps[0] = vorrq_u16(vshlq_n_u16(srcComps[0], 3), vshrq_n_u16(srcComps[0], 2));
	//srcComps[1] = vorrq_u16(vshlq_n_u16(srcComps[1], 2), vshrq_n_u16(srcComps[1], 4));
	//srcComps[2] = vorrq_u16(vshlq_n_u16(srcComps[2], 3), vshrq_n_u16(srcComps[2], 2));
	//destComps[0] = vorrq_u16(vshlq_n_u16(destComps[0], 3), vshrq_n_u16(destComps[0], 2));
	//destComps[1] = vorrq_u16(vshlq_n_u16(destComps[1], 2), vshrq_n_u16(destComps[1], 4));
	//destComps[2] = vorrq_u16(vshlq_n_u16(destComps[2], 3), vshrq_n_u16(destComps[2], 2));

	// Calculate the differences between the colors
	uint16x8_t diffs[] = {
		vsubq_u16(srcComps[0], destComps[0]), // B
		vsubq_u16(srcComps[1], destComps[1]), // G
		vsubq_u16(srcComps[2], destComps[2]), // R
	};

	// Multiply by alpha and shift depth bits to the right
	// pretty much the same as (int)(((float)component / 255.0f) * ((float)alpha / 255.0f) * 255.0f)
	alphas = vshrq_n_u16(alphas, 2);
	diffs[1] = vshrq_n_u16(vmulq_u16(diffs[1], alphas), 6);
	alphas = vshrq_n_u16(alphas, 1);
	diffs[0] = vshrq_n_u16(vmulq_u16(diffs[0], alphas), 5);
	diffs[2] = vshrq_n_u16(vmulq_u16(diffs[2], alphas), 5);

	// Originally, I converted it back to normal here from the 8bpp form, but don't need to do that anymore
	//diffs[0] = vandq_u16(vshrq_n_u16(vaddq_u16(diffs[0], destComps[0]), 3), vmovq_n_u16(0x1f));
	//diffs[1] = vandq_u16(vshrq_n_u16(vaddq_u16(diffs[1], destComps[1]), 2), vmovq_n_u16(0x3f));
	//diffs[2] = vandq_u16(vshrq_n_u16(vaddq_u16(diffs[2], destComps[2]), 3), vmovq_n_u16(0x1f));

	// Here we add the difference between the 2 colors times alpha onto the destination
	diffs[0] = vandq_u16(vaddq_u16(diffs[0], destComps[0]), vmovq_n_u16(0x1f));
	diffs[1] = vandq_u16(vaddq_u16(diffs[1], destComps[1]), vmovq_n_u16(0x3f));
	diffs[2] = vandq_u16(vaddq_u16(diffs[2], destComps[2]), vmovq_n_u16(0x1f));

	// We compile all the colors into diffs[0] as a 16 bit rgb pixel
	diffs[0] = vorrq_u16(diffs[0], vshlq_n_u16(diffs[1], 5));
	return vorrq_u16(diffs[0], vshlq_n_u16(diffs[2], 11));
}

// preserveAlpha:
//		false => set destCols's alpha to 0
// 		true => keep destCols's alpha
static inline uint32x4_t rgbBlendSIMD(uint32x4_t srcCols, uint32x4_t destCols, uint32x4_t alphas, bool preserveAlpha) {
	// Here we add 1 to alphas if its 0. This is what the original blender function did
	alphas = vaddq_u32(alphas, vandq_u32(vcgtq_u32(alphas, vmovq_n_u32(0)), vmovq_n_u32(1)));

	// Get the alpha from the destination
	uint32x4_t alpha = vandq_u32(destCols, vmovq_n_u32(0xff000000));

	// Get red and blue components
	uint32x4_t srcColsCopy = srcCols;
	srcColsCopy = vandq_u32(srcColsCopy, vmovq_n_u32(0xff00ff));
	uint32x4_t destColsCopy = destCols;
	destColsCopy = vandq_u32(destColsCopy, vmovq_n_u32(0xff00ff));

	// compute the difference, then multiply by alpha and divide by 255
	srcColsCopy = vsubq_u32(srcColsCopy, destColsCopy);
	srcColsCopy = vmulq_u32(srcColsCopy, alphas);
	srcColsCopy = vshrq_n_u32(srcColsCopy, 8);
	srcColsCopy = vaddq_u32(srcColsCopy, destCols); // Add the new red/blue to the old ones

	// do the same for the green component
	srcCols = vandq_u32(srcCols, vmovq_n_u32(0xff00));
	destCols = vandq_u32(destCols, vmovq_n_u32(0xff00));
	srcCols = vsubq_u32(srcCols, destCols);
	srcCols = vmulq_u32(srcCols, alphas);
	srcCols = vshrq_n_u32(srcCols, 8);
	srcCols = vaddq_u32(srcCols, destCols); // Add the new green to the old green

	// keep values in 8bit range and glue red/blue and green together
	srcColsCopy = vandq_u32(srcColsCopy, vmovq_n_u32(0xff00ff));
	srcCols = vandq_u32(srcCols, vmovq_n_u32(0xff00));
	srcCols = vorrq_u32(srcCols, srcColsCopy);

	// Remember that alpha is not alphas, but rather the alpha of destCols
	if (preserveAlpha) {
		srcCols = vandq_u32(srcCols, vmovq_n_u32(0x00ffffff));
		srcCols = vorrq_u32(srcCols, alpha);
	}
	return srcCols;
}

// uses the alpha from srcCols and destCols
static inline uint32x4_t argbBlendSIMD(uint32x4_t srcCols, uint32x4_t destCols) {
	float32x4_t srcA = vcvtq_f32_u32(vshrq_n_u32(srcCols, 24));
	srcA = vmulq_n_f32(srcA, 1.0f / 255.0f);
	float32x4_t srcR = vcvtq_f32_u32(vandq_u32(vshrq_n_u32(srcCols, 16), vmovq_n_u32(0xff)));
	float32x4_t srcG = vcvtq_f32_u32(vandq_u32(vshrq_n_u32(srcCols, 8), vmovq_n_u32(0xff)));
	float32x4_t srcB = vcvtq_f32_u32(vandq_u32(srcCols, vmovq_n_u32(0xff)));

	float32x4_t destA = vcvtq_f32_u32(vshrq_n_u32(destCols, 24));
	destA = vmulq_n_f32(destA, 1.0f / 255.0f);
	float32x4_t destR = vcvtq_f32_u32(vandq_u32(vshrq_n_u32(destCols, 16), vmovq_n_u32(0xff)));
	float32x4_t destG = vcvtq_f32_u32(vandq_u32(vshrq_n_u32(destCols, 8), vmovq_n_u32(0xff)));
	float32x4_t destB = vcvtq_f32_u32(vandq_u32(destCols, vmovq_n_u32(0xff)));

	// the destination alpha gets multiplied by 255 - source alpha
	destA = vmulq_f32(destA, vsubq_f32(vmovq_n_f32(1.0f), srcA));

