1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "bladerunner/obstacles.h"
#include "bladerunner/bladerunner.h"
#include "bladerunner/actor.h"
#include "bladerunner/savefile.h"
#include "bladerunner/scene.h" // for debug
#include "bladerunner/set.h"
#include "bladerunner/view.h"
#include "common/debug.h"
#define DISABLE_PATHFINDING 0
#define USE_PATHFINDING_EXPERIMENTAL_FIX_2 0 // Alternate Fix: Allows polygons merged on one point
#define WITHIN_TOLERANCE(a, b) (((a) - 0.009) < (b) && ((a) + 0.009) > (b))
namespace BladeRunner {
Obstacles::Obstacles(BladeRunnerEngine *vm) {
_vm = vm;
_polygons = new Polygon[kPolygonCount];
_polygonsBackup = new Polygon[kPolygonCount];
_path = new Vector2[kVertexCount];
clear();
}
Obstacles::~Obstacles() {
clear();
delete[] _polygons;
_polygons = nullptr;
delete[] _polygonsBackup;
_polygonsBackup = nullptr;
delete[] _path;
_path = nullptr;
}
void Obstacles::clear() {
for (int i = 0; i < kPolygonCount; ++i) {
_polygons[i].isPresent = false;
_polygons[i].verticeCount = 0;
for (int j = 0; j < kPolygonVertexCount; ++j) {
_polygons[i].vertices[j].x = 0.0f;
_polygons[i].vertices[j].y = 0.0f;
}
}
_pathSize = 0;
_backup = false;
_count = 0;
}
#define IN_RANGE(v, start, end) ((start) <= (v) && (v) <= (end))
/*
* This function is limited to finding intersections between
* horizontal and vertical lines!
*
* The original implementation is more general but obstacle
* polygons only consists of horizontal and vertical lines,
* and this is more numerically stable.
*/
bool Obstacles::lineLineIntersection(LineSegment a, LineSegment b, Vector2 *intersection) {
assert(a.start.x == a.end.x || a.start.y == a.end.y);
assert(b.start.x == b.end.x || b.start.y == b.end.y);
if (a.start.x > a.end.x) SWAP(a.start.x, a.end.x);
if (a.start.y > a.end.y) SWAP(a.start.y, a.end.y);
if (b.start.x > b.end.x) SWAP(b.start.x, b.end.x);
if (b.start.y > b.end.y) SWAP(b.start.y, b.end.y);
if (a.start.x == a.end.x && b.start.y == b.end.y && IN_RANGE(a.start.x, b.start.x, b.end.x) && IN_RANGE(b.start.y, a.start.y, a.end.y)) {
// A is vertical, B is horizontal
*intersection = Vector2(a.start.x, b.start.y);
return true;
}
if (a.start.y == a.end.y && b.start.x == b.end.x && IN_RANGE(a.start.y, b.start.y, b.end.y) && IN_RANGE(b.start.x, a.start.x, a.end.x)) {
// A is horizontal, B is vertical
*intersection = Vector2(b.start.x, a.start.y);
return true;
}
return false;
}
bool Obstacles::linePolygonIntersection(LineSegment lineA, VertexType lineAType, Polygon *polyB, Vector2 *intersectionPoint, int *intersectionIndex, int pathLengthSinceLastIntersection) {
bool hasIntersection = false;
float nearestIntersectionDistance = 0.0f;
for (int i = 0; i != polyB->verticeCount; ++i) {
LineSegment lineB; // An edge of the secondary polygon
lineB.start = polyB->vertices[i];
lineB.end = polyB->vertices[(i+1) % polyB->verticeCount];
VertexType lineBType = polyB->vertexType[i];
Vector2 newIntersectionPoint;
if (lineLineIntersection(lineA, lineB, &newIntersectionPoint)) {
// NOTE: An edge type (eg lineAType) is set by its start point vertex type.
// The end point of the edge is the next vertex of the polygon going clock-wise.
if ((lineAType == TOP_RIGHT && lineBType == TOP_LEFT)
|| (lineAType == BOTTOM_RIGHT && lineBType == TOP_RIGHT)
|| (lineAType == BOTTOM_LEFT && lineBType == BOTTOM_RIGHT)
|| (lineAType == TOP_LEFT && lineBType == BOTTOM_LEFT)
) {
// NOTE: pathLengthSinceLastIntersection is part of pathfinding fix 2
if ( (pathLengthSinceLastIntersection > 2)
|| ( (!(WITHIN_TOLERANCE(lineB.end.x, newIntersectionPoint.x) && WITHIN_TOLERANCE(lineB.end.y, newIntersectionPoint.y)))
&& (newIntersectionPoint != *intersectionPoint) )) {
float newIntersectionDistance = getLength(lineA.start.x, lineA.start.y, newIntersectionPoint.x, newIntersectionPoint.y);
// NOTE: We only want the *nearest* intersection point to the start of the line A
// We don't want the intersection point to be the end point of the line B (from secondary polygon),
// because in that case, switching to Polygon B (to make it primary) we'd get an "edge"
// from the intersection point to the end point of the line B (which was a vertex of Polygon B)
// which would result to an edge with the same start and end point, and thus duplicate vertices in the merged polygon.
