1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __dgMatrix__
#define __dgMatrix__
#include "dgStdafx.h"
#include "dgDebug.h"
#include "dgVector.h"
#include "dgPlane.h"
#include "dgSimd_Instrutions.h"
#include <math.h>
class dgMatrix;
class dgQuaternion;
const dgMatrix &dgGetZeroMatrix();
const dgMatrix &dgGetIdentityMatrix();
DG_MSC_VECTOR_ALIGMENT
class dgMatrix {
public:
DG_CLASS_ALLOCATOR(allocator)
dgMatrix();
constexpr dgMatrix(const dgVector &front, const dgVector &up, const dgVector &right, const dgVector &posit);
dgMatrix(const dgQuaternion &rotation, const dgVector &position);
// create a orthonormal normal vector basis
dgMatrix(const dgVector &front);
dgVector &operator[](dgInt32 i);
const dgVector &operator[](dgInt32 i) const;
dgMatrix Inverse() const;
dgMatrix Inverse4x4() const;
dgMatrix Transpose() const;
dgMatrix Transpose4X4() const;
dgMatrix Symetric3by3Inverse() const;
dgVector RotateVector(const dgVector &v) const;
dgVector UnrotateVector(const dgVector &v) const;
dgVector TransformVector(const dgVector &v) const;
dgVector UntransformVector(const dgVector &v) const;
dgPlane TransformPlane(const dgPlane &localPlane) const;
dgPlane UntransformPlane(const dgPlane &globalPlane) const;
void TransformBBox(const dgVector &p0local, const dgVector &p1local, dgVector &p0, dgVector &p1) const;
dgVector CalcPitchYawRoll() const;
void TransformTriplex(dgFloat32 *const dst, dgInt32 dstStrideInBytes,
const dgFloat32 *const src, dgInt32 srcStrideInBytes, dgInt32 count) const;
#ifndef __USE_DOUBLE_PRECISION__
void TransformTriplex(dgFloat64 *const dst, dgInt32 dstStrideInBytes,
const dgFloat64 *const src, dgInt32 srcStrideInBytes, dgInt32 count) const;
void TransformTriplex(dgFloat64 *const dst, dgInt32 dstStrideInBytes,
const dgFloat32 *const src, dgInt32 srcStrideInBytes, dgInt32 count) const;
#endif
dgMatrix operator* (const dgMatrix &B) const;
// this function can not be a member of dgMatrix, because
// dgMatrix a define to handle only orthogonal matrices
// and this function take a parameter to a symmetric matrix
void EigenVectors(dgVector &eigenValues, const dgMatrix &initialGuess = dgGetIdentityMatrix());
void EigenVectors(const dgMatrix &initialGuess = dgGetIdentityMatrix());
// simd operations
dgMatrix InverseSimd() const;
dgMatrix MultiplySimd(const dgMatrix &B) const;
dgVector RotateVectorSimd(const dgVector &v) const;
dgVector UnrotateVectorSimd(const dgVector &v) const;
dgVector TransformVectorSimd(const dgVector &v) const;
void TransformVectorsSimd(dgVector *const dst, const dgVector *const src, dgInt32 count) const;
dgVector m_front;
dgVector m_up;
dgVector m_right;
dgVector m_posit;
} DG_GCC_VECTOR_ALIGMENT;
DG_INLINE dgMatrix::dgMatrix() {
}
constexpr DG_INLINE dgMatrix::dgMatrix(const dgVector &front, const dgVector &up, const dgVector &right, const dgVector &posit)
: m_front(front), m_up(up), m_right(right), m_posit(posit) {
}
DG_INLINE dgMatrix::dgMatrix(const dgVector &front) {
m_front = front;
if (dgAbsf(front.m_z) > dgFloat32(0.577f)) {
m_right = front * dgVector(-front.m_y, front.m_z, dgFloat32(0.0f), dgFloat32(0.0f));
} else {
m_right = front * dgVector(-front.m_y, front.m_x, dgFloat32(0.0f), dgFloat32(0.0f));
