1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __dgVector__
#define __dgVector__
#include "dgStdafx.h"
#include "dgDebug.h"
#include "dgMemory.h"
#include "dgSimd_Instrutions.h"
#define dgCheckVector(x) (dgCheckFloat(x[0]) && dgCheckFloat(x[1]) && dgCheckFloat(x[2]) && dgCheckFloat(x[3]))
//#define dgCheckVector(x) true
template<class T>
class dgTemplateVector {
public:
constexpr dgTemplateVector() : m_x(0), m_y(0), m_z(0), m_w(0) {}
dgTemplateVector(const T *ptr);
constexpr dgTemplateVector(T m_x, T m_y, T m_z, T m_w);
dgTemplateVector Scale(T s) const;
dgTemplateVector Scale4(T s) const;
T &operator[](dgInt32 i);
const T &operator[](dgInt32 i) const;
dgTemplateVector operator+ (const dgTemplateVector &A) const;
dgTemplateVector operator- (const dgTemplateVector &A) const;
dgTemplateVector &operator+= (const dgTemplateVector &A);
dgTemplateVector &operator-= (const dgTemplateVector &A);
// return dot product
T operator% (const dgTemplateVector &A) const;
// return cross product
dgTemplateVector operator* (const dgTemplateVector &B) const;
// return dot 4d dot product
dgTemplateVector Add4(const dgTemplateVector &A) const;
dgTemplateVector Sub4(const dgTemplateVector &A) const;
T DotProduct4(const dgTemplateVector &A) const;
dgTemplateVector CrossProduct4(const dgTemplateVector &A, const dgTemplateVector &B) const;
// component wise multiplication
dgTemplateVector CompProduct(const dgTemplateVector &A) const;
// component wise multiplication
dgTemplateVector CompProduct4(const dgTemplateVector &A) const;
// check validity of floats
#ifdef _DEBUG
void Trace() const {
dgTrace(("%f %f %f %f\n", m_x, m_y, m_z, m_w));
}
#endif
DG_CLASS_ALLOCATOR(allocator)
T m_x;
T m_y;
T m_z;
T m_w;
};
class dgBigVector;
DG_MSC_VECTOR_ALIGMENT
class dgVector: public dgTemplateVector<dgFloat32> {
public:
constexpr dgVector() = default;
#ifdef DG_BUILD_SIMD_CODE
dgVector(const simd_type &val);
#endif
dgVector(const dgTemplateVector<dgFloat32> &v);
dgVector(const dgFloat32 *ptr);
constexpr dgVector(dgFloat32 x, dgFloat32 y, dgFloat32 z, dgFloat32 w);
dgVector(const dgBigVector ©);
dgFloat32 DotProductSimd(const dgVector &A) const;
dgVector CrossProductSimd(const dgVector &A) const;
dgVector CompProductSimd(const dgVector &A) const;
} DG_GCC_VECTOR_ALIGMENT;
DG_MSC_VECTOR_ALIGMENT
class dgBigVector: public dgTemplateVector<dgFloat64> {
public:
dgBigVector();
dgBigVector(const dgVector &v);
dgBigVector(const dgTemplateVector<dgFloat64> &v);
dgBigVector(const dgFloat32 *ptr);
#ifndef __USE_DOUBLE_PRECISION__
dgBigVector(const dgFloat64 *ptr);
#endif
dgBigVector(dgFloat64 x, dgFloat64 y, dgFloat64 z, dgFloat64 w);
} DG_GCC_VECTOR_ALIGMENT;
template<class T>
dgTemplateVector<T>::dgTemplateVector(const T *ptr)
: m_x(ptr[0]), m_y(ptr[1]), m_z(ptr[2]), m_w(0.0f) {
// NEWTON_ASSERT (dgCheckVector ((*this)));
}
template<class T>
constexpr dgTemplateVector<T>::dgTemplateVector(T x, T y, T z, T w)
: m_x(x), m_y(y), m_z(z), m_w(w) {
