File: dgIntersections.cpp

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (706 lines) | stat: -rw-r--r-- 23,540 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
 *
 * This software is provided 'as-is', without any express or implied
 * warranty. In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 *
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 *
 * 3. This notice may not be removed or altered from any source distribution.
 */

#include "dgStdafx.h"
#include "dgMemory.h"
#include "dgGoogol.h"
#include "dgIntersections.h"

#define USE_FLOAT_VERSION



#define DG_RAY_TOL_ERROR (dgFloat32 (-1.0e-3f))
#define DG_RAY_TOL_ADAPTIVE_ERROR (dgFloat32 (1.0e-1f))


dgFastRayTest::dgFastRayTest(const dgVector &l0, const dgVector &l1) :
	m_p0(l0), m_p1(l1), m_diff(l1 - l0), m_minT(dgFloat32(0.0f),
	        dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f)), m_maxT(
	            dgFloat32(1.0f), dgFloat32(1.0f), dgFloat32(1.0f), dgFloat32(1.0f)),
	m_zero(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f)) {
	m_isParallel[0] =
	    (dgAbsf(m_diff.m_x) > dgFloat32(1.0e-8f)) ? 0 : dgInt32(0xffffffff);
	m_isParallel[1] =
	    (dgAbsf(m_diff.m_y) > dgFloat32(1.0e-8f)) ? 0 : dgInt32(0xffffffff);
	m_isParallel[2] =
	    (dgAbsf(m_diff.m_z) > dgFloat32(1.0e-8f)) ? 0 : dgInt32(0xffffffff);
	m_isParallel[3] = 0;

	m_dpInv.m_x =
	    (!m_isParallel[0]) ? (dgFloat32(1.0f) / m_diff.m_x) : dgFloat32(1.0e20f);
	m_dpInv.m_y =
	    (!m_isParallel[1]) ? (dgFloat32(1.0f) / m_diff.m_y) : dgFloat32(1.0e20f);
	m_dpInv.m_z =
	    (!m_isParallel[2]) ? (dgFloat32(1.0f) / m_diff.m_z) : dgFloat32(1.0e20f);
	m_dpInv.m_w = dgFloat32(0.0f);
	m_dpBaseInv = m_dpInv;

//	m_ray_xxx = dgVector (m_diff.m_x, m_diff.m_x, m_diff.m_x, dgFloat32 (0.0f));
//	m_ray_yyy = dgVector (m_diff.m_y, m_diff.m_y, m_diff.m_y, dgFloat32 (0.0f));
//	m_ray_zzz = dgVector (m_diff.m_z, m_diff.m_z, m_diff.m_z, dgFloat32 (0.0f));

	m_ray_xxxx = dgVector(m_diff.m_x, m_diff.m_x, m_diff.m_x, m_diff.m_x);
	m_ray_yyyy = dgVector(m_diff.m_y, m_diff.m_y, m_diff.m_y, m_diff.m_y);
	m_ray_zzzz = dgVector(m_diff.m_z, m_diff.m_z, m_diff.m_z, m_diff.m_z);

	dgFloat32 mag = dgSqrt(m_diff % m_diff);
	m_dirError = -dgFloat32(0.0175f) * mag;
	m_magRayTest = GetMax(mag, dgFloat32(1.0f));
}

dgInt32 dgFastRayTest::BoxTestSimd(const dgVector &minBox,
                                   const dgVector &maxBox) const {
#ifdef DG_BUILD_SIMD_CODE
//	dgInt32 isParallel;

//	simd_type t0;
//	simd_type t1;
//	simd_type tt0;
//	simd_type tt1;
//	simd_type test;
//	simd_type paralletTest;

	simd_type tt0 =
	    simd_and_v(simd_or_v(simd_cmple_v((simd_type &)m_p0, (simd_type &)minBox), simd_cmpge_v((simd_type &)m_p0, (simd_type &)maxBox)), (simd_type &)m_isParallel);
	tt0 = simd_or_v(tt0, simd_move_hl_v(tt0, tt0));