}
m_right = m_right.Scale(dgRsqrt(m_right % m_right));
m_up = m_right * m_front;
m_front.m_w = dgFloat32(0.0f);
m_up.m_w = dgFloat32(0.0f);
m_right.m_w = dgFloat32(0.0f);
m_posit = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f));
NEWTON_ASSERT((dgAbsf(m_front % m_front) - dgFloat32(1.0f)) < dgFloat32(1.0e-5f));
NEWTON_ASSERT((dgAbsf(m_up % m_up) - dgFloat32(1.0f)) < dgFloat32(1.0e-5f));
NEWTON_ASSERT((dgAbsf(m_right % m_right) - dgFloat32(1.0f)) < dgFloat32(1.0e-5f));
NEWTON_ASSERT((dgAbsf(m_right % (m_front * m_up)) - dgFloat32(1.0f)) < dgFloat32(1.0e-5f));
}
DG_INLINE dgVector &dgMatrix::operator[](dgInt32 i) {
NEWTON_ASSERT(i < 4);
NEWTON_ASSERT(i >= 0);
return (&m_front)[i];
}
DG_INLINE const dgVector &dgMatrix::operator[](dgInt32 i) const {
NEWTON_ASSERT(i < 4);
NEWTON_ASSERT(i >= 0);
return (&m_front)[i];
}
DG_INLINE dgMatrix dgMatrix::Transpose() const {
return dgMatrix(dgVector(m_front.m_x, m_up.m_x, m_right.m_x, dgFloat32(0.0f)),
dgVector(m_front.m_y, m_up.m_y, m_right.m_y, dgFloat32(0.0f)),
dgVector(m_front.m_z, m_up.m_z, m_right.m_z, dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f)));
}
DG_INLINE dgMatrix dgMatrix::Transpose4X4() const {
return dgMatrix(dgVector(m_front.m_x, m_up.m_x, m_right.m_x, m_posit.m_x),
dgVector(m_front.m_y, m_up.m_y, m_right.m_y, m_posit.m_y),
dgVector(m_front.m_z, m_up.m_z, m_right.m_z, m_posit.m_z),
dgVector(m_front.m_w, m_up.m_w, m_right.m_w, m_posit.m_w));
}
DG_INLINE dgVector dgMatrix::RotateVector(const dgVector &v) const {
return dgVector(v.m_x * m_front.m_x + v.m_y * m_up.m_x + v.m_z * m_right.m_x,
v.m_x * m_front.m_y + v.m_y * m_up.m_y + v.m_z * m_right.m_y,
v.m_x * m_front.m_z + v.m_y * m_up.m_z + v.m_z * m_right.m_z, v.m_w);
}
DG_INLINE dgVector dgMatrix::UnrotateVector(const dgVector &v) const {
return dgVector(v % m_front, v % m_up, v % m_right, v.m_w);
}
DG_INLINE dgVector dgMatrix::TransformVector(const dgVector &v) const {
// return m_posit + RotateVector(v);
return dgVector(v.m_x * m_front.m_x + v.m_y * m_up.m_x + v.m_z * m_right.m_x + m_posit.m_x,
v.m_x * m_front.m_y + v.m_y * m_up.m_y + v.m_z * m_right.m_y + m_posit.m_y,
v.m_x * m_front.m_z + v.m_y * m_up.m_z + v.m_z * m_right.m_z + m_posit.m_z, v.m_w);
}
DG_INLINE dgVector dgMatrix::UntransformVector(const dgVector &v) const {
return UnrotateVector(v - m_posit);
}
DG_INLINE dgPlane dgMatrix::TransformPlane(const dgPlane &localPlane) const {
return dgPlane(RotateVector(localPlane), localPlane.m_w - (localPlane % UnrotateVector(m_posit)));
}
DG_INLINE dgPlane dgMatrix::UntransformPlane(const dgPlane &globalPlane) const {
return dgPlane(UnrotateVector(globalPlane), globalPlane.Evalue(m_posit));
}
DG_INLINE void dgMatrix::EigenVectors(const dgMatrix &initialGuess) {
dgVector eigenValues;
EigenVectors(eigenValues, initialGuess);
}
DG_INLINE dgMatrix dgPitchMatrix(dgFloat32 ang) {
dgFloat32 cosAng;
dgFloat32 sinAng;
sinAng = dgSin(ang);
cosAng = dgCos(ang);
return dgMatrix(dgVector(dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), cosAng, sinAng, dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), -sinAng, cosAng, dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f)));
}