	// ((src * sAlpha) + (dest * dAlpha)) / (sAlpha + dAlpha)
	float32x4_t combA = vaddq_f32(srcA, destA);
	float32x4_t combArcp = vrecpeq_f32(combA);
	destR = vmulq_f32(vaddq_f32(vmulq_f32(srcR, srcA), vmulq_f32(destR, destA)), combArcp);
	destG = vmulq_f32(vaddq_f32(vmulq_f32(srcG, srcA), vmulq_f32(destG, destA)), combArcp);
	destB = vmulq_f32(vaddq_f32(vmulq_f32(srcB, srcA), vmulq_f32(destB, destA)), combArcp);
	combA = vmulq_n_f32(combA, 255.0);

	// Now put it back together
	return vorrq_u32(vshlq_n_u32(vcvtq_u32_f32(combA), 24),
		vorrq_u32(vshlq_n_u32(vcvtq_u32_f32(destR), 16),
		vorrq_u32(vshlq_n_u32(vcvtq_u32_f32(destG), 8),
			vcvtq_u32_f32(destB))));
}

static inline uint32x4_t blendTintSpriteSIMD(uint32x4_t srcCols, uint32x4_t destCols, uint32x4_t alphas, bool light) {
	// This function is NOT 1 to 1 with the original... It just approximates it
	// It gets the value of the HSV of the dest color
	// Then it gets the HSV of the srcCols

	// how the values are transformed
	// from 1 uint32x4_t srcCols with each lane being ARGB uint32
	// srcCols[0] = A | R | G | B
	// srcCols[1] = A | R | G | B
	// srcCols[2] = A | R | G | B
	// srcCols[3] = A | R | G | B
	//  ->
	// to 4 float32x4_t's each being a separate channel with each lane
	// corresponding to their respective srcCols lane
	// dda = { A[0], A[1], A[2], A[3] }
	// ddr = { R[0], R[1], R[2], R[3] }
	// ddg = { G[0], G[1], G[2], G[3] }
	// ddb = { B[0], B[1], B[2], B[3] }

	// do the transformation (we don't actually need alpha at all)
	float32x4_t ddr, ddg, ddb;
	ddr = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(vshrq_n_u32(destCols, 16), vmovq_n_u32(0xff))), 1.0 / 255.0);
	ddg = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(vshrq_n_u32(destCols, 8), vmovq_n_u32(0xff))), 1.0 / 255.0);
	ddb = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(destCols, vmovq_n_u32(0xff))), 1.0 / 255.0);
	float32x4_t ssr, ssg, ssb;
	ssr = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(vshrq_n_u32(srcCols, 16), vmovq_n_u32(0xff))), 1.0 / 255.0);
	ssg = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(vshrq_n_u32(srcCols, 8), vmovq_n_u32(0xff))), 1.0 / 255.0);
	ssb = vmulq_n_f32(vcvtq_f32_u32(vandq_u32(srcCols, vmovq_n_u32(0xff))), 1.0 / 255.0);

	// Get the maxes and mins (needed for HSV->RGB and vice-versa)
	float32x4_t dmaxes = vmaxq_f32(ddr, vmaxq_f32(ddg, ddb));
	float32x4_t smaxes = vmaxq_f32(ssr, vmaxq_f32(ssg, ssb));
	float32x4_t smins = vminq_f32(ssr, vminq_f32(ssg, ssb));

	// This is here to stop from dividing by 0
	const float32x4_t eplison0 = vmovq_n_f32(0.0000001);

	float32x4_t chroma = vmaxq_f32(vsubq_f32(smaxes, smins), eplison0);

	// RGB to HSV is a piecewise function, so we compute each part of the function first...
	float32x4_t hr, hg, hb, hue, chromaReq;
	chromaReq = vrecpeq_f32(chroma);
	hr = vmulq_f32(vsubq_f32(ssg, ssb), chromaReq);
	float32x4_t hrDiv6 = vmulq_n_f32(hr, 1.0 / 6.0);
	hrDiv6 = vsubq_f32(hrDiv6, vcvtq_f32_u32(vandq_u32(vcltq_f32(hrDiv6, vmovq_n_f32(0.0)), vmovq_n_u32(1))));
	hr = vsubq_f32(hr, vmulq_n_f32(vcvtq_f32_s32(vcvtq_s32_f32(hrDiv6)), 6.0));
	hg = vaddq_f32(vmulq_f32(vsubq_f32(ssb, ssr), chromaReq), vmovq_n_f32(2.0));
	hb = vaddq_f32(vmulq_f32(vsubq_f32(ssr, ssg), chromaReq), vmovq_n_f32(4.0));

	// And then compute which one will be used based on criteria
	float32x4_t hrfactors = vcvtq_f32_u32(vandq_u32(vandq_u32(vceqq_f32(ssr, smaxes), vmvnq_u32(vceqq_f32(ssr, ssb))), vmovq_n_u32(1)));
	float32x4_t hgfactors = vcvtq_f32_u32(vandq_u32(vandq_u32(vceqq_f32(ssg, smaxes), vmvnq_u32(vceqq_f32(ssg, ssr))), vmovq_n_u32(1)));
	float32x4_t hbfactors = vcvtq_f32_u32(vandq_u32(vandq_u32(vceqq_f32(ssb, smaxes), vmvnq_u32(vceqq_f32(ssb, ssg))), vmovq_n_u32(1)));
	hue = vmulq_f32(hr, hrfactors);
	hue = vaddq_f32(hue, vmulq_f32(hg, hgfactors));
	hue = vaddq_f32(hue, vmulq_f32(hb, hbfactors));

	// Mess with the light like the original function
	float32x4_t val = dmaxes;
	if (light) {
		val = vsubq_f32(val, vsubq_f32(vmovq_n_f32(1.0), vmulq_n_f32(vcvtq_f32_u32(alphas), 1.0 / 250.0)));
		val = vmaxq_f32(val, vmovq_n_f32(0.0));
	}

	// then it stitches the HSV back together
	// the hue and saturation come from the source (tint) color, and the value comes from
	// the destination (real source) color
	chroma = vmulq_f32(val, vmulq_f32(vsubq_f32(smaxes, smins), vrecpeq_f32(vaddq_f32(smaxes, eplison0))));
	float32x4_t hprime_mod2 = vmulq_n_f32(hue, 1.0 / 2.0);
	hprime_mod2 = vmulq_n_f32(vsubq_f32(hprime_mod2, vcvtq_f32_s32(vcvtq_s32_f32(hprime_mod2))), 2.0);
	float32x4_t x = vmulq_f32(chroma, vsubq_f32(vmovq_n_f32(1.0), vabsq_f32(vsubq_f32(hprime_mod2, vmovq_n_f32(1.0)))));
	uint32x4_t hprime_rounded = vcvtq_u32_f32(hue);
	uint32x4_t x_int = vcvtq_u32_f32(vmulq_n_f32(x, 255.0));
	uint32x4_t c_int = vcvtq_u32_f32(vmulq_n_f32(chroma, 255.0));