}
template<class T>
T &dgTemplateVector<T>::operator[](dgInt32 i) {
NEWTON_ASSERT(i < 4);
NEWTON_ASSERT(i >= 0);
return (&m_x)[i];
}
template<class T>
const T &dgTemplateVector<T>::operator[](dgInt32 i) const {
NEWTON_ASSERT(i < 4);
NEWTON_ASSERT(i >= 0);
return (&m_x)[i];
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::Scale(T scale) const {
return dgTemplateVector<T> (m_x * scale, m_y * scale, m_z * scale, m_w);
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::Scale4(T scale) const {
return dgTemplateVector<T> (m_x * scale, m_y * scale, m_z * scale, m_w * scale);
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::operator+ (const dgTemplateVector<T> &B) const {
return dgTemplateVector<T> (m_x + B.m_x, m_y + B.m_y, m_z + B.m_z, m_w);
}
template<class T>
dgTemplateVector<T> &dgTemplateVector<T>::operator+= (const dgTemplateVector<T> &A) {
m_x += A.m_x;
m_y += A.m_y;
m_z += A.m_z;
// NEWTON_ASSERT (dgCheckVector ((*this)));
return *this;
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::operator- (const dgTemplateVector<T> &A) const {
return dgTemplateVector<T> (m_x - A.m_x, m_y - A.m_y, m_z - A.m_z, m_w);
}
template<class T>
dgTemplateVector<T> &dgTemplateVector<T>::operator-= (const dgTemplateVector<T> &A) {
m_x -= A.m_x;
m_y -= A.m_y;
m_z -= A.m_z;
NEWTON_ASSERT(dgCheckVector((*this)));
return *this;
}
template<class T>
T dgTemplateVector<T>::operator% (const dgTemplateVector<T> &A) const {
return m_x * A.m_x + m_y * A.m_y + m_z * A.m_z;
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::operator* (const dgTemplateVector<T> &B) const {
return dgTemplateVector<T> (m_y * B.m_z - m_z * B.m_y,
m_z * B.m_x - m_x * B.m_z,
m_x * B.m_y - m_y * B.m_x, m_w);
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::Add4(const dgTemplateVector &A) const {
return dgTemplateVector<T> (m_x + A.m_x, m_y + A.m_y, m_z + A.m_z, m_w + A.m_w);
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::Sub4(const dgTemplateVector &A) const {
return dgTemplateVector<T> (m_x - A.m_x, m_y - A.m_y, m_z - A.m_z, m_w - A.m_w);
}
// return dot 4d dot product
template<class T>
T dgTemplateVector<T>::DotProduct4(const dgTemplateVector &A) const {
return m_x * A.m_x + m_y * A.m_y + m_z * A.m_z + m_w * A.m_w;
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::CrossProduct4(const dgTemplateVector &A, const dgTemplateVector &B) const {
T cofactor[3][3];
T array[4][4];
const dgTemplateVector<T> &me = *this;
for (dgInt32 i = 0; i < 4; i ++) {
array[0][i] = me[i];
array[1][i] = A[i];
array[2][i] = B[i];
array[3][i] = T(1.0f);
}
dgTemplateVector<T> normal;
T sign = T(-1.0f);
for (dgInt32 i = 0; i < 4; i ++) {
for (dgInt32 j = 0; j < 3; j ++) {
dgInt32 k0 = 0;
for (dgInt32 k = 0; k < 4; k ++) {
if (k != i) {
cofactor[j][k0] = array[j][k];
k0 ++;
}
}
}
T x = cofactor[0][0] * (cofactor[1][1] * cofactor[2][2] - cofactor[1][2] * cofactor[2][1]);
T y = cofactor[0][1] * (cofactor[1][2] * cofactor[2][0] - cofactor[1][0] * cofactor[2][2]);