//	dgFloatSign isParallel;
//	simd_store_s(simd_or_v (tt0, simd_permut_v (tt0, tt0, PURMUT_MASK(3, 2, 1, 1))), &isParallel.m_fVal);
//	if (isParallel.m_integer.m_iVal) {
	if (simd_store_is(simd_or_v(tt0, simd_permut_v(tt0, tt0, PURMUT_MASK(3, 2, 1, 1))))) {
		return 0;
	}

	tt0 =
	    simd_mul_v(simd_sub_v((simd_type &)minBox, (simd_type &)m_p0), (simd_type &)m_dpInv);
	simd_type tt1 =
	    simd_mul_v(simd_sub_v((simd_type &)maxBox, (simd_type &)m_p0), (simd_type &)m_dpInv);

	simd_type t0 = simd_max_v(simd_min_v(tt0, tt1), (simd_type &)m_minT);
	simd_type t1 = simd_min_v(simd_max_v(tt0, tt1), (simd_type &)m_maxT);

	t0 = simd_max_v(t0, simd_permut_v(t0, t0, PURMUT_MASK(3, 2, 1, 2)));
	t1 = simd_min_v(t1, simd_permut_v(t1, t1, PURMUT_MASK(3, 2, 1, 2)));

	t0 = simd_max_s(t0, simd_permut_v(t0, t0, PURMUT_MASK(3, 2, 1, 1)));
	t1 = simd_min_s(t1, simd_permut_v(t1, t1, PURMUT_MASK(3, 2, 1, 1)));

//	simd_store_s(simd_cmple_s(t0, t1), &isParallel.m_fVal);
//	return isParallel.m_integer.m_iVal;
	return simd_store_is(simd_cmple_s(t0, t1));
#else
	return 0;
#endif
}

dgInt32 dgFastRayTest::BoxTest(const dgVector &minBox,
                               const dgVector &maxBox) const {
	dgFloat32 tmin = 0.0f;
	dgFloat32 tmax = 1.0f;

	for (dgInt32 i = 0; i < 3; i++) {
		if (m_isParallel[i]) {
			if (m_p0[i] <= minBox[i] || m_p0[i] >= maxBox[i]) {
				return 0;
			}
		} else {
			dgFloat32 t1 = (minBox[i] - m_p0[i]) * m_dpInv[i];
			dgFloat32 t2 = (maxBox[i] - m_p0[i]) * m_dpInv[i];

			if (t1 > t2) {
				Swap(t1, t2);
			}
			if (t1 > tmin) {
				tmin = t1;
			}
			if (t2 < tmax) {
				tmax = t2;
			}
			if (tmin > tmax) {
				return 0;
			}
		}
	}
	return 0xffffff;
}

dgFloat32 dgFastRayTest::PolygonIntersectSimd(const dgVector &normal,
        const dgFloat32 *const polygon, dgInt32 strideInBytes,
        const dgInt32 *const indexArray, dgInt32 indexCount) const {
#ifdef DG_BUILD_SIMD_CODE

	/*
	 dgFloatSign test;

	 NEWTON_ASSERT (m_p0.m_w == m_p1.m_w);

	 simd_type dist = simd_mul_v ((simd_type&)normal, (simd_type&)m_diff);
	 dist = simd_add_s (dist, simd_permut_v(dist, dist, PURMUT_MASK(3, 2, 1, 2)));
	 dist = simd_add_s (dist, simd_permut_v(dist, dist, PURMUT_MASK(3, 2, 1, 1)));
	 //   simd_store_s (simd_cmple_s (dist, simd_set1(dgFloat32 (0.0f))), &test.m_fVal);
	 simd_store_s (simd_cmple_s (dist, simd_set1(m_dirError)), &test.m_fVal);

	 //   if (dist < dgFloat32 (0.0f)) {
	 if (test.m_integer.m_iVal) {
	 dgInt32 i1;

	 dgInt32 stride = strideInBytes / sizeof (dgFloat32);

	 dgInt32 i0 = indexArray[0] * stride;
	 simd_type v0 = simd_loadu_v (polygon[i0]);
	 simd_type p0v0 = simd_sub_v (v0, (simd_type&)m_p0);

	 simd_type num = simd_mul_v ((simd_type&)normal, p0v0);
	 num = simd_add_s (num, simd_permut_v(num, num, PURMUT_MASK(3, 2, 1, 2)));
	 num = simd_add_s (num, simd_permut_v(num, num, PURMUT_MASK(3, 2, 1, 1)));
	 //       if ((tOut < dgFloat32 (0.0f)) && (tOut > dist)) {
	 simd_store_s (simd_and_v (simd_cmplt_s (num, (simd_type&) m_zero), simd_cmpgt_s (num, (simd_type&) dist)), (dgFloat32*) &i1);
	 if (i1) {
	 i1 = indexArray[1] * stride;
	 simd_type v1 = simd_loadu_v (polygon[i1]);
	 simd_type p0v1 = simd_sub_v (v1, (simd_type&)m_p0);