	// Again HSV->RGB is also a piecewise function
	uint32x4_t val0 = vorrq_u32(vshlq_n_u32(x_int, 8), vshlq_n_u32(c_int, 16));
	val0 = vandq_u32(val0, vorrq_u32(vceqq_u32(hprime_rounded, vmovq_n_u32(0)), vceqq_u32(hprime_rounded, vmovq_n_u32(6))));
	uint32x4_t val1 = vorrq_u32(vshlq_n_u32(c_int, 8), vshlq_n_u32(x_int, 16));
	val1 = vandq_u32(val1, vceqq_u32(hprime_rounded, vmovq_n_u32(1)));
	uint32x4_t val2 = vorrq_u32(vshlq_n_u32(c_int, 8), x_int);
	val2 = vandq_u32(val2, vceqq_u32(hprime_rounded, vmovq_n_u32(2)));
	uint32x4_t val3 = vorrq_u32(vshlq_n_u32(x_int, 8), c_int);
	val3 = vandq_u32(val3, vceqq_u32(hprime_rounded, vmovq_n_u32(3)));
	uint32x4_t val4 = vorrq_u32(vshlq_n_u32(x_int, 16), c_int);
	val4 = vandq_u32(val4, vceqq_u32(hprime_rounded, vmovq_n_u32(4)));
	uint32x4_t val5 = vorrq_u32(vshlq_n_u32(c_int, 16), x_int);
	val5 = vandq_u32(val5, vceqq_u32(hprime_rounded, vmovq_n_u32(5)));

	// or the values together
	uint32x4_t final = vorrq_u32(val0, vorrq_u32(val1, vorrq_u32(val2, vorrq_u32(val3, vorrq_u32(val4, val5)))));

	// add the minimums back in
	uint32x4_t val_add = vcvtq_u32_f32(vmulq_n_f32(vsubq_f32(val, chroma), 255.0));
	val_add = vorrq_u32(val_add, vorrq_u32(vshlq_n_u32(val_add, 8), vorrq_u32(vshlq_n_u32(val_add, 16), vandq_u32(destCols, vmovq_n_u32(0xff000000)))));
	final = vaddq_u32(final, val_add);
	return final;
}

static inline uint32x4_t blendPixelSIMD(uint32x4_t srcCols, uint32x4_t destCols, uint32x4_t alphas) {
	uint32x4_t srcAlphas, difAlphas, mask, ch1, ch2;
	auto setupArgbAlphas = [&]() {
		// This acts the same as this in the normal blender functions
		// if (alpha == 0)
		//     alpha = aSrc;
		// else
		//     alpha = aSrc * ((alpha & 0xff) + 1) / 256;
		// where alpha is the alpha byte of the srcCols
		srcAlphas = vshrq_n_u32(srcCols, 24);
		difAlphas = vaddq_u32(vandq_u32(alphas, vmovq_n_u32(0xff)), vmovq_n_u32(1));
		difAlphas = vshrq_n_u32(vmulq_u32(srcAlphas, difAlphas), 8);
		difAlphas = vshlq_n_u32(difAlphas, 24);
		srcAlphas = vshlq_n_u32(srcAlphas, 24);
		mask = vceqq_u32(alphas, vmovq_n_u32(0));
		srcAlphas = vandq_u32(srcAlphas, mask);
		difAlphas = vandq_u32(difAlphas, vmvnq_u32(mask));
		srcCols = vandq_u32(srcCols, vmovq_n_u32(0x00ffffff));
		srcCols = vorrq_u32(srcCols, vorrq_u32(srcAlphas, difAlphas));
	};
	switch (_G(_blender_mode)) {
	case kSourceAlphaBlender: // see BITMAP member function blendSourceAlpha
		alphas = vshrq_n_u32(srcCols, 24);
		return rgbBlendSIMD(srcCols, destCols, alphas, false);
	case kArgbToArgbBlender: // see BITMAP member function blendArgbToArgb
		setupArgbAlphas();
		// only blend if alpha isn't 0, otherwise use destCols
		mask = vcgtq_u32(vshrq_n_u32(srcCols, 24), vmovq_n_u32(0));
		ch1 = vandq_u32(argbBlendSIMD(srcCols, destCols), mask);
		ch2 = vandq_u32(destCols, vmvnq_u32(mask));
		return vorrq_u32(ch1, ch2);
	case kArgbToRgbBlender: // see BITMAP member function blendArgbToRgb
		setupArgbAlphas();
		return rgbBlendSIMD(srcCols, destCols, vshrq_n_u32(srcCols, 24), false);
	case kRgbToArgbBlender: // see BITMAP member function blendRgbToArgb
		// if alpha is NOT 0 or 255
		ch2 = vandq_u32(srcCols, vmovq_n_u32(0x00ffffff));
		ch2 = vorrq_u32(ch2, vshlq_n_u32(alphas, 24));
		ch2 = argbBlendSIMD(ch2, destCols);
		// if alpha is 0 or 255
		ch1 = vorrq_u32(srcCols, vmovq_n_u32(0xff000000));
		// mask and or them together
		mask = vorrq_u32(vceqq_u32(alphas, vmovq_n_u32(0)), vceqq_u32(alphas, vmovq_n_u32(0xff)));
		ch1 = vandq_u32(ch1, mask);
		ch2 = vandq_u32(ch2, vmvnq_u32(mask));
		return vorrq_u32(ch1, ch2);
	case kRgbToRgbBlender: // see BITMAP member function blendRgbToRgb
		return rgbBlendSIMD(srcCols, destCols, alphas, false);
	case kAlphaPreservedBlenderMode: // see BITMAP member function blendPreserveAlpha
		return rgbBlendSIMD(srcCols, destCols, alphas, true);
	case kOpaqueBlenderMode: // see BITMAP member function blendOpaque
		return vorrq_u32(srcCols, vmovq_n_u32(0xff000000));
	case kAdditiveBlenderMode: // see BITMAP member function blendAdditiveAlpha
		srcAlphas = vaddq_u32(vshrq_n_u32(srcCols, 24), vshrq_n_u32(destCols, 24));
		srcAlphas = vminq_u32(srcAlphas, vmovq_n_u32(0xff));
		srcCols = vandq_u32(srcCols, vmovq_n_u32(0x00ffffff));
		return vorrq_u32(srcCols, vshlq_n_u32(srcAlphas, 24));
	case kTintBlenderMode: // see BITMAP member function blendTintSprite
		return blendTintSpriteSIMD(srcCols, destCols, alphas, false);
	case kTintLightBlenderMode: // see BITMAP member function blendTintSprite
		return blendTintSpriteSIMD(srcCols, destCols, alphas, true);
	}
	return srcCols;
}