//
// We do keep 0 length segments here from lineA start to the intersection point
// (which can happen when the polygons touch edges or corners)
// but those will be handled in the calling function.
if (!hasIntersection || newIntersectionDistance < nearestIntersectionDistance) {
hasIntersection = true;
nearestIntersectionDistance = newIntersectionDistance;
*intersectionPoint = newIntersectionPoint;
*intersectionIndex = i; // the index of the vertex for the start of the lineB edge (of Polygon B which will become primary)
}
}
}
}
}
return hasIntersection;
}
/*
* Polygons vertices are defined in clock-wise order
* starting at the top-most, left-most corner (eg. here B0).
*
* When merging two polygons, we start at the top-most, left-most vertex.
* The polygon with this vertex starts as the primary polygon.
* We follow the edges until we find an intersection with the secondary polygon,
* in which case we switch primary and secondary and continue following the new edges.
*
* Luckily the first two polygons added in RC01 (A, then B) are laid as as below,
* making an ideal test case.
*
* Merge order: (B0,B1) (B1,B2) (B2,J) (J,A2) (A2,A3) (A3,A0) (A0,I) (I,B0)
*
* 0,0 ---> x
* |
* | primary
* | B 0 ----- 1
* | | |
* | A 0 --I-- 1 |
* | | | | |
* | | 3 --J-- 2
* | | |
* | 3 ----- 2
* | secondary
* v y
*/
bool Obstacles::mergePolygons(Polygon &polyA, Polygon &polyB) {
bool flagDidMergePolygons = false;
Polygon polyMerged;
polyMerged.rect = merge(polyA.rect, polyB.rect);
Polygon *polyPrimary, *polySecondary;
if (polyA.rect.y0 < polyB.rect.y0 || (polyA.rect.y0 == polyB.rect.y0 && polyA.rect.x0 < polyB.rect.x0)) {
polyPrimary = &polyA;
polySecondary = &polyB;
} else {
polyPrimary = &polyB;
polySecondary = &polyA;
}
Vector2 intersectionPoint;
LineSegment polyLine;
bool flagAddVertexToVertexList = true;
bool flagDidFindIntersection = false;
int vertIndex = 0;
int pathLengthSinceLastIntersection = 0; // Part of pathfinding fix 2. It's only updated when enabling that fix, otherwise it is always zero (0).
Polygon *startingPolygon = polyPrimary;
int flagDone = false;
while (!flagDone) {
VertexType polyPrimaryType;
polyLine.start = flagDidFindIntersection ? intersectionPoint : polyPrimary->vertices[vertIndex];
polyLine.end = polyPrimary->vertices[(vertIndex + 1) % polyPrimary->verticeCount];
// TODO(madmoose): How does this work when adding a new intersection point?
// The intersection point "inherits" the vertex type of the now-primary
// (which was "secondary" before the intersection swap) polygon's vertex,
// which was the start of the edge that intersected with the former-primary (now secondary) polygon.
polyPrimaryType = polyPrimary->vertexType[vertIndex];
if (flagAddVertexToVertexList) {
#if USE_PATHFINDING_EXPERIMENTAL_FIX_2
assert(polyMerged.verticeCount < kPolygonVertexCount);
#else
// In some cases polygons will have only one intersection (touching corners) and because of that second SWAP never occurs,
// algorithm will stop only when the merged polygon is full.
if (polyMerged.verticeCount >= kPolygonVertexCount) {
flagDidMergePolygons = false;
break;
}
#endif
polyMerged.vertices[polyMerged.verticeCount] = polyLine.start;
polyMerged.vertexType[polyMerged.verticeCount] = polyPrimaryType;
++(polyMerged.verticeCount);
}
flagAddVertexToVertexList = true;
int polySecondaryIntersectionIndex = -1;
if (linePolygonIntersection(polyLine, polyPrimaryType, polySecondary, &intersectionPoint, &polySecondaryIntersectionIndex, pathLengthSinceLastIntersection)) {
if (WITHIN_TOLERANCE(intersectionPoint.x, polyLine.start.x) && WITHIN_TOLERANCE(intersectionPoint.y, polyLine.start.y)) {
// The start of the edge of the primary polygon is (very close to) the intersection point.