	 for (dgInt32 i = 2; i < indexCount; i ++) {
	 dgFloatSign test;

	 i1 = indexArray[i] * stride;
	 //           dgVector v2 (&polygon[i2]);
	 simd_type v2 = simd_loadu_v (polygon[i1]);
	 //           dgVector p0v2 (v2 - ray_p0);
	 simd_type p0v2 = simd_sub_v (v2, (simd_type&)m_p0);

	 simd_type p0v_y = simd_pack_lo_v (p0v0, p0v1);
	 simd_type p0v_x = simd_move_lh_v (p0v_y, p0v2);
	 p0v_y = simd_permut_v (p0v_y, p0v2, PURMUT_MASK (3, 1, 3, 2));
	 simd_type p0v_z = simd_permut_v (simd_pack_hi_v (p0v0, p0v1), p0v2, PURMUT_MASK (3, 2, 1, 0));

	 simd_type tmp = simd_sub_v (simd_mul_v ((simd_type&)m_ray_yyyy, p0v_z), simd_mul_v ((simd_type&)m_ray_zzzz, p0v_y));
	 simd_type alpha = simd_mul_v (simd_permut_v (tmp, tmp, PURMUT_MASK (3, 0, 2, 1)), p0v_x);

	 tmp = simd_sub_v (simd_mul_v ((simd_type&)m_ray_zzzz, p0v_x), simd_mul_v ((simd_type&)m_ray_xxxx, p0v_z));
	 alpha = simd_mul_add_v (alpha, simd_permut_v (tmp, tmp, PURMUT_MASK (3, 0, 2, 1)), p0v_y);

	 tmp = simd_sub_v (simd_mul_v ((simd_type&)m_ray_xxxx, p0v_y), simd_mul_v ((simd_type&)m_ray_yyyy, p0v_x));
	 alpha = simd_mul_add_v (alpha, simd_permut_v (tmp, tmp, PURMUT_MASK (3, 0, 2, 1)), p0v_z);

	 tmp = simd_cmpgt_v (alpha, (simd_type&) m_tolerance);
	 tmp = simd_and_v (tmp, simd_permut_v (tmp, tmp, PURMUT_MASK (3, 2, 1, 2)));

	 simd_store_s (simd_and_v (tmp, simd_permut_v (tmp, tmp, PURMUT_MASK (3, 2, 1, 1))), &test.m_fVal);
	 if (test.m_integer.m_iVal) {
	 dgFloat32 tOut;
	 simd_store_s (simd_div_s(num, dist), &tOut);
	 NEWTON_ASSERT (tOut >= dgFloat32 (0.0f));
	 NEWTON_ASSERT (tOut <= dgFloat32 (1.0f));
	 return tOut;
	 }
	 p0v1 = p0v2;
	 }
	 }
	 }
	 return 1.2f;
	 */

	NEWTON_ASSERT(m_p0.m_w == m_p1.m_w);

	dgFloat32 dist = normal % m_diff;
	if (dist < m_dirError) {
		dgInt32 stride = dgInt32(strideInBytes / sizeof(dgFloat32));

		dgVector v0(&polygon[indexArray[indexCount - 1] * stride]);
		dgVector p0v0(v0 - m_p0);
		dgFloat32 tOut = normal % p0v0;
		// this only work for convex polygons and for single side faces
		// walk the polygon around the edges and calculate the volume

		if ((tOut < dgFloat32(0.0f)) && (tOut > dist)) {
			dgInt32 i3 = indexCount - 1;
			dgInt32 i2 = indexCount - 2;
			dgInt32 i1 = indexCount - 3;
			dgInt32 i0 = (indexCount > 3) ? indexCount - 4 : 2;

			simd_type tolerance = simd_set1(m_magRayTest * DG_RAY_TOL_ADAPTIVE_ERROR);
			for (dgInt32 i4 = 0; i4 < indexCount; i4 += 4) {
//				dgVector v1 (&polygon[i2]);
//				dgVector p0v1 (v1 - m_p0);