static inline uint16x8_t blendPixelSIMD2Bpp(uint16x8_t srcCols, uint16x8_t destCols, uint16x8_t alphas) {
	uint16x8_t mask, ch1, ch2;
	switch (_G(_blender_mode)) {
	case kSourceAlphaBlender:
	case kOpaqueBlenderMode:
	case kAdditiveBlenderMode:
		return srcCols;
	case kArgbToArgbBlender:
	case kArgbToRgbBlender:
		ch1 = vandq_u16(vmovq_n_u16(0xff), vceqq_u16(alphas, vmovq_n_u16(0)));
		ch2 = vandq_u16(alphas, vcgtq_u16(alphas, vmovq_n_u16(0)));
		alphas = vorrq_u16(ch1, ch2);
		// fall through
	case kRgbToRgbBlender:
	case kAlphaPreservedBlenderMode:
		return rgbBlendSIMD2Bpp(srcCols, destCols, alphas);
	case kRgbToArgbBlender:
		mask = vorrq_u16(vceqq_u16(alphas, vmovq_n_u16(0)), vceqq_u16(alphas, vmovq_n_u16(255)));
		ch1 = vandq_u16(srcCols, mask);
		ch2 = vandq_u16(rgbBlendSIMD2Bpp(srcCols, destCols, alphas), vmvnq_u16(mask));
		return vorrq_u16(ch1, ch2);
	case kTintBlenderMode:
	case kTintLightBlenderMode:
		uint32x4_t srcColsLo = simd2BppTo4Bpp(vget_low_u16(srcCols));
		uint32x4_t srcColsHi = simd2BppTo4Bpp(vget_high_u16(srcCols));
		uint32x4_t destColsLo = simd2BppTo4Bpp(vget_low_u16(destCols));
		uint32x4_t destColsHi = simd2BppTo4Bpp(vget_high_u16(destCols));
		uint32x4_t alphasLo = vmovl_u16(vget_low_u16(alphas));
		uint32x4_t alphasHi = vmovl_u16(vget_high_u16(alphas));
		uint16x4_t lo = simd4BppTo2Bpp(blendTintSpriteSIMD(srcColsLo, destColsLo, alphasLo, _G(_blender_mode) == kTintLightBlenderMode));
		uint16x4_t hi = simd4BppTo2Bpp(blendTintSpriteSIMD(srcColsHi, destColsHi, alphasHi, _G(_blender_mode) == kTintLightBlenderMode));
		return vcombine_u16(lo, hi);
	}
	return srcCols;
}

template<int DestBytesPerPixel, int SrcBytesPerPixel>
static inline void drawPixelSIMD(byte *destPtr, const byte *srcP2, uint32x4_t tint, uint32x4_t alphas, uint32x4_t maskedAlphas, uint32x4_t transColors, int xDir, int xCtrBpp, int srcAlpha, int skipTrans, bool horizFlip, bool useTint, uint32x4_t skipMask) {
	uint32x4_t srcCols, destCol;

	if (DestBytesPerPixel == 4)
		destCol = vld1q_u32((uint32 *)destPtr);
	else
		destCol = simd2BppTo4Bpp(vld1_u16((uint16 *)destPtr));
	if (SrcBytesPerPixel == 4)
		srcCols = vld1q_u32((const uint32 *)(srcP2 + xDir * xCtrBpp));
	else
		srcCols = simd2BppTo4Bpp(vld1_u16((const uint16 *)(srcP2 + xDir * xCtrBpp)));
	// we do this here because we need to check if we should skip the pixel before we blend it
	uint32x4_t mask1 = skipTrans ? vceqq_u32(vandq_u32(srcCols, maskedAlphas), transColors) : vmovq_n_u32(0);
	mask1 = vorrq_u32(mask1, skipMask);
	if (srcAlpha != -1) {
		// take into account for useTint
		if (useTint) {
			srcCols = blendPixelSIMD(tint, srcCols, alphas);
		} else {
			srcCols = blendPixelSIMD(srcCols, destCol, alphas);
		}
	}
	uint32x4_t destCols2 = vandq_u32(destCol, mask1);
	uint32x4_t srcCols2 = vandq_u32(srcCols, vmvnq_u32(mask1));
	uint32x4_t final = vorrq_u32(destCols2, srcCols2);
	if (horizFlip) {
		final = vrev64q_u32(final);
		final = vcombine_u32(vget_high_u32(final), vget_low_u32(final));
	}
	if (DestBytesPerPixel == 4) {
		vst1q_u32((uint32 *)destPtr, final);
	} else {
		vst1_u16((uint16 *)destPtr, simd4BppTo2Bpp(final));
	}
}

static inline void drawPixelSIMD2Bpp(byte *destPtr, const byte *srcP2, uint16x8_t tint, uint16x8_t alphas, uint16x8_t transColors, int xDir, int xCtrBpp, int srcAlpha, int skipTrans, bool horizFlip, bool useTint, uint16x8_t skipMask) {
	uint16x8_t destCol = vld1q_u16((uint16 *)destPtr);
	uint16x8_t srcCols = vld1q_u16((const uint16 *)(srcP2 + xDir * xCtrBpp));
	uint16x8_t mask1 = skipTrans ? vceqq_u16(srcCols, transColors) : vmovq_n_u16(0);
	mask1 = vorrq_u16(mask1, skipMask);
	if (srcAlpha != -1) {
		// take into account for useTint
		if (useTint) {
			srcCols = blendPixelSIMD2Bpp(tint, srcCols, alphas);
		} else {
			srcCols = blendPixelSIMD2Bpp(srcCols, destCol, alphas);
		}
	}
	uint16x8_t destCols2 = vandq_u16(destCol, mask1);
	uint16x8_t srcCols2 = vandq_u16(srcCols, vmvnq_u16(mask1));
	uint16x8_t final = vorrq_u16(destCols2, srcCols2);
	if (horizFlip) {
		final = vrev64q_u16(final);
		final = vcombine_u16(vget_high_u16(final), vget_low_u16(final));
	}
	vst1q_u16((uint16 *)destPtr, final);
}

public:

// This template handles 2bpp and 4bpp, the other specializations handle 1bpp and format conversion blits
template<int DestBytesPerPixel, int SrcBytesPerPixel, bool Scale>
static void drawInner4BppWithConv(BITMAP::DrawInnerArgs &args) {
	const int xDir = args.horizFlip ? -1 : 1;
	byte rSrc, gSrc, bSrc, aSrc;
	byte rDest = 0, gDest = 0, bDest = 0, aDest = 0;
	uint32x4_t tint = vshlq_n_u32(vdupq_n_u32(args.srcAlpha), 24);
	tint = vorrq_u32(tint, vshlq_n_u32(vdupq_n_u32(args.tintRed), 16));
	tint = vorrq_u32(tint, vshlq_n_u32(vdupq_n_u32(args.tintGreen), 8));
	tint = vorrq_u32(tint, vdupq_n_u32(args.tintBlue));
	uint32x4_t maskedAlphas = vmovq_n_u32(args.alphaMask);
	uint32x4_t transColors = vmovq_n_u32(args.transColor);
	uint32x4_t alphas = vmovq_n_u32(args.srcAlpha);

	// This is so that we can calculate what pixels to crop off in a vectorized way
	const uint32x4_t addIndexesNormal = {0, 1, 2, 3};
	const uint32x4_t addIndexesFlipped = {3, 2, 1, 0};
	uint32x4_t addIndexes = args.horizFlip ? addIndexesFlipped : addIndexesNormal;

	// This is so that we can calculate in parallel the pixel indexes for scaled drawing
	uint32x4_t scaleAdds = {0, (uint32)args.scaleX, (uint32)args.scaleX*2, (uint32)args.scaleX*3};