DG_INLINE dgMatrix dgYawMatrix(dgFloat32 ang) {
dgFloat32 cosAng;
dgFloat32 sinAng;
sinAng = dgSin(ang);
cosAng = dgCos(ang);
return dgMatrix(dgVector(cosAng, dgFloat32(0.0f), -sinAng, dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f)),
dgVector(sinAng, dgFloat32(0.0f), cosAng, dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f)));
}
DG_INLINE dgMatrix dgRollMatrix(dgFloat32 ang) {
dgFloat32 cosAng;
dgFloat32 sinAng;
sinAng = dgSin(ang);
cosAng = dgCos(ang);
return dgMatrix(dgVector(cosAng, sinAng, dgFloat32(0.0f), dgFloat32(0.0f)),
dgVector(-sinAng, cosAng, dgFloat32(0.0f), dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f), dgFloat32(0.0f)),
dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f)));
}
DG_INLINE dgMatrix dgMatrix::Inverse() const {
return dgMatrix(dgVector(m_front.m_x, m_up.m_x, m_right.m_x, dgFloat32(0.0f)),
dgVector(m_front.m_y, m_up.m_y, m_right.m_y, dgFloat32(0.0f)),
dgVector(m_front.m_z, m_up.m_z, m_right.m_z, dgFloat32(0.0f)),
dgVector(- (m_posit % m_front), - (m_posit % m_up), - (m_posit % m_right), dgFloat32(1.0f)));
}
DG_INLINE dgVector dgMatrix::TransformVectorSimd(const dgVector &v) const {
#ifdef DG_BUILD_SIMD_CODE
const dgMatrix &source = *this;
return dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v((simd_type &) source[3], (simd_type &) source[0], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) source[1], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) source[2], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(2, 2, 2, 2))));
#else
return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
#endif
}
DG_INLINE void dgMatrix::TransformVectorsSimd(dgVector *const dst, const dgVector *const src, dgInt32 count) const {
#ifdef DG_BUILD_SIMD_CODE
const dgMatrix &source = *this;
for (dgInt32 i = 0; i < count; i ++) {
(simd_type &)dst[i] = simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v((simd_type &) source[3],
(simd_type &) source[0], simd_permut_v((simd_type &) src[i], (simd_type &) src[i], PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) source[1], simd_permut_v((simd_type &) src[i], (simd_type &) src[i], PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) source[2], simd_permut_v((simd_type &) src[i], (simd_type &) src[i], PURMUT_MASK(2, 2, 2, 2)));
}
#endif
}
DG_INLINE dgVector dgMatrix::RotateVectorSimd(const dgVector &v) const {
#ifdef DG_BUILD_SIMD_CODE
const dgMatrix &source = *this;
return dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_v((simd_type &) source[0], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) source[1], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) source[2], simd_permut_v((simd_type &) v, (simd_type &) v, PURMUT_MASK(2, 2, 2, 2))));
#else
return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
#endif
}
DG_INLINE dgVector dgMatrix::UnrotateVectorSimd(const dgVector &v) const {
#ifdef DG_BUILD_SIMD_CODE
return dgVector(v.DotProductSimd(m_front), v.DotProductSimd(m_up), v.DotProductSimd(m_right), v.m_w);
#else
return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
#endif
}
DG_INLINE dgMatrix dgMatrix::InverseSimd() const {
#ifdef DG_BUILD_SIMD_CODE
simd_type r0;
simd_type r1;
simd_type r2;
dgMatrix matrix;
