1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "dgStdafx.h"
#include "dgStack.h"
#include "dgGoogol.h"
#include "dgSmallDeterminant.h"
#include "dgDelaunayTetrahedralization.h"
dgDelaunayTetrahedralization::dgDelaunayTetrahedralization(
dgMemoryAllocator *const allocator, const dgFloat64 *const vertexCloud,
dgInt32 count, dgInt32 strideInByte, dgFloat64 distTol) :
dgConvexHull4d(allocator) {
dgStack<dgBigVector> pool(count);
dgBigVector *const points = &pool[0];
dgInt32 stride = dgInt32(strideInByte / sizeof(dgFloat64));
for (dgInt32 i = 0; i < count; i++) {
volatile float x = float(vertexCloud[i * stride + 0]);
volatile float y = float(vertexCloud[i * stride + 1]);
volatile float z = float(vertexCloud[i * stride + 2]);
points[i] = dgBigVector(x, y, z, x * x + y * y + z * z);
}
dgInt32 oldCount = count;
BuildHull(allocator, &pool[0], count, distTol);
#if 1
// if ((oldCount > m_count) && (m_count >= 4)) {
if (oldCount > m_count) {
// this is probably a regular convex solid, which will have a zero volume hull
// add the rest of the points by incremental insertion with small perturbation
dgInt32 hullCount = m_count;
for (dgInt32 i = 0; i < count; i++) {
bool inHull = false;
const dgHullVector *const hullPoints = &m_points[0];
for (dgInt32 j = 0; j < hullCount; j++) {
if (hullPoints[j].m_index == i) {
inHull = true;
break;
}
}
if (!inHull) {
dgBigVector q(points[i]);
dgInt32 index = AddVertex(q);
if (index == -1) {
q.m_x += dgFloat64(1.0e-3f);
q.m_y += dgFloat64(1.0e-3f);
q.m_z += dgFloat64(1.0e-3f);
index = AddVertex(q);
NEWTON_ASSERT(index != -1);
}
NEWTON_ASSERT(index != -1);
// m_points[index] = points[i];
m_points[index].m_index = i;
}
}
}
#else
if (oldCount > m_count) {
// this is probably a regular convex solid, which will have a zero volume hull
// perturbate a point and try again
dgBigVector p(points[0]);
points[0].m_x += dgFloat64(1.0e-0f);
points[0].m_y += dgFloat64(1.0e-0f);
points[0].m_z += dgFloat64(1.0e-0f);
points[0].m_w = points[0].m_x * points[0].m_x + points[0].m_y * points[0].m_y + points[0].m_z * points[0].m_z;
BuildHull(allocator, &pool[0], oldCount, distTol);
NEWTON_ASSERT(oldCount == m_count);
// restore the old point
//points[0].m_w = points[0].m_x * points[0].m_x + points[0].m_y * points[0].m_y + points[0].m_z * points[0].m_z;
}
#endif
#ifdef _DEBUG
SortVertexArray();
#endif
}
dgDelaunayTetrahedralization::~dgDelaunayTetrahedralization() {
}
dgInt32 dgDelaunayTetrahedralization::AddVertex(const dgBigVector &vertex) {
dgBigVector p(vertex);
p.m_w = p % p;
dgInt32 index = dgConvexHull4d::AddVertex(p);
return index;
}
#ifdef _DEBUG
dgInt32 dgDelaunayTetrahedralization::CompareVertexByIndex(
const dgHullVector *const A, const dgHullVector *const B,
void *const context) {
if (A->m_index < B->m_index) {
return -1;
} else if (A->m_index > B->m_index) {
return 1;
}
return 0;
}
void dgDelaunayTetrahedralization::SortVertexArray() {
dgHullVector *const points = &m_points[0];
for (dgListNode *node = GetFirst(); node; node = node->GetNext()) {