	// Clip the bounds ahead of time (so we don't waste time checking if we are in bounds when
	// we are in the inner loop)
	int xCtrStart = 0, xCtrBppStart = 0, xCtrWidth = args.dstRect.width();
	if (args.xStart + xCtrWidth > args.destArea.w) {
		xCtrWidth = args.destArea.w - args.xStart;
	}
	if (args.xStart < 0) {
		xCtrStart = -args.xStart;
		xCtrBppStart = xCtrStart * SrcBytesPerPixel;
		args.xStart = 0;
	}
	int destY = args.yStart, srcYCtr = 0, yCtr = 0, scaleYCtr = 0, yCtrHeight = args.dstRect.height();
	if (Scale) yCtrHeight = args.dstRect.height();
	if (args.yStart < 0) {
		yCtr = -args.yStart;
		destY = 0;
		if (Scale) {
			scaleYCtr = yCtr * args.scaleY;
			srcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
		}
	}
	if (args.yStart + yCtrHeight > args.destArea.h) {
		yCtrHeight = args.destArea.h - args.yStart;
	}
	/*if (!Scale && xCtrWidth % 4 != 0) {
		--yCtrHeight;
	}*/

	const int secondToLast = xCtrWidth - 4;

	byte *destP = (byte *)args.destArea.getBasePtr(0, destY);
	const byte *srcP = (const byte *)args.src.getBasePtr(
	                       args.horizFlip ? args.srcArea.right - 4 : args.srcArea.left,
	                       args.vertFlip ? args.srcArea.bottom - 1 - yCtr : args.srcArea.top + yCtr);
	for (; yCtr < yCtrHeight; ++destY, ++yCtr, scaleYCtr += args.scaleY) {
		uint32x4_t xCtrWidthSIMD = vdupq_n_u32(xCtrWidth); // This is the width of the row

		if (!Scale) {
			int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart;
			for (; xCtr < secondToLast; destX += 4, xCtr += 4, xCtrBpp += SrcBytesPerPixel*4) {
				byte *destPtr = &destP[destX * DestBytesPerPixel];
				drawPixelSIMD<DestBytesPerPixel, SrcBytesPerPixel>(destPtr, srcP, tint, alphas, maskedAlphas, transColors, xDir, xCtrBpp, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u32(0));
			}

			byte *destPtr = &destP[destX * DestBytesPerPixel];
			uint32x4_t srcCols = vmovq_n_u32(0);
			uint32x4_t destCols = vmovq_n_u32(0);
			memcpy(&srcCols, srcP + xDir * xCtrBpp, (xCtrWidth - xCtr) * SrcBytesPerPixel);
			memcpy(&destCols, destPtr, (xCtrWidth - xCtr) * DestBytesPerPixel);

			// Skip pixels that are beyond the row
			// uint32x4_t skipMask = vcgeq_u32(vaddq_u32(vdupq_n_u32(xCtr), addIndexes), xCtrWidthSIMD);
			drawPixelSIMD<DestBytesPerPixel, SrcBytesPerPixel>((byte *)&destCols, (byte *)&srcCols, tint, alphas, maskedAlphas, transColors, xDir, 0, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u32(0));
			memcpy(destPtr, &destCols, (xCtrWidth - xCtr) * DestBytesPerPixel);

			// Goto next row in source and destination image
			destP += args.destArea.pitch;
			srcP += args.vertFlip ? -args.src.pitch : args.src.pitch;
		} else {
			// Here we are scaling the image
			int newSrcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
			// Since the source yctr might not update every row of the destination, we have
			// to see if we are on a new row...
			if (srcYCtr != newSrcYCtr) {
				int diffSrcYCtr = newSrcYCtr - srcYCtr; // Have we moved yet
				srcP += args.src.pitch * diffSrcYCtr;
				srcYCtr = newSrcYCtr;
			}

			// Now also since we might skip a pixel or 2 or duplicate one to reach the desired
			// scaling size, we create a small dummy buffer that we copy the pixels into and then
			// call the drawPixelsSIMD function
			byte srcBuffer[4*4];
			for (int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart, scaleXCtr = xCtrStart * args.scaleX; xCtr < xCtrWidth; destX += 4, xCtr += 4, xCtrBpp += SrcBytesPerPixel*4) {
				if (yCtr + 1 == yCtrHeight && xCtr + 4 > xCtrWidth) break; // Don't go past the last 4 pixels
				uint32x4_t indexes = vdupq_n_u32(scaleXCtr);
				// Calculate in parallel the indexes of the pixels
				indexes = vmulq_n_u32(vshrq_n_u32(vaddq_u32(indexes, scaleAdds), BITMAP::SCALE_THRESHOLD_BITS), SrcBytesPerPixel);
				// Simply memcpy them in. memcpy has no real performance overhead here
				memcpy(&srcBuffer[0*(uintptr_t)SrcBytesPerPixel], srcP + vgetq_lane_u32(indexes, 0), SrcBytesPerPixel);
				memcpy(&srcBuffer[1*(uintptr_t)SrcBytesPerPixel], srcP + vgetq_lane_u32(indexes, 1), SrcBytesPerPixel);
				memcpy(&srcBuffer[2*(uintptr_t)SrcBytesPerPixel], srcP + vgetq_lane_u32(indexes, 2), SrcBytesPerPixel);
				memcpy(&srcBuffer[3*(uintptr_t)SrcBytesPerPixel], srcP + vgetq_lane_u32(indexes, 3), SrcBytesPerPixel);
				scaleXCtr += args.scaleX*4;

				// Now this is pretty much the same as before with non-scaled code, except that we use
				// our dummy source buffer instead of the actual source bitmap
				byte *destPtr = &destP[destX * (uintptr_t)DestBytesPerPixel];
				uint32x4_t skipMask = vcgeq_u32(vaddq_u32(vdupq_n_u32(xCtr), addIndexes), xCtrWidthSIMD);
				drawPixelSIMD<DestBytesPerPixel, SrcBytesPerPixel>(destPtr, (const byte *)srcBuffer, tint, alphas, maskedAlphas, transColors, 1, 0, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, skipMask);
			}
			// We calculate every row here except the last (because then we need to
			// check for if we fall off the edge of the row)
			// The only exception here is scaling drawing this is because:
			// 1) if statements are costly, and the less we do the faster this loop is
			// 2) with this, the only branch in the normal drawing loop is the width check
			// 3) the scaling code will actually draw until the last 4 pixels of the image
			//    and do the extra if checks because the scaling code is already much slower
			//    than the normal drawing loop, and the less duplicate code helps here.
			if (yCtr + 1 != yCtrHeight) destP += args.destArea.pitch;
		}
	}