T z = cofactor[0][2] * (cofactor[1][0] * cofactor[2][1] - cofactor[1][1] * cofactor[2][0]);
T det = x + y + z;
normal[i] = sign * det;
sign *= T(-1.0f);
}
return normal;
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::CompProduct(const dgTemplateVector<T> &A) const {
return dgTemplateVector<T> (m_x * A.m_x, m_y * A.m_y, m_z * A.m_z, A.m_w);
}
template<class T>
dgTemplateVector<T> dgTemplateVector<T>::CompProduct4(const dgTemplateVector<T> &A) const {
return dgTemplateVector<T> (m_x * A.m_x, m_y * A.m_y, m_z * A.m_z, m_w * A.m_w);
}
DG_INLINE dgVector::dgVector(const dgTemplateVector<dgFloat32> &v)
: dgTemplateVector<dgFloat32>(v) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
DG_INLINE dgVector::dgVector(const dgFloat32 *ptr)
: dgTemplateVector<dgFloat32>(ptr) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
DG_INLINE dgVector::dgVector(const dgBigVector ©)
: dgTemplateVector<dgFloat32>(dgFloat32(copy.m_x), dgFloat32(copy.m_y), dgFloat32(copy.m_z), dgFloat32(copy.m_w)) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
#ifdef DG_BUILD_SIMD_CODE
DG_INLINE dgVector::dgVector(const simd_type &val) {
NEWTON_ASSERT((dgUnsigned64(this) & 0x0f) == 0);
(simd_type &) *this = val;
NEWTON_ASSERT(dgCheckVector((*this)));
}
#endif
constexpr DG_INLINE dgVector::dgVector(dgFloat32 x, dgFloat32 y, dgFloat32 z, dgFloat32 w)
: dgTemplateVector<dgFloat32>(x, y, z, w) {
}
DG_INLINE dgFloat32 dgVector::DotProductSimd(const dgVector &A) const {
#ifdef DG_BUILD_SIMD_CODE
// simd_type r0;
// dgFloat32 dot;
dgVector tmp;
(simd_type &) tmp = simd_mul_v((simd_type &) * this, (simd_type &)A);
// r0 = simd_add_v(r0, simd_move_hl_v (r0, r0));
// simd_store_s(simd_add_s(r0, simd_permut_v (r0, r0, PURMUT_MASK(3, 3, 3, 1))), &dot);
// return dot;
return tmp.m_x + tmp.m_y + tmp.m_z;
#else
return dgFloat32(0.0f);
#endif
}
DG_INLINE dgVector dgVector::CrossProductSimd(const dgVector &e10) const {
#ifdef DG_BUILD_SIMD_CODE
const dgVector &e21 = *this;
return dgVector(simd_mul_sub_v(simd_mul_v(simd_permut_v((simd_type &)e21, (simd_type &)e21, PURMUT_MASK(3, 0, 2, 1)), simd_permut_v((simd_type &)e10, (simd_type &)e10, PURMUT_MASK(3, 1, 0, 2))),
simd_permut_v((simd_type &)e21, (simd_type &)e21, PURMUT_MASK(3, 1, 0, 2)), simd_permut_v((simd_type &)e10, (simd_type &)e10, PURMUT_MASK(3, 0, 2, 1))));
#else
return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
#endif
}
DG_INLINE dgVector dgVector::CompProductSimd(const dgVector &A) const {
#ifdef DG_BUILD_SIMD_CODE
return dgVector(simd_mul_v((simd_type &) * this, (simd_type &)A));
#else
return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
#endif
}
DG_INLINE dgBigVector::dgBigVector()
: dgTemplateVector<dgFloat64>() {
}
DG_INLINE dgBigVector::dgBigVector(const dgVector &v)
: dgTemplateVector<dgFloat64>(v.m_x, v.m_y, v.m_z, v.m_w) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
DG_INLINE dgBigVector::dgBigVector(const dgTemplateVector<dgFloat64> &