// This eg. does occur in RC02 (Set 16, Scene 79, chapter 1) (intersection point (x: -16.000000, y: 108303.968750))
// The code here ensures we keep the intersection point in the merged polygon (polyMerged)
// but *remove* the vertex that was the start of the edge (belonging to the primary polygon)
// However, unless the intersection point is exactly the same as the start of the line segment from the primary polygon,
// (which seems to practically be the case)
// this can *potentially* lead to slanted (so not strictly vertical or horizontal) lines in the merged polygon.
// TODO: Is there a case where we end up with slanted edges in the merged polygon?
flagAddVertexToVertexList = false;
// TODO: We don't check here for polyMerged.verticeCount > 0 before decrementing it,
// and this practically seems to not be an issue, but shouldn't we include this check just to be safe?
//
// TODO(madmoose): How would this work?
--(polyMerged.verticeCount);
} else {
// Obstacles::nop
}
vertIndex = polySecondaryIntersectionIndex;
flagDidFindIntersection = true;
SWAP(polyPrimary, polySecondary);
flagDidMergePolygons = true;
#if USE_PATHFINDING_EXPERIMENTAL_FIX_2
pathLengthSinceLastIntersection = 0;
#endif
} else {
vertIndex = (vertIndex + 1) % polyPrimary->verticeCount;
#if USE_PATHFINDING_EXPERIMENTAL_FIX_2
++pathLengthSinceLastIntersection;
#endif
flagDidFindIntersection = false;
}
if (polyPrimary->vertices[vertIndex] == startingPolygon->vertices[0]) {
flagDone = true;
}
}
if (flagDidMergePolygons) {
*startingPolygon = polyMerged;
startingPolygon->isPresent = true;
if (startingPolygon == &polyA) {
polyB.isPresent = false;
} else {
polyA.isPresent = false;
}
}
return flagDidMergePolygons;
}
void Obstacles::add(RectFloat rect) {
int polygonIndex = findEmptyPolygon();
if (polygonIndex < 0) {
return;
}
rect.expand(12.0f);
rect.trunc_2_decimals();
Polygon &poly = _polygons[polygonIndex];
poly.rect = rect;
poly.vertices[0] = Vector2(rect.x0, rect.y0);
poly.vertexType[0] = TOP_LEFT;
poly.vertices[1] = Vector2(rect.x1, rect.y0);
poly.vertexType[1] = TOP_RIGHT;
poly.vertices[2] = Vector2(rect.x1, rect.y1);
poly.vertexType[2] = BOTTOM_RIGHT;
poly.vertices[3] = Vector2(rect.x0, rect.y1);
poly.vertexType[3] = BOTTOM_LEFT;
poly.isPresent = true;
poly.verticeCount = 4;
restart:
for (int i = 0; i < kPolygonCount; ++i) {
Polygon &polyA = _polygons[i];
if (!polyA.isPresent) {
continue;
}
if (polyA.verticeCount == 0) {
continue;
}
for (int j = i+1; j < kPolygonCount; ++j) {
Polygon &polyB = _polygons[j];
if (!polyB.isPresent) {
continue;
}
if (polyB.verticeCount == 0) {
continue;
}
if (!overlaps(polyA.rect, polyB.rect)) {
continue;
}
if (mergePolygons(polyA, polyB)) {
goto restart;
}
}
}
}
int Obstacles::findEmptyPolygon() const {
for (int i = 0; i < kPolygonCount; ++i) {
if (!_polygons[i].isPresent) {
return i;
}
}
return -1;
}
float Obstacles::getLength(float x0, float z0, float x1, float z1) {
if (x0 == x1) {
return fabs(z1 - z0);
}
return fabs(x1 - x0);
}
#if DISABLE_PATHFINDING
bool Obstacles::findNextWaypoint(const Vector3 &from, const Vector3 &to, Vector3 *next) {
*next = to;
return true;
}
#else
bool Obstacles::findNextWaypoint(const Vector3 &from, const Vector3 &to, Vector3 *next) {
static int recursionLevel = 0;
static bool polygonVisited[kPolygonCount];
if (++recursionLevel == 1) {
clearPath();
for (int i = 0; i != kPolygonCount; ++i) {
polygonVisited[i] = false;
}
}
int polyIndex = -1;
int polyNearVertIndex = -1;
float polyNearDist = 0.0f;
Vector2 polyNearPos;
int polyFarVertIndex = -1;
float polyFarDist = 0.0f;
Vector2 polyFarPos;
for (int i = 0; i != kPolygonCount; ++i) {
Polygon &poly = _polygons[i];
if (!poly.isPresent || polygonVisited[i]) {
continue;
}
int nearVertIndex;
float nearDist;
Vector2 nearPos;
if (!findIntersectionNearest(i, from.xz(), to.xz(), &nearVertIndex, &nearDist, &nearPos)) {
continue;
}
int farVertIndex;
float farDist;