	// Get the last x values of the last row
	int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart;
	// We have a picture that is a multiple of 4, so no extra pixels to draw
	/*if (xCtrWidth % 4 == 0)*/ return;
	// Drawing the last few not scaled pixels here.
	// Same as the loop above but now we check if we are going to overflow,
	// and thus we don't need to mask out pixels that go over the row.
	if (!Scale) {
		for (; xCtr + 4 < xCtrWidth; destX += 4, xCtr += 4, xCtrBpp += SrcBytesPerPixel*4) {
			byte *destPtr = &destP[(ptrdiff_t)destX * DestBytesPerPixel];
			drawPixelSIMD<DestBytesPerPixel, SrcBytesPerPixel>(destPtr, srcP, tint, alphas, maskedAlphas, transColors, xDir, xCtrBpp, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u32(0));
		}
		// Because we move in 4 pixel units, and horizFlip moves in 1, we have to move
		// 1 pixel past the last pixel we did not blit, meaning going forward 3 pixels.
		if (args.horizFlip) srcP += SrcBytesPerPixel * 3;
	} else {
		// So if we are scaling, set up the xCtr to what it was before (AKA the last 4 or so pixels of the image)
		xCtr = xCtrWidth - xCtrWidth % 4;
		xCtrBpp = xCtr * SrcBytesPerPixel;
		destX = args.xStart+xCtr;
	}

	// For the last 4 pixels, we just do them in serial, nothing special
	for (; xCtr < xCtrWidth; ++destX, ++xCtr, xCtrBpp += SrcBytesPerPixel) {
		const byte *srcColPtr = (const byte *)(srcP + xDir * xCtrBpp);
		if (Scale) {
			srcColPtr = (const byte *)(srcP + (xCtr * args.scaleX) / BITMAP::SCALE_THRESHOLD * SrcBytesPerPixel);
		}
		byte *destVal = (byte *)&destP[destX * DestBytesPerPixel];
		uint32 srcCol = args.dstBitmap.getColor(srcColPtr, SrcBytesPerPixel);

		// Check if this is a transparent color we should skip
		if (args.skipTrans && ((srcCol & args.alphaMask) == args.transColor))
			continue;

		args.src.format.colorToARGB(srcCol, aSrc, rSrc, gSrc, bSrc);
		if (args.srcAlpha != -1) {
			if (args.useTint) {
				rDest = rSrc;
				gDest = gSrc;
				bDest = bSrc;
				aDest = aSrc;
				rSrc = args.tintRed;
				gSrc = args.tintGreen;
				bSrc = args.tintBlue;
				aSrc = args.srcAlpha;
			}
			args.dstBitmap.blendPixel(aSrc, rSrc, gSrc, bSrc, aDest, rDest, gDest, bDest, args.srcAlpha, args.useTint, destVal);
			srcCol = args.dstBitmap.format.ARGBToColor(aDest, rDest, gDest, bDest);
		} else {
			srcCol = args.dstBitmap.format.ARGBToColor(aSrc, rSrc, gSrc, bSrc);
		}
		if (DestBytesPerPixel == 4)
			*(uint32 *)destVal = srcCol;
		else
			*(uint16 *)destVal = srcCol;
	}
}

template<bool Scale>
static void drawInner2Bpp(BITMAP::DrawInnerArgs &args) {
	const int xDir = args.horizFlip ? -1 : 1;
	byte rSrc, gSrc, bSrc, aSrc;
	byte rDest = 0, gDest = 0, bDest = 0, aDest = 0;
	uint16x8_t tint = vdupq_n_u16(args.src.format.ARGBToColor(args.srcAlpha, args.tintRed, args.tintGreen, args.tintBlue));
	uint16x8_t transColors = vdupq_n_u16(args.transColor);
	uint16x8_t alphas = vdupq_n_u16(args.srcAlpha);

	// This is so that we can calculate what pixels to crop off in a vectorized way
	uint16x8_t addIndexesNormal = {0, 1, 2, 3, 4, 5, 6, 7};
	uint16x8_t addIndexesFlipped = {7, 6, 5, 4, 3, 2, 1, 0};
	uint16x8_t addIndexes = args.horizFlip ? addIndexesFlipped : addIndexesNormal;

	// This is so that we can calculate in parallel the pixel indices for scaled drawing
	uint32x4_t scaleAdds = {0, (uint32)args.scaleX, (uint32)args.scaleX*2, (uint32)args.scaleX*3};
	uint32x4_t scaleAdds2 = {(uint32)args.scaleX*4, (uint32)args.scaleX*5, (uint32)args.scaleX*6, (uint32)args.scaleX*7};

	// Clip the bounds ahead of time (so we don't waste time checking if we are in bounds when
	// we are in the inner loop)
	int xCtrStart = 0, xCtrBppStart = 0, xCtrWidth = args.dstRect.width();
	if (args.xStart + xCtrWidth > args.destArea.w) {
		xCtrWidth = args.destArea.w - args.xStart;
	}
	if (args.xStart < 0) {
		xCtrStart = -args.xStart;
		xCtrBppStart = xCtrStart * 2;
		args.xStart = 0;
	}
	int destY = args.yStart, yCtr = 0, srcYCtr = 0, scaleYCtr = 0, yCtrHeight = args.dstRect.height();
	if (Scale) yCtrHeight = args.dstRect.height();
	if (args.yStart < 0) {
		yCtr = -args.yStart;
		destY = 0;
		if (Scale) {
			scaleYCtr = yCtr * args.scaleY;
			srcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
		}
	}
	if (args.yStart + yCtrHeight > args.destArea.h) {
		yCtrHeight = args.destArea.h - args.yStart;
	}
	/*if (!Scale && xCtrWidth % 8 != 0) {
		--yCtrHeight;
	}*/

	const int secondToLast = xCtrWidth - 8;

	byte *destP = (byte *)args.destArea.getBasePtr(0, destY);
	const byte *srcP = (const byte *)args.src.getBasePtr(
	                       args.horizFlip ? args.srcArea.right - 8 : args.srcArea.left,
	                       args.vertFlip ? args.srcArea.bottom - 1 - yCtr : args.srcArea.top + yCtr);
	for (; yCtr < yCtrHeight; ++destY, ++yCtr, scaleYCtr += args.scaleY) {
		uint16x8_t xCtrWidthSIMD = vmovq_n_u16(xCtrWidth); // This is the width of the row
		if (!Scale) {
			// If we are not scaling the image
			int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart;
			for (; xCtr < secondToLast; destX += 8, xCtr += 8, xCtrBpp += 16) {
				byte *destPtr = &destP[destX * 2];
				drawPixelSIMD2Bpp(destPtr, srcP, tint, alphas, transColors, xDir, xCtrBpp, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u16(0));
			}

			byte *destPtr = &destP[destX * 2];
			uint16x8_t srcCols = vmovq_n_u16(0);
			uint16x8_t destCols = vmovq_n_u16(0);
			const int copySize = (xCtrWidth - xCtr) * 2;
			memcpy(&srcCols, srcP + xDir * xCtrBpp, copySize);
			memcpy(&destCols, destPtr, copySize);

			// Skip pixels that are beyond the row
			// uint16x8_t skipMask = vcgeq_u16(vaddq_u16(vdupq_n_u16(xCtr), addIndexes), xCtrWidthSIMD);
			drawPixelSIMD2Bpp((byte *)&destCols, (byte *)&srcCols, tint, alphas, transColors, xDir, 0, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u16(0));
			memcpy(destPtr, &destCols, copySize);