				simd_type v0 = simd_loadu_v(polygon[indexArray[i0] * stride]);
				simd_type v1 = simd_loadu_v(polygon[indexArray[i1] * stride]);
				simd_type v2 = simd_loadu_v(polygon[indexArray[i2] * stride]);
				simd_type v3 = simd_loadu_v(polygon[indexArray[i3] * stride]);
				simd_type v4 = simd_loadu_v(polygon[indexArray[i4] * stride]);

				simd_type p0v0 = simd_sub_v(v0, (simd_type &)m_p0);
				simd_type p0v1 = simd_sub_v(v1, (simd_type &)m_p0);
				simd_type p0v2 = simd_sub_v(v2, (simd_type &)m_p0);
				simd_type p0v3 = simd_sub_v(v3, (simd_type &)m_p0);
				simd_type p0v4 = simd_sub_v(v4, (simd_type &)m_p0);

				// transpose the data into a structure of arrays
				simd_type tmp0 = simd_pack_lo_v(p0v0, p0v1);
				simd_type tmp1 = simd_pack_lo_v(p0v2, p0v3);
				simd_type p0v0_x = simd_move_lh_v(tmp0, tmp1);
				simd_type p0v0_y = simd_move_hl_v(tmp1, tmp0);
				tmp0 = simd_pack_hi_v(p0v0, p0v1);
				tmp1 = simd_pack_hi_v(p0v2, p0v3);
				simd_type p0v0_z = simd_move_lh_v(tmp0, tmp1);

				tmp0 = simd_pack_lo_v(p0v1, p0v2);
				tmp1 = simd_pack_lo_v(p0v3, p0v4);
				simd_type p0v1_x = simd_move_lh_v(tmp0, tmp1);
				simd_type p0v1_y = simd_move_hl_v(tmp1, tmp0);
				tmp0 = simd_pack_hi_v(p0v1, p0v2);
				tmp1 = simd_pack_hi_v(p0v3, p0v4);
				simd_type p0v1_z = simd_move_lh_v(tmp0, tmp1);

				//dgFloat32 alpha = (m_diff * p0v1) % p0v0;
				simd_type cross =
				    simd_mul_add_v(simd_mul_add_v(simd_mul_v(p0v0_x, simd_mul_sub_v(simd_mul_v((simd_type &)m_ray_yyyy, p0v1_z), (simd_type &)m_ray_zzzz, p0v1_y)),
				                                  p0v0_y, simd_mul_sub_v(simd_mul_v((simd_type &)m_ray_zzzz, p0v1_x), (simd_type &)m_ray_xxxx, p0v1_z)),
				                   p0v0_z, simd_mul_sub_v(simd_mul_v((simd_type &)m_ray_xxxx, p0v1_y), (simd_type &)m_ray_yyyy, p0v1_x));

				// if a least one volume is negative it mean the line cross the polygon outside this edge and do not hit the face
				//if (alpha < DG_RAY_TOL_ERROR) {
				//  return 1.2f;
				//}
				tmp0 = simd_cmpgt_v(cross, tolerance);
				tmp0 = simd_and_v(tmp0, simd_move_hl_v(tmp0, tmp0));
				tmp0 =
				    simd_and_v(tmp0, simd_permut_v(tmp0, tmp0, PURMUT_MASK(0, 0, 0, 1)));

//				dgFloatSign test;
//				simd_store_s (tmp0, &test.m_fVal);
//				if (!test.m_integer.m_iVal) {
				if (!simd_store_is(tmp0)) {
					return 1.2f;
				}

				// calculate the volume formed by the line and the edge of the polygon
//				p0v0 = p0v1;

				i3 = i4 + 3;
				i2 = i4 + 2;
				i1 = i4 + 1;
				i0 = i4 + 0;
			}

			//the line is to the left of all the polygon edges,
			//then the intersection is the point we the line intersect the plane of the polygon
			tOut = tOut / dist;
			NEWTON_ASSERT(tOut >= dgFloat32(0.0f));
			NEWTON_ASSERT(tOut <= dgFloat32(1.0f));
			return tOut;
		}
	}
	return dgFloat32(1.2f);
#else
	return dgFloat32(0.0f);
#endif
}