const dgMatrix &source = *this;
NEWTON_ASSERT((dgUnsigned64(this) & 0x0f) == 0);
r2 = simd_set1(dgFloat32(0.0f));
r0 = simd_pack_lo_v((simd_type &) source[0], (simd_type &) source[1]);
r1 = simd_pack_lo_v((simd_type &) source[2], r2);
(simd_type &) matrix[0] = simd_move_lh_v(r0, r1);
(simd_type &) matrix[1] = simd_move_hl_v(r1, r0);
r0 = simd_pack_hi_v((simd_type &) source[0], (simd_type &) source[1]);
r1 = simd_pack_hi_v((simd_type &) source[2], r2);
(simd_type &) matrix[2] = simd_move_lh_v(r0, r1);
(simd_type &) matrix[3] = simd_sub_v(r2,
simd_mul_add_v(
simd_mul_add_v(simd_mul_v((simd_type &) matrix[0], simd_permut_v((simd_type &) source[3], (simd_type &) source[3], PURMUT_MASK(3, 0, 0, 0))),
(simd_type &) matrix[1], simd_permut_v((simd_type &) source[3], (simd_type &) source[3], PURMUT_MASK(3, 1, 1, 1))),
(simd_type &) matrix[2], simd_permut_v((simd_type &) source[3], (simd_type &) source[3], PURMUT_MASK(3, 2, 2, 2))));
matrix[3][3] = dgFloat32(1.0f);
return matrix;
#else
return dgGetIdentityMatrix();
#endif
}
DG_INLINE dgMatrix dgMatrix::MultiplySimd(const dgMatrix &B) const {
#ifdef DG_BUILD_SIMD_CODE
const dgMatrix &A = *this;
return dgMatrix(dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v(simd_mul_v((simd_type &) B[0], simd_permut_v((simd_type &) A[0], (simd_type &) A[0], PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) B[1], simd_permut_v((simd_type &) A[0], (simd_type &) A[0], PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) B[2], simd_permut_v((simd_type &) A[0], (simd_type &) A[0], PURMUT_MASK(2, 2, 2, 2))),
(simd_type &) B[3], simd_permut_v((simd_type &) A[0], (simd_type &) A[0], PURMUT_MASK(3, 3, 3, 3)))),
dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v(simd_mul_v((simd_type &) B[0], simd_permut_v((simd_type &) A[1], (simd_type &) A[1], PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) B[1], simd_permut_v((simd_type &) A[1], (simd_type &) A[1], PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) B[2], simd_permut_v((simd_type &) A[1], (simd_type &) A[1], PURMUT_MASK(2, 2, 2, 2))),
(simd_type &) B[3], simd_permut_v((simd_type &) A[1], (simd_type &) A[1], PURMUT_MASK(3, 3, 3, 3)))),
dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v(simd_mul_v((simd_type &) B[0], simd_permut_v((simd_type &) A[2], (simd_type &) A[2], PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) B[1], simd_permut_v((simd_type &) A[2], (simd_type &) A[2], PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) B[2], simd_permut_v((simd_type &) A[2], (simd_type &) A[2], PURMUT_MASK(2, 2, 2, 2))),
(simd_type &) B[3], simd_permut_v((simd_type &) A[2], (simd_type &) A[2], PURMUT_MASK(3, 3, 3, 3)))),
dgVector(simd_mul_add_v(
simd_mul_add_v(
simd_mul_add_v(simd_mul_v((simd_type &) B[0], simd_permut_v((simd_type &) A[3], (simd_type &) A[3], PURMUT_MASK(0, 0, 0, 0))),
(simd_type &) B[1], simd_permut_v((simd_type &) A[3], (simd_type &) A[3], PURMUT_MASK(1, 1, 1, 1))),
(simd_type &) B[2], simd_permut_v((simd_type &) A[3], (simd_type &) A[3], PURMUT_MASK(2, 2, 2, 2))),
(simd_type &) B[3], simd_permut_v((simd_type &) A[3], (simd_type &) A[3], PURMUT_MASK(3, 3, 3, 3)))));
#else
return dgGetIdentityMatrix();
#endif
}
#endif
|