			// Goto next row in source and destination image
			destP += args.destArea.pitch;
			srcP += args.vertFlip ? -args.src.pitch : args.src.pitch;
		} else {
			// Here we are scaling the image
			int newSrcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
			// Since the source yctr might not update every row of the destination, we have
			// to see if we are on a new row...
			if (srcYCtr != newSrcYCtr) {
				int diffSrcYCtr = newSrcYCtr - srcYCtr;
				srcP += args.src.pitch * diffSrcYCtr;
				srcYCtr = newSrcYCtr;
			}

			// Now also since we might skip a pixel or 2 or duplicate one to reach the desired
			// scaling size, we create a small dummy buffer that we copy the pixels into and then
			// call the drawPixelsSIMD function
			uint16 srcBuffer[8];
			for (int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart, scaleXCtr = xCtrStart * args.scaleX; xCtr < xCtrWidth; destX += 8, xCtr += 8, xCtrBpp += 16) {
				if (yCtr + 1 == yCtrHeight && xCtr + 8 > xCtrWidth) break;
				uint32x4_t indexes = vdupq_n_u32(scaleXCtr), indexes2 = vdupq_n_u32(scaleXCtr);
				// Calculate in parallel the indices of the pixels
				indexes = vmulq_n_u32(vshrq_n_u32(vaddq_u32(indexes, scaleAdds), BITMAP::SCALE_THRESHOLD_BITS), 2);
				indexes2 = vmulq_n_u32(vshrq_n_u32(vaddq_u32(indexes2, scaleAdds2), BITMAP::SCALE_THRESHOLD_BITS), 2);
				// Simply memcpy them in. memcpy has no real performance overhead here
				srcBuffer[0] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes, 0));
				srcBuffer[1] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes, 1));
				srcBuffer[2] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes, 2));
				srcBuffer[3] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes, 3));
				srcBuffer[4] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes2, 0));
				srcBuffer[5] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes2, 1));
				srcBuffer[6] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes2, 2));
				srcBuffer[7] = *(const uint16 *)(srcP + vgetq_lane_u32(indexes2, 3));
				scaleXCtr += args.scaleX*8;

				// Now this is pretty much the same as before with non-scaled code, except that we use
				// our dummy source buffer instead of the actual source bitmap
				byte *destPtr = &destP[destX * 2];
				uint16x8_t skipMask = vcgeq_u16(vaddq_u16(vdupq_n_u16(xCtr), addIndexes), xCtrWidthSIMD);
				drawPixelSIMD2Bpp(destPtr, (const byte *)srcBuffer, tint, alphas, transColors, 1, 0, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, skipMask);
			}
			// We calculate every row here except the last (because then we need to
			// check for if we fall off the edge of the row)
			// The only exception here is scaling drawing this is because:
			// 1) if statements are costly, and the less we do the faster this loop is
			// 2) with this, the only branch in the normal drawing loop is the width check
			// 3) the scaling code will actually draw until the last 4 pixels of the image
			//    and do the extra if checks because the scaling code is already much slower
			//    than the normal drawing loop, and the less duplicate code helps here.
			if (yCtr + 1 != yCtrHeight) destP += args.destArea.pitch;
		}
	}

	// We have a picture that is a multiple of 8, so no extra pixels to draw
	/*if (xCtrWidth % 8 == 0)*/ return;
	// Get the last x values of the last row
	int xCtr = xCtrStart, xCtrBpp = xCtrBppStart, destX = args.xStart;
	// Drawing the last few not scaled pixels here.
	// Same as the loop above but now we check if we are going to overflow,
	// and thus we don't need to mask out pixels that go over the row.
	if (!Scale) {
		for (; xCtr + 8 < xCtrWidth; destX += 8, xCtr += 8, xCtrBpp += 16) {
			byte *destPtr = &destP[destX * 2];
			drawPixelSIMD2Bpp(destPtr, srcP, tint, alphas, transColors, xDir, xCtrBpp, args.srcAlpha, args.skipTrans, args.horizFlip, args.useTint, vmovq_n_u16(0));
		}
		// Because we move in 8 pixel units, and horizFlip moves in 1, we have to move
		// 1 pixel past the last pixel we did not blit, meaning going forward 7 pixels.
		if (args.horizFlip) srcP += 2 * 7;
	} else {
		// So if we are scaling, set up the xCtr to what it was before (AKA the last 8 or so pixels of the image)
		xCtr = xCtrWidth - xCtrWidth % 8;
		xCtrBpp = xCtr * 2;
		destX = args.xStart+xCtr;
	}

	// For the last 4 pixels, we just do them in serial, nothing special
	for (; xCtr < xCtrWidth; ++destX, ++xCtr, xCtrBpp += 2) {
		const byte *srcColPtr = (const byte *)(srcP + xDir * xCtrBpp);
		if (Scale) {
			srcColPtr = (const byte *)(srcP + (xCtr * args.scaleX) / BITMAP::SCALE_THRESHOLD * 2);
		}
		byte *destVal = (byte *)&destP[destX * 2];
		uint32 srcCol = (uint32)(*(const uint16 *)srcColPtr);

		// Check if this is a transparent color we should skip
		if (args.skipTrans && srcCol == args.transColor)
			continue;

		args.src.format.colorToARGB(srcCol, aSrc, rSrc, gSrc, bSrc);
		if (args.srcAlpha != -1) {
			if (args.useTint) {
				rDest = rSrc;
				gDest = gSrc;
				bDest = bSrc;
				aDest = aSrc;
				rSrc = args.tintRed;
				gSrc = args.tintGreen;
				bSrc = args.tintBlue;
				aSrc = args.srcAlpha;
			}/* else {
				format.colorToARGB((uint32)(*(uint16 *)destVal), aDest, rDest, gDest, bDest);
			}*/
			args.dstBitmap.blendPixel(aSrc, rSrc, gSrc, bSrc, aDest, rDest, gDest, bDest, args.srcAlpha, args.useTint, destVal);
			srcCol = args.dstBitmap.format.ARGBToColor(aDest, rDest, gDest, bDest);
		} else {
			srcCol = args.dstBitmap.format.ARGBToColor(aSrc, rSrc, gSrc, bSrc);
		}
		*(uint16 *)destVal = srcCol;
	}
}

template<bool Scale>
static void drawInner1Bpp(BITMAP::DrawInnerArgs &args) {
	const int xDir = args.horizFlip ? -1 : 1;
	uint8x16_t transColors = vmovq_n_u8(args.transColor);

	// This is so that we can calculate in parallel the pixel indices for scaled drawing
	uint32x4_t scaleAdds1 = {0, (uint32)args.scaleX, (uint32)args.scaleX*2, (uint32)args.scaleX*3};
	uint32x4_t scaleAdds2 = {(uint32)args.scaleX*4, (uint32)args.scaleX*5, (uint32)args.scaleX*6, (uint32)args.scaleX*7};
	uint32x4_t scaleAdds3 = {(uint32)args.scaleX*8, (uint32)args.scaleX*9, (uint32)args.scaleX*10, (uint32)args.scaleX*11};
	uint32x4_t scaleAdds4 = {(uint32)args.scaleX*12, (uint32)args.scaleX*13, (uint32)args.scaleX*14, (uint32)args.scaleX*15};