Vector2 farPos;
int hasFar = findIntersectionFarthest(i, from.xz(), to.xz(), &farVertIndex, &farDist, &farPos);
assert(hasFar);
if (polyIndex == -1 || nearDist < polyNearDist) {
polyNearDist = nearDist;
polyNearPos = nearPos;
polyFarDist = farDist;
polyFarPos = farPos;
polyIndex = i;
polyNearVertIndex = nearVertIndex;
polyFarVertIndex = farVertIndex;
}
}
if (polyIndex < 0) {
assert(_pathSize < kVertexCount);
_path[_pathSize++] = to.xz();
} else {
polygonVisited[polyIndex] = true;
if (polyNearDist == 0.0f && polyFarDist == 0.0f) {
assert(_pathSize < kVertexCount);
_path[_pathSize++] = polyNearPos;
} else {
Vector2 pathA[kMaxPathSize];
Vector2 pathB[kMaxPathSize];
bool pathABlocked;
bool pathBBlocked;
int pathASize = buildNegativePath(polyIndex, polyNearVertIndex, polyNearPos, polyFarVertIndex, polyFarPos, pathA, kMaxPathSize, &pathABlocked);
int pathBSize = buildPositivePath(polyIndex, polyNearVertIndex, polyNearPos, polyFarVertIndex, polyFarPos, pathB, kMaxPathSize, &pathBBlocked);
float pathATotalDistance = pathTotalDistance(pathA, pathASize, from.xz(), to.xz());
float pathBTotalDistance = pathTotalDistance(pathB, pathBSize, from.xz(), to.xz());
bool usePathA;
if (pathABlocked && !pathBBlocked) {
usePathA = false;
} else if (pathBBlocked && !pathABlocked) {
usePathA = true;
} else {
usePathA = pathATotalDistance <= pathBTotalDistance;
}
if (usePathA) {
assert(_pathSize + pathASize < kVertexCount);
for (int i = 0; i != pathASize; ++i) {
_path[_pathSize + i] = pathA[i];
}
_pathSize += pathASize;
} else {
assert(_pathSize + pathBSize < kVertexCount);
for (int i = 0; i != pathBSize; ++i) {
_path[_pathSize + i] = pathB[i];
}
_pathSize += pathBSize;
}
}
assert(_pathSize > 0);
Vector3 lastPathPos(_path[_pathSize - 1].x, from.y, _path[_pathSize - 1].y);
findNextWaypoint(lastPathPos, to, next);
}
if (--recursionLevel > 1) {
// NOTE: Basically this allows at most 1 level of recursion
return false;
}
return findFarthestAvailablePathVertex(_path, _pathSize, from, next);
}
#endif
bool Obstacles::findIntersectionNearest(int polygonIndex, Vector2 from, Vector2 to,
int *outVertexIndex, float *outDistance, Vector2 *out) const
{
float minDistance = 0.0f;
Vector2 minIntersection;
int minVertexIndex = -1;
bool hasDistance = false;
for (int i = 0; i < _polygons[polygonIndex].verticeCount; ++i) {
int nextIndex = (i + 1) % _polygons[polygonIndex].verticeCount;
Vector2 *vertices = _polygons[polygonIndex].vertices;
Vector2 intersection;
bool intersects = lineIntersection(from, to, vertices[i], vertices[nextIndex], &intersection);
if (intersects) {
float distance2 = distance(from, intersection);
if (!hasDistance || distance2 < minDistance) {
minDistance = distance2;
minIntersection = intersection;
minVertexIndex = i;
hasDistance = true;
}
}
}
*outDistance = minDistance;
*outVertexIndex = minVertexIndex;
*out = minIntersection;
return minVertexIndex != -1;
}
bool Obstacles::findIntersectionFarthest(int polygonIndex, Vector2 from, Vector2 to,
int *outVertexIndex, float *outDistance, Vector2 *out) const
{
float maxDistance = 0.0f;
Vector2 maxIntersection;
int maxVertexIndex = -1;
bool hasDistance = false;
for (int i = 0; i < _polygons[polygonIndex].verticeCount; ++i) {
int nextIndex = (i + 1) % _polygons[polygonIndex].verticeCount;
Vector2 *vertices = _polygons[polygonIndex].vertices;
Vector2 intersection;
bool intersects = lineIntersection(from, to, vertices[i], vertices[nextIndex], &intersection);
if (intersects) {
float distance2 = distance(from, intersection);
if (!hasDistance || distance2 > maxDistance) {
maxDistance = distance2;
maxIntersection = intersection;
maxVertexIndex = i;
hasDistance = true;
}
}
}
*outDistance = maxDistance;
*outVertexIndex = maxVertexIndex;
*out = maxIntersection;
return maxVertexIndex != -1;
}
float Obstacles::pathTotalDistance(const Vector2 *path, int pathSize, Vector2 from, Vector2 to) const {
// Yes, 'to' and 'from' are ignored.