dgFloat32 dgFastRayTest::PolygonIntersect(const dgVector &normal, const dgFloat32 *const polygon, dgInt32 strideInBytes, const dgInt32 *const indexArray, dgInt32 indexCount) const {
	NEWTON_ASSERT(m_p0.m_w == m_p1.m_w);

	dgFloat32 dist = normal % m_diff;
	if (dist < m_dirError) {

		dgInt32 stride = dgInt32(strideInBytes / sizeof(dgFloat32));

		dgVector v0(&polygon[indexArray[indexCount - 1] * stride]);
		dgVector p0v0(v0 - m_p0);
		dgFloat32 tOut = normal % p0v0;
		// this only work for convex polygons and for single side faces
		// walk the polygon around the edges and calculate the volume
		if ((tOut < dgFloat32(0.0f)) && (tOut > dist)) {
			for (dgInt32 i = 0; i < indexCount; i ++) {
				dgInt32 i2 = indexArray[i] * stride;
				dgVector v1(&polygon[i2]);
				dgVector p0v1(v1 - m_p0);
				// calculate the volume formed by the line and the edge of the polygon
				dgFloat32 alpha = (m_diff * p0v1) % p0v0;
				// if a least one volume is negative it mean the line cross the polygon outside this edge and do not hit the face
				if (alpha < DG_RAY_TOL_ERROR) {
					return 1.2f;
				}
				p0v0 = p0v1;
			}

			//the line is to the left of all the polygon edges,
			//then the intersection is the point we the line intersect the plane of the polygon
			tOut = tOut / dist;
			NEWTON_ASSERT(tOut >= dgFloat32(0.0f));
			NEWTON_ASSERT(tOut <= dgFloat32(1.0f));
			return tOut;
		}
	}
	return dgFloat32(1.2f);
}

bool dgApi dgRayBoxClip(dgVector &p0, dgVector &p1, const dgVector &boxP0,
                        const dgVector &boxP1) {
	for (int i = 0; i < 3; i++) {
		dgFloat32 tmp0;
		dgFloat32 tmp1;

		tmp0 = boxP1[i] - p0[i];
		if (tmp0 > dgFloat32(0.0f)) {
			tmp1 = boxP1[i] - p1[i];
			if (tmp1 < dgFloat32(0.0f)) {
				p1 = p0 + (p1 - p0).Scale(tmp0 / (p1[i] - p0[i]));
				p1[i] = boxP1[i];
			}
		} else {
			tmp1 = boxP1[i] - p1[i];
			if (tmp1 > dgFloat32(0.0f)) {
				p0 += (p1 - p0).Scale(tmp0 / (p1[i] - p0[i]));
				p0[i] = boxP1[i];
			} else {
				return false;
			}
		}

		tmp0 = boxP0[i] - p0[i];
		if (tmp0 < dgFloat32(0.0f)) {
			tmp1 = boxP0[i] - p1[i];
			if (tmp1 > dgFloat32(0.0f)) {
				p1 = p0 + (p1 - p0).Scale(tmp0 / (p1[i] - p0[i]));
				p1[i] = boxP0[i];
			}
		} else {
			tmp1 = boxP0[i] - p1[i];
			if (tmp1 < dgFloat32(0.0f)) {
				p0 += (p1 - p0).Scale(tmp0 / (p1[i] - p0[i]));
				p0[i] = boxP0[i];
			} else {
				return false;
			}
		}
	}
	return true;
}

dgVector dgApi dgPointToRayDistance(const dgVector &point,
                                    const dgVector &ray_p0, const dgVector &ray_p1) {
	dgFloat32 t;
	dgVector dp(ray_p1 - ray_p0);
	t = ClampValue(((point - ray_p0) % dp) / (dp % dp),
	               dgFloat32(dgFloat32(0.0f)), dgFloat32(dgFloat32(1.0f)));
	return ray_p0 + dp.Scale(t);
}

void dgApi dgRayToRayDistance(const dgVector &ray_p0, const dgVector &ray_p1,
                              const dgVector &ray_q0, const dgVector &ray_q1, dgVector &pOut,
                              dgVector &qOut) {
	dgFloat32 sN;
	dgFloat32 tN;

	dgVector u(ray_p1 - ray_p0);
	dgVector v(ray_q1 - ray_q0);
	dgVector w(ray_p0 - ray_q0);

	dgFloat32 a = u % u; // always >= 0
	dgFloat32 b = u % v;
	dgFloat32 c = v % v; // always >= 0
	dgFloat32 d = u % w;
	dgFloat32 e = v % w;
	dgFloat32 D = a * c - b * b; // always >= 0
	dgFloat32 sD = D; // sc = sN / sD, default sD = D >= 0
	dgFloat32 tD = D; // tc = tN / tD, default tD = D >= 0