dgConvexHull4dTetraherum *const tetra = &node->GetInfo();
for (dgInt32 i = 0; i < 4; i++) {
dgConvexHull4dTetraherum::dgTetrahedrumFace &face = tetra->m_faces[i];
dgInt32 index = face.m_otherVertex;
face.m_otherVertex = points[index].m_index;
for (dgInt32 j = 0; j < 3; j++) {
dgInt32 ptindex = face.m_index[j];
face.m_index[j] = points[ptindex].m_index;
}
}
}
dgSort(points, m_count, CompareVertexByIndex);
}
#endif
void dgDelaunayTetrahedralization::RemoveUpperHull() {
dgListNode *nextNode = NULL;
// const dgHullVector* const points = &m_points[0];
for (dgListNode *node = GetFirst(); node; node = nextNode) {
nextNode = node->GetNext();
dgConvexHull4dTetraherum *const tetra = &node->GetInfo();
tetra->SetMark(0);
// const dgBigVector &p0 = points[tetra->m_faces[0].m_index[0]];
// const dgBigVector &p1 = points[tetra->m_faces[0].m_index[1]];
// const dgBigVector &p2 = points[tetra->m_faces[0].m_index[2]];
// const dgBigVector &p3 = points[tetra->m_faces[0].m_otherVertex];
// dgFloat64 w = GetTetraVolume (p0, p1, p2, p3);
dgFloat64 w = GetTetraVolume(tetra);
if (w >= dgFloat64(0.0f)) {
DeleteFace(node);
}
}
}
void dgDelaunayTetrahedralization::DeleteFace(dgListNode *const node) {
dgConvexHull4dTetraherum *const tetra = &node->GetInfo();
for (dgInt32 i = 0; i < 4; i++) {
dgListNode *const twinNode = tetra->m_faces[i].m_twin;
if (twinNode) {
dgConvexHull4dTetraherum *const twinTetra = &twinNode->GetInfo();
for (dgInt32 j = 0; j < 4; j++) {
if (twinTetra->m_faces[j].m_twin == node) {
twinTetra->m_faces[j].m_twin = NULL;
break;
}
}
}
}
dgConvexHull4d::DeleteFace(node);
}
//dgFloat64 dgDelaunayTetrahedralization::GetTetraVolume (const dgBigVector& p0, const dgBigVector& p1, const dgBigVector& p2, const dgBigVector& p3) const
dgFloat64 dgDelaunayTetrahedralization::GetTetraVolume(
const dgConvexHull4dTetraherum *const tetra) const {
// dgBigVector p1p0 (p1.Sub4(p0));
// dgBigVector p2p0 (p2.Sub4(p0));
// dgBigVector p3p0 (p3.Sub4(p0));
// dgBigVector normal (p1p0.CrossProduct4 (p2p0, p3p0));
// dgFloat64 det = normal.m_w;
const dgHullVector *const points = &m_points[0];
const dgBigVector &p0 = points[tetra->m_faces[0].m_index[0]];
const dgBigVector &p1 = points[tetra->m_faces[0].m_index[1]];
const dgBigVector &p2 = points[tetra->m_faces[0].m_index[2]];
const dgBigVector &p3 = points[tetra->m_faces[0].m_otherVertex];
dgFloat64 matrix[3][3];
for (dgInt32 i = 0; i < 3; i++) {
matrix[0][i] = p2[i] - p0[i];
matrix[1][i] = p1[i] - p0[i];
matrix[2][i] = p3[i] - p0[i];
}
dgFloat64 error;
dgFloat64 det = Determinant3x3(matrix, &error);
dgFloat64 precision = dgFloat64(1.0f) / dgFloat64(1 << 24);
dgFloat64 errbound = error * precision;
if (fabs(det) > errbound) {
return det;
}
dgGoogol exactMatrix[3][3];
for (dgInt32 i = 0; i < 3; i++) {
exactMatrix[0][i] = dgGoogol(p2[i]) - dgGoogol(p0[i]);
exactMatrix[1][i] = dgGoogol(p1[i]) - dgGoogol(p0[i]);
exactMatrix[2][i] = dgGoogol(p3[i]) - dgGoogol(p0[i]);
}
dgGoogol exactDet(Determinant3x3(exactMatrix));
det = exactDet.GetAproximateValue();
return det;
}
|