float totalDistance = 0.0f;
for (int i = 0; i != pathSize - 1; ++i) {
totalDistance += distance(path[i], path[i+1]);
}
return totalDistance;
}
bool Obstacles::findPolygonVerticeByXZ(int *polygonIndex, int *verticeIndex, int *verticeCount, float x, float z) const {
*polygonIndex = -1;
*verticeIndex = -1;
*verticeCount = -1;
for (int i = 0; i != kPolygonCount; ++i) {
if (!_polygons[i].isPresent || _polygons[i].verticeCount == 0) {
continue;
}
for (int j = 0; j != _polygons[i].verticeCount; ++j) {
if (_polygons[i].vertices[j].x == x && _polygons[i].vertices[j].y == z) {
*polygonIndex = i;
*verticeIndex = j;
*verticeCount = _polygons[i].verticeCount;
return true;
}
}
}
return false;
}
bool Obstacles::findPolygonVerticeByXZWithinTolerance(float x, float z, int *polygonIndex, int *verticeIndex, int startSearchFromPolygonIdx) const {
*polygonIndex = -1;
*verticeIndex = -1;
// for (int i = 0; i != kPolygonCount; ++i) {
for (int countUp = 0, i = startSearchFromPolygonIdx; countUp != kPolygonCount; ++countUp, ++i) {
i = i % kPolygonCount; // we want to circle around to go through all polygons
if (!_polygons[i].isPresent || _polygons[i].verticeCount == 0) {
continue;
}
for (int j = 0; j != _polygons[i].verticeCount; ++j) {
if (WITHIN_TOLERANCE(_polygons[i].vertices[j].x, x) && WITHIN_TOLERANCE(_polygons[i].vertices[j].y, z)) {
*polygonIndex = i;
*verticeIndex = j;
return true;
}
}
}
return false;
}
void Obstacles::clearPath() {
_pathSize = 0;
}
int Obstacles::buildNegativePath(int polyIndex, int vertStartIndex, Vector2 startPos, int vertEndIndex, Vector2 endPos, Vector2 *path, int pathCapacity, bool *pathBlocked) {
int pathSize = 0;
*pathBlocked = false;
Polygon *poly = &_polygons[polyIndex];
/* Add start position to path */
if (_vm->_scene->_set->findWalkbox(startPos.x, startPos.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = startPos;
int i = vertStartIndex;
/* Add polygon vertices in negative iteration order */
while (true) {
Vector2 v = poly->vertices[i];
if (_vm->_scene->_set->findWalkbox(v.x, v.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = v;
i = (i + poly->verticeCount - 1) % poly->verticeCount;
if (i == vertEndIndex) {
break;
}
}
/* Add end position to path */
if (_vm->_scene->_set->findWalkbox(endPos.x, endPos.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = endPos;
return pathSize;
}
int Obstacles::buildPositivePath(int polyIndex, int vertStartIndex, Vector2 startPos, int vertEndIndex, Vector2 endPos, Vector2 *path, int pathCapacity, bool *pathBlocked) {
int pathSize = 0;
*pathBlocked = false;
Polygon *poly = &_polygons[polyIndex];
/* Add start position to path */
if (_vm->_scene->_set->findWalkbox(startPos.x, startPos.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = startPos;
int i = (vertStartIndex + 1) % poly->verticeCount;
/* Add polygon vertices in positive iteration order */
while (true) {
Vector2 v = poly->vertices[i];
if (_vm->_scene->_set->findWalkbox(v.x, v.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = v;
if (i == vertEndIndex) {
break;
}
i = (i + 1) % poly->verticeCount;
}
/* Add end position to path */
if (_vm->_scene->_set->findWalkbox(endPos.x, endPos.y) == -1) {
*pathBlocked = true;
}
assert(pathSize < pathCapacity);
path[pathSize++] = endPos;
return pathSize;
}
bool Obstacles::verticesCanIntersect(int lineType0, int lineType1, float x0, float y0, float x1, float y1) const {
if (lineType0 == TOP_LEFT && lineType1 == TOP_RIGHT) {
if (x0 > x1 && y0 < y1) return true;