	// compute the line parameters of the two closest points
	if (D < dgFloat32(1.0e-8f)) {
		// the lines are almost parallel
		sN = dgFloat32(0.0f); // force using point P0 on segment S1
		sD = dgFloat32(1.0f); // to prevent possible division by 0.0 later
		tN = e;
		tD = c;
	} else {
		// get the closest points on the infinite lines
		sN = (b * e - c * d);
		tN = (a * e - b * d);
		if (sN < dgFloat32(0.0f)) {
			// sc < 0 => the s=0 edge is visible
			sN = dgFloat32(0.0f);
			tN = e;
			tD = c;
		} else if (sN > sD) {
			// sc > 1 => the s=1 edge is visible
			sN = sD;
			tN = e + b;
			tD = c;
		}
	}

	if (tN < dgFloat32(0.0f)) {
		// tc < 0 => the t=0 edge is visible
		tN = dgFloat32(0.0f);
		// recompute sc for this edge
		if (-d < dgFloat32(0.0f))
			sN = dgFloat32(0.0f);
		else if (-d > a)
			sN = sD;
		else {
			sN = -d;
			sD = a;
		}
	} else if (tN > tD) {
		// tc > 1 => the t=1 edge is visible
		tN = tD;
		// recompute sc for this edge
		if ((-d + b) < dgFloat32(0.0f))
			sN = dgFloat32(0.0f);
		else if ((-d + b) > a)
			sN = sD;
		else {
			sN = (-d + b);
			sD = a;
		}
	}

	// finally do the division to get sc and tc
	dgFloat32 sc = (dgAbsf(sN) < dgFloat32(1.0e-8f) ? dgFloat32(0.0f) : sN / sD);
	dgFloat32 tc = (dgAbsf(tN) < dgFloat32(1.0e-8f) ? dgFloat32(0.0f) : tN / tD);

	pOut = ray_p0 + u.Scale(sc);
	qOut = ray_q0 + v.Scale(tc);
}

dgVector dgPointToTriangleDistance(const dgVector &point, const dgVector &p0,
                                   const dgVector &p1, const dgVector &p2) {
	//    const dgVector p (dgFloat32 (0.0f), dgFloat32 (0.0f), dgFloat32 (0.0f));
	const dgVector p10(p1 - p0);
	const dgVector p20(p2 - p0);
	const dgVector p_p0(point - p0);

	dgFloat32 alpha1 = p10 % p_p0;
	dgFloat32 alpha2 = p20 % p_p0;
	if ((alpha1 <= dgFloat32(0.0f)) && (alpha2 <= dgFloat32(0.0f))) {
		return p0;
	}

	dgVector p_p1(point - p1);
	dgFloat32 alpha3 = p10 % p_p1;
	dgFloat32 alpha4 = p20 % p_p1;
	if ((alpha3 >= dgFloat32(0.0f)) && (alpha4 <= alpha3)) {
		return p1;
	}

	dgFloat32 vc = alpha1 * alpha4 - alpha3 * alpha2;
	if ((vc <= dgFloat32(0.0f)) && (alpha1 >= dgFloat32(0.0f))
	        && (alpha3 <= dgFloat32(0.0f))) {
		dgFloat32 t = alpha1 / (alpha1 - alpha3);
		NEWTON_ASSERT(t >= dgFloat32(0.0f));
		NEWTON_ASSERT(t <= dgFloat32(1.0f));
		return p0 + p10.Scale(t);
	}

	dgVector p_p2(point - p2);
	dgFloat32 alpha5 = p10 % p_p2;
	dgFloat32 alpha6 = p20 % p_p2;
	if ((alpha6 >= dgFloat32(0.0f)) && (alpha5 <= alpha6)) {
		return p2;
	}