	// Clip the bounds ahead of time (so we don't waste time checking if we are in bounds when
	// we are in the inner loop)
	int xCtrStart = 0, xCtrWidth = args.dstRect.width();
	if (args.xStart + xCtrWidth > args.destArea.w) {
		xCtrWidth = args.destArea.w - args.xStart;
	}
	if (args.xStart < 0) {
		xCtrStart = -args.xStart;
		args.xStart = 0;
	}
	int destY = args.yStart, yCtr = 0, srcYCtr = 0, scaleYCtr = 0, yCtrHeight = args.dstRect.height();
	if (Scale) yCtrHeight = args.dstRect.height();
	if (args.yStart < 0) {
		yCtr = -args.yStart;
		destY = 0;
		if (Scale) {
			scaleYCtr = yCtr * args.scaleY;
			srcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
		}
	}
	if (args.yStart + yCtrHeight > args.destArea.h) {
		yCtrHeight = args.destArea.h - args.yStart;
	}

	byte *destP = (byte *)args.destArea.getBasePtr(0, destY);
	const byte *srcP = (const byte *)args.src.getBasePtr(
	                       args.horizFlip ? args.srcArea.right - 16 : args.srcArea.left,
	                       args.vertFlip ? args.srcArea.bottom - 1 - yCtr : args.srcArea.top + yCtr);
	for (; yCtr < yCtrHeight; ++destY, ++yCtr, scaleYCtr += args.scaleY) {
		if (Scale) {
			// So here we update the srcYCtr differently due to this being for
			// scaling
			int newSrcYCtr = scaleYCtr / BITMAP::SCALE_THRESHOLD;
			if (srcYCtr != newSrcYCtr) {
				// Since the source yctr might not update every row of the destination, we have
				// to see if we are on a new row...
				int diffSrcYCtr = newSrcYCtr - srcYCtr;
				srcP += args.src.pitch * diffSrcYCtr;
				srcYCtr = newSrcYCtr;
			}
		}
		int xCtr = xCtrStart, destX = args.xStart, scaleXCtr = xCtrStart * args.scaleX;
		for (; xCtr + 16 < xCtrWidth; destX += 16, xCtr += 16) {
			byte *destPtr = &destP[destX];

			// Here we don't use the drawPixelSIMD function because 1bpp bitmaps in allegro
			// can't have any blending applied to them
			uint8x16_t destCols = vld1q_u8(destPtr);
			uint8x16_t srcCols = vld1q_u8(srcP + xDir * xCtr);
			if (Scale) {
				// If we are scaling, we have to set each pixel individually
				uint32x4_t indexes1 = vdupq_n_u32(scaleXCtr), indexes2 = vdupq_n_u32(scaleXCtr);
				uint32x4_t indexes3 = vdupq_n_u32(scaleXCtr), indexes4 = vdupq_n_u32(scaleXCtr);
				indexes1 = vshrq_n_u32(vaddq_u32(indexes1, scaleAdds1), BITMAP::SCALE_THRESHOLD_BITS);
				indexes2 = vshrq_n_u32(vaddq_u32(indexes2, scaleAdds2), BITMAP::SCALE_THRESHOLD_BITS);
				indexes3 = vshrq_n_u32(vaddq_u32(indexes3, scaleAdds3), BITMAP::SCALE_THRESHOLD_BITS);
				indexes4 = vshrq_n_u32(vaddq_u32(indexes4, scaleAdds4), BITMAP::SCALE_THRESHOLD_BITS);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes1, 0)], srcCols, 0);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes1, 1)], srcCols, 1);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes1, 2)], srcCols, 2);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes1, 3)], srcCols, 3);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes2, 0)], srcCols, 4);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes2, 1)], srcCols, 5);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes2, 2)], srcCols, 6);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes2, 3)], srcCols, 7);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes3, 0)], srcCols, 8);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes3, 1)], srcCols, 9);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes3, 2)], srcCols, 10);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes3, 3)], srcCols, 11);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes4, 0)], srcCols, 12);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes4, 1)], srcCols, 13);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes4, 2)], srcCols, 14);
				srcCols = vsetq_lane_u8(srcP[vgetq_lane_u32(indexes4, 3)], srcCols, 15);
				scaleXCtr += args.scaleX*16;
			}

			// Mask out transparent pixels
			uint8x16_t mask1 = args.skipTrans ? vceqq_u8(srcCols, transColors) : vmovq_n_u8(0);
			uint8x16_t final = vorrq_u8(vandq_u8(srcCols, vmvnq_u8(mask1)), vandq_u8(destCols, mask1));
			if (args.horizFlip) {
				final = vrev64q_u8(final);
				final = vcombine_u8(vget_high_u8(final), vget_low_u8(final));
			}
			vst1q_u8(destPtr, final);
		}
		// Get the last x values

		// Because we move in 16 pixel units, and horizFlip moves in 1, we have to move
		// 1 pixel past the last pixel we did not blit, meaning going forward 15 pixels.
		if (args.horizFlip) srcP += 15;
		for (; xCtr < xCtrWidth; ++destX, ++xCtr, scaleXCtr += args.scaleX) {
			const byte *srcCol = (const byte *)(srcP + xDir * xCtr);
			if (Scale) {
				srcCol = (const byte *)(srcP + scaleXCtr / BITMAP::SCALE_THRESHOLD);
			}
			// Check if this is a transparent color we should skip
			if (args.skipTrans && *srcCol == args.transColor)
				continue;

			byte *destVal = (byte *)&destP[destX];
			*destVal = *srcCol;
		}
		if (args.horizFlip) srcP -= 15; // Undo what we did up there
		destP += args.destArea.pitch; // Go to next row
		// Only advance the src row by 1 every time like this if we don't scale
		if (!Scale) srcP += args.vertFlip ? -args.src.pitch : args.src.pitch;
	}
}

}; // end of class DrawInnerImpl_NEON

template<bool Scale>
void BITMAP::drawNEON(DrawInnerArgs &args) {
	if (args.sameFormat) {
		switch (format.bytesPerPixel) {
		case 1: DrawInnerImpl_NEON::drawInner1Bpp<Scale>(args); break;
		case 2: DrawInnerImpl_NEON::drawInner2Bpp<Scale>(args); break;
		case 4: DrawInnerImpl_NEON::drawInner4BppWithConv<4, 4, Scale>(args); break;
		}
	} else if (format.bytesPerPixel == 4 && args.src.format.bytesPerPixel == 2) {
		DrawInnerImpl_NEON::drawInner4BppWithConv<4, 2, Scale>(args);
	} else if (format.bytesPerPixel == 2 && args.src.format.bytesPerPixel == 4) {
		DrawInnerImpl_NEON::drawInner4BppWithConv<2, 4, Scale>(args);
	}
}

template void BITMAP::drawNEON<false>(DrawInnerArgs &);
template void BITMAP::drawNEON<true>(DrawInnerArgs &);

} // namespace AGS3

#if !defined(__aarch64__) && !defined(__ARM_NEON)

#if defined(__clang__)
#pragma clang attribute pop
#elif defined(__GNUC__)
#pragma GCC pop_options
#endif

#endif // !defined(__aarch64__) && !defined(__ARM_NEON)

#endif // SCUMMVM_NEON