}
if (lineType0 == TOP_RIGHT && lineType1 == BOTTOM_RIGHT) {
if (x0 > x1 && y0 > y1) return true;
}
if (lineType0 == BOTTOM_RIGHT && lineType1 == BOTTOM_LEFT) {
if (x0 < x1 && y0 > y1) return true;
}
if (lineType0 == BOTTOM_LEFT && lineType1 == TOP_LEFT) {
if (x0 < x1 && y0 < y1) return true;
}
if (lineType0 == TOP_RIGHT && lineType1 == TOP_LEFT) {
if (x0 > x1 || y0 < y1) return true;
}
if (lineType0 == BOTTOM_RIGHT && lineType1 == TOP_RIGHT) {
if (x0 > x1 || y0 > y1) return true;
}
if (lineType0 == BOTTOM_LEFT && lineType1 == BOTTOM_RIGHT) {
if (x0 < x1 || y0 > y1) return true;
}
if (lineType0 == TOP_LEFT && lineType1 == BOTTOM_LEFT) {
if (x0 < x1 || y0 < y1) return true;
}
return false;
}
bool Obstacles::findFarthestAvailablePathVertex(Vector2 *path, int pathSize, Vector3 start, Vector3 *next) const {
if (pathSize == 0) {
*next = start;
return false;
}
int vertexTypeStart = -1;
int vertexTypeStartPrev = -1;
int polygonIndexStart = -1;
int vertexIndexStart = -1;
bool startOnPolygon = findPolygonVerticeByXZWithinTolerance(start.x, start.z, &polygonIndexStart, &vertexIndexStart, 0);
if (startOnPolygon) {
int vertexIndexStartPrev = (vertexIndexStart - 1 + _polygons[polygonIndexStart].verticeCount) % _polygons[polygonIndexStart].verticeCount;
vertexTypeStart = _polygons[polygonIndexStart].vertexType[vertexIndexStart];
vertexTypeStartPrev = _polygons[polygonIndexStart].vertexType[vertexIndexStartPrev];
}
signed int farthestPathIndex = -1;
for (int pathVertexIdx = 0; pathVertexIdx < pathSize; ++pathVertexIdx) {
bool foundVertexNeighbor = false;
int polygonIndexPath = -1;
int vertexIndexPath = -1;
bool pathVertexOnPolygon = findPolygonVerticeByXZWithinTolerance(path[pathVertexIdx].x, path[pathVertexIdx].y, &polygonIndexPath, &vertexIndexPath, 0) == 1;
//start and current path vertices are on same polygon and are next to each other
if (pathVertexOnPolygon && polygonIndexStart == polygonIndexPath) {
int vertexIndexStartPrev = (vertexIndexStart - 1 + _polygons[polygonIndexPath].verticeCount) % _polygons[polygonIndexPath].verticeCount;
int vertexIndexStartNext = (vertexIndexStart + 1 ) % _polygons[polygonIndexPath].verticeCount;
if (vertexIndexPath == vertexIndexStartNext || vertexIndexPath == vertexIndexStartPrev || vertexIndexPath == vertexIndexStart) {
foundVertexNeighbor = true;
}
}
// neighboring vertices are always available
if (foundVertexNeighbor) {
farthestPathIndex = pathVertexIdx;
continue;
}
bool pathVertexAvailable = true;
for (int currentPolygonIdx = 0; currentPolygonIdx < kPolygonCount && pathVertexAvailable; ++currentPolygonIdx) {
Polygon *polygon = &_polygons[currentPolygonIdx];
if (!polygon->isPresent || polygon->verticeCount == 0) {
continue;
}
for (int polygonVertexIdx = 0; polygonVertexIdx < polygon->verticeCount && pathVertexAvailable; ++polygonVertexIdx) {
int polygonVertexNextIdx = (polygonVertexIdx + 1) % polygon->verticeCount;
// check intersection between start -> path and polygon edge
Vector2 intersection;
if (!lineIntersection(Vector2(start.x, start.z), path[pathVertexIdx], polygon->vertices[polygonVertexIdx], polygon->vertices[polygonVertexNextIdx], &intersection)) {
continue;
}
// intersection has to be at end of one of these points (either on this polygon or on the path or at start)
if (!(
(WITHIN_TOLERANCE(intersection.x, start.x) && WITHIN_TOLERANCE(intersection.y, start.z) )
|| (WITHIN_TOLERANCE(intersection.x, path[pathVertexIdx].x) && WITHIN_TOLERANCE(intersection.y, path[pathVertexIdx].y) )