	dgFloat32 vb = alpha5 * alpha2 - alpha1 * alpha6;
	if ((vb <= dgFloat32(0.0f)) && (alpha2 >= dgFloat32(0.0f))
	        && (alpha6 <= dgFloat32(0.0f))) {
		dgFloat32 t = alpha2 / (alpha2 - alpha6);
		NEWTON_ASSERT(t >= dgFloat32(0.0f));
		NEWTON_ASSERT(t <= dgFloat32(1.0f));
		return p0 + p20.Scale(t);
	}

	dgFloat32 va = alpha3 * alpha6 - alpha5 * alpha4;
	if ((va <= dgFloat32(0.0f)) && ((alpha4 - alpha3) >= dgFloat32(0.0f))
	        && ((alpha5 - alpha6) >= dgFloat32(0.0f))) {
		dgFloat32 t = (alpha4 - alpha3) / ((alpha4 - alpha3) + (alpha5 - alpha6));
		NEWTON_ASSERT(t >= dgFloat32(0.0f));
		NEWTON_ASSERT(t <= dgFloat32(1.0f));
		return p1 + (p2 - p1).Scale(t);
	}

	dgFloat32 den = float(dgFloat32(1.0f)) / (va + vb + vc);
	dgFloat32 t = vb * den;
	dgFloat32 s = vc * den;
	NEWTON_ASSERT(t >= dgFloat32(0.0f));
	NEWTON_ASSERT(s >= dgFloat32(0.0f));
	NEWTON_ASSERT(t <= dgFloat32(1.0f));
	NEWTON_ASSERT(s <= dgFloat32(1.0f));
	return p0 + p10.Scale(t) + p20.Scale(s);
}

dgBigVector dgPointToTriangleDistance(const dgBigVector &point,
                                      const dgBigVector &p0, const dgBigVector &p1, const dgBigVector &p2) {
	//    const dgBigVector p (dgFloat64 (0.0f), dgFloat64 (0.0f), dgFloat64 (0.0f));
	const dgBigVector p10(p1 - p0);
	const dgBigVector p20(p2 - p0);
	const dgBigVector p_p0(point - p0);

	dgFloat64 alpha1 = p10 % p_p0;
	dgFloat64 alpha2 = p20 % p_p0;
	if ((alpha1 <= dgFloat64(0.0f)) && (alpha2 <= dgFloat64(0.0f))) {
		return p0;
	}

	dgBigVector p_p1(point - p1);
	dgFloat64 alpha3 = p10 % p_p1;
	dgFloat64 alpha4 = p20 % p_p1;
	if ((alpha3 >= dgFloat64(0.0f)) && (alpha4 <= alpha3)) {
		return p1;
	}

	dgFloat64 vc = alpha1 * alpha4 - alpha3 * alpha2;
	if ((vc <= dgFloat64(0.0f)) && (alpha1 >= dgFloat64(0.0f))
	        && (alpha3 <= dgFloat64(0.0f))) {
		dgFloat64 t = alpha1 / (alpha1 - alpha3);
		NEWTON_ASSERT(t >= dgFloat64(0.0f));
		NEWTON_ASSERT(t <= dgFloat64(1.0f));
		return p0 + p10.Scale(t);
	}

	dgBigVector p_p2(point - p2);
	dgFloat64 alpha5 = p10 % p_p2;
	dgFloat64 alpha6 = p20 % p_p2;
	if ((alpha6 >= dgFloat64(0.0f)) && (alpha5 <= alpha6)) {
		return p2;
	}

	dgFloat64 vb = alpha5 * alpha2 - alpha1 * alpha6;
	if ((vb <= dgFloat64(0.0f)) && (alpha2 >= dgFloat64(0.0f))
	        && (alpha6 <= dgFloat64(0.0f))) {
		dgFloat64 t = alpha2 / (alpha2 - alpha6);
		NEWTON_ASSERT(t >= dgFloat64(0.0f));
		NEWTON_ASSERT(t <= dgFloat64(1.0f));
		return p0 + p20.Scale(t);
	}

	dgFloat64 va = alpha3 * alpha6 - alpha5 * alpha4;
	if ((va <= dgFloat64(0.0f)) && ((alpha4 - alpha3) >= dgFloat64(0.0f))
	        && ((alpha5 - alpha6) >= dgFloat64(0.0f))) {
		dgFloat64 t = (alpha4 - alpha3) / ((alpha4 - alpha3) + (alpha5 - alpha6));
		NEWTON_ASSERT(t >= dgFloat64(0.0f));
		NEWTON_ASSERT(t <= dgFloat64(1.0f));
		return p1 + (p2 - p1).Scale(t);
	}