|| (WITHIN_TOLERANCE(intersection.x, polygon->vertices[polygonVertexIdx].x) && WITHIN_TOLERANCE(intersection.y, polygon->vertices[polygonVertexIdx].y) )
|| (WITHIN_TOLERANCE(intersection.x, polygon->vertices[polygonVertexNextIdx].x) && WITHIN_TOLERANCE(intersection.y, polygon->vertices[polygonVertexNextIdx].y))
)) {
pathVertexAvailable = false;
break;
}
int polygonIndexIntersection = -1;
int vertexIndexIntersection = -1;
if (findPolygonVerticeByXZWithinTolerance(intersection.x, intersection.y, &polygonIndexIntersection, &vertexIndexIntersection, currentPolygonIdx)) {
// Intersection has to be vertex only on current polygon
// Part of pathfinding fix 2 (dealing with merge on only one edge point)
// but also speeds up process:
// we start (a cyclical) searching in Polygons array
// beginning from the current polygon index
assert(polygonIndexIntersection == currentPolygonIdx);
if (verticesCanIntersect(vertexTypeStartPrev, vertexTypeStart, start.x, start.z, path[pathVertexIdx].x, path[pathVertexIdx].y)) {
pathVertexAvailable = false;
break;
}
if ((currentPolygonIdx == polygonIndexPath && vertexIndexIntersection == vertexIndexPath)
|| (currentPolygonIdx == polygonIndexStart && vertexIndexIntersection == vertexIndexStart)
) {
continue;
}
int vertexIndexIntersectionprev = (vertexIndexIntersection - 1 + _polygons[polygonIndexIntersection].verticeCount ) % _polygons[polygonIndexIntersection].verticeCount;
if (verticesCanIntersect(_polygons[polygonIndexIntersection].vertexType[vertexIndexIntersectionprev], _polygons[polygonIndexIntersection].vertexType[vertexIndexIntersection], intersection.x, intersection.y, path[pathVertexIdx].x, path[pathVertexIdx].y)) {
pathVertexAvailable = false;
break;
}
} else {
bool startIntersectionWithinTolerance = false;
if (WITHIN_TOLERANCE(intersection.x, start.x)
&& WITHIN_TOLERANCE(intersection.y, start.z)
) {
startIntersectionWithinTolerance = true;
}
if (currentPolygonIdx == polygonIndexStart || startIntersectionWithinTolerance) {
if (polygonIndexStart >= 0 || !startIntersectionWithinTolerance) {
pathVertexAvailable = false;
break;
}
int polygonVertexType = polygon->vertexType[polygonVertexIdx];
if ((polygonVertexType == TOP_LEFT && intersection.y < path[pathVertexIdx].y)
|| (polygonVertexType == TOP_RIGHT && intersection.x > path[pathVertexIdx].x)
|| (polygonVertexType == BOTTOM_RIGHT && intersection.y > path[pathVertexIdx].y)
|| (polygonVertexType == BOTTOM_LEFT && intersection.x < path[pathVertexIdx].x)
) {
pathVertexAvailable = false;
break;
}
}
}
}
}
if (pathVertexAvailable) {
farthestPathIndex = pathVertexIdx;
}
}
if (farthestPathIndex == -1) {
*next = start;
return false;
}
next->x = path[farthestPathIndex].x;
next->z = path[farthestPathIndex].y;
bool walkboxFound;
float walkboxAltitude = _vm->_scene->_set->getAltitudeAtXZ(next->x, next->z, &walkboxFound);
if (walkboxFound) {
next->y = walkboxAltitude;
return true;
} else {
next->y = start.y;
return false;
}
}
void Obstacles::backup() {
for (int i = 0; i != kPolygonCount; ++i) {
_polygonsBackup[i].isPresent = false;
}
int count = 0;
for (int i = 0; i != kPolygonCount; ++i) {
if (_polygons[i].isPresent) {
_polygonsBackup[count] = _polygons[i];
++count;
}
}
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[count];
}
_count = count;
_backup = true;
}
void Obstacles::restore() {
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i].isPresent = false;
}
for (int i = 0; i != kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[i];
}
}
void Obstacles::save(SaveFileWriteStream &f) {
f.writeBool(_backup);
f.writeInt(_count);
for (int i = 0; i < _count; ++i) {
Polygon &p = _polygonsBackup[i];
f.writeBool(p.isPresent);
f.writeInt(p.verticeCount);
f.writeFloat(p.rect.x0);
f.writeFloat(p.rect.y0);
f.writeFloat(p.rect.x1);
f.writeFloat(p.rect.y1);
for (int j = 0; j < kPolygonVertexCount; ++j) {
f.writeVector2(p.vertices[j]);
}
for (int j = 0; j < kPolygonVertexCount; ++j) {
f.writeInt(p.vertexType[j]);
}
}
for (int i = 0; i < kVertexCount; ++i) {
f.writeVector2(_path[i]);
}
f.writeInt(_pathSize);
}
void Obstacles::load(SaveFileReadStream &f) {
for (int i = 0; i < kPolygonCount; ++i) {
_polygons[i].isPresent = false;
_polygons[i].verticeCount = 0;
_polygonsBackup[i].isPresent = false;
_polygonsBackup[i].verticeCount = 0;
}
_backup = f.readBool();
_count = f.readInt();
for (int i = 0; i < _count; ++i) {
Polygon &p = _polygonsBackup[i];
p.isPresent = f.readBool();
p.verticeCount = f.readInt();
p.rect.x0 = f.readFloat();
p.rect.y0 = f.readFloat();
p.rect.x1 = f.readFloat();
p.rect.y1 = f.readFloat();
for (int j = 0; j < kPolygonVertexCount; ++j) {
p.vertices[j] = f.readVector2();
}
for (int j = 0; j < kPolygonVertexCount; ++j) {
p.vertexType[j] = (VertexType)f.readInt();
}
}
for (int i = 0; i < kPolygonCount; ++i) {
_polygons[i] = _polygonsBackup[i];
}
for (int i = 0; i < kVertexCount; ++i) {
_path[i] = f.readVector2();
}
_pathSize = f.readInt();
}
// This is used when debugger is set to draw obstacles
void Obstacles::draw() {
float y = _vm->_playerActor->getY();
for (int i = 0; i != kPolygonCount; ++i) {
if (!_polygons[i].isPresent) {
continue;
}
Vector3 p0 = _vm->_view->calculateScreenPosition(Vector3(
_polygons[i].vertices[_polygons[i].verticeCount - 1].x,
y,
_polygons[i].vertices[_polygons[i].verticeCount - 1].y
));
for (int j = 0; j != _polygons[i].verticeCount; ++j) {
Vector3 p1 = _vm->_view->calculateScreenPosition(Vector3(
_polygons[i].vertices[j].x,
y,
_polygons[i].vertices[j].y
));
_vm->_surfaceFront.drawLine(p0.x, p0.y, p1.x, p1.y, _vm->_surfaceFront.format.RGBToColor(255, 255, 255));
p0 = p1;
}
}
// draw actor's box - only for the player (McCoy)
{
Vector3 playerPos = _vm->_playerActor->getXYZ();
Vector3 p0 = _vm->_view->calculateScreenPosition(playerPos + Vector3(-12.0f, 0.0f, -12.0f));
Vector3 p1 = _vm->_view->calculateScreenPosition(playerPos + Vector3( 12.0f, 0.0f, -12.0f));
Vector3 p2 = _vm->_view->calculateScreenPosition(playerPos + Vector3( 12.0f, 0.0f, 12.0f));
Vector3 p3 = _vm->_view->calculateScreenPosition(playerPos + Vector3(-12.0f, 0.0f, 12.0f));
_vm->_surfaceFront.drawLine(p0.x, p0.y, p1.x, p1.y, _vm->_surfaceFront.format.RGBToColor(255, 0, 0));
_vm->_surfaceFront.drawLine(p1.x, p1.y, p2.x, p2.y, _vm->_surfaceFront.format.RGBToColor(255, 0, 0));
_vm->_surfaceFront.drawLine(p2.x, p2.y, p3.x, p3.y, _vm->_surfaceFront.format.RGBToColor(255, 0, 0));
_vm->_surfaceFront.drawLine(p3.x, p3.y, p0.x, p0.y, _vm->_surfaceFront.format.RGBToColor(255, 0, 0));
}
// draw path along polygons
for (int i = 1; i < _pathSize; ++i) {
Vector3 p0 = _vm->_view->calculateScreenPosition(Vector3(_path[i - 1].x, y, _path[i - 1].y));
Vector3 p1 = _vm->_view->calculateScreenPosition(Vector3(_path[i].x, y, _path[i].y));
_vm->_surfaceFront.drawLine(p0.x, p0.y, p1.x, p1.y, _vm->_surfaceFront.format.RGBToColor(255, 0, 0));
}
// draw "next" vertex
{
//TODO
}
}
} // End of namespace BladeRunner
|