	dgFloat64 den = float(dgFloat64(1.0f)) / (va + vb + vc);
	dgFloat64 t = vb * den;
	dgFloat64 s = vc * den;
	NEWTON_ASSERT(t >= dgFloat64(0.0f));
	NEWTON_ASSERT(s >= dgFloat64(0.0f));
	NEWTON_ASSERT(t <= dgFloat64(1.0f));
	NEWTON_ASSERT(s <= dgFloat64(1.0f));
	return p0 + p10.Scale(t) + p20.Scale(s);
}

bool dgApi dgPointToPolygonDistance(const dgVector &p,
                                    const dgFloat32 *const polygon, dgInt32 strideInBytes,
                                    const dgInt32 *const indexArray, dgInt32 indexCount, dgFloat32 bailDistance,
                                    dgVector &out) {
//	dgInt32 i;
//	dgInt32 i0;
//	dgInt32 i1;
//	dgInt32 i2;
//	dgInt32 stride;
//	dgFloat32 dist;
//	dgFloat32 minDist;

	NEWTON_ASSERT(0);
	dgInt32 stride = dgInt32(strideInBytes / sizeof(dgFloat32));

	dgInt32 i0 = indexArray[0] * stride;
	dgInt32 i1 = indexArray[1] * stride;

	const dgVector v0(&polygon[i0]);
	dgVector v1(&polygon[i1]);
	dgVector closestPoint(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
	                      dgFloat32(0.0f));
	dgFloat32 minDist = dgFloat32(1.0e20f);
	for (dgInt32 i = 2; i < indexCount; i++) {
		dgInt32 i2 = indexArray[i] * stride;
		const dgVector v2(&polygon[i2]);
		const dgVector q(dgPointToTriangleDistance(p, v0, v1, v2));
		const dgVector error(q - p);
		dgFloat32 dist = error % error;
		if (dist < minDist) {
			minDist = dist;
			closestPoint = q;
		}
		v1 = v2;
	}

	if (minDist > (bailDistance * bailDistance)) {
		return false;
	}

	out = closestPoint;
	return true;
}

dgBigVector LineTriangleIntersection(const dgBigVector &p0,
                                     const dgBigVector &p1, const dgBigVector &A, const dgBigVector &B,
                                     const dgBigVector &C) {
	dgHugeVector ph0(p0);
	dgHugeVector ph1(p1);
	dgHugeVector Ah(A);
	dgHugeVector Bh(B);
	dgHugeVector Ch(C);

	dgHugeVector p1p0(ph1 - ph0);
	dgHugeVector Ap0(Ah - ph0);
	dgHugeVector Bp0(Bh - ph0);
	dgHugeVector Cp0(Ch - ph0);

	dgGoogol t0((Bp0 * Cp0) % p1p0);
	dgFloat64 val0 = t0.GetAproximateValue();
	if (val0 < dgFloat64(0.0f)) {
		return dgBigVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
		                   dgFloat32(-1.0f));
	}

	dgGoogol t1((Cp0 * Ap0) % p1p0);
	dgFloat64 val1 = t1.GetAproximateValue();
	if (val1 < dgFloat64(0.0f)) {
		return dgBigVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
		                   dgFloat32(-1.0f));
	}

	dgGoogol t2((Ap0 * Bp0) % p1p0);
	dgFloat64 val2 = t2.GetAproximateValue();
	if (val2 < dgFloat64(0.0f)) {
		return dgBigVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
		                   dgFloat32(-1.0f));
	}

	dgGoogol sum = t0 + t1 + t2;
	dgFloat64 den = sum.GetAproximateValue();

#ifdef _DEBUG
	dgBigVector testpoint(
	    A.Scale(val0 / den) + B.Scale(val1 / den) + C.Scale(val2 / den));
	dgFloat64 volume = ((B - A) * (C - A)) % (testpoint - A);
	NEWTON_ASSERT(fabs(volume) < dgFloat64(1.0e-12f));
#endif

	return dgBigVector(val0 / den, val1 / den, val2 / den, dgFloat32(0.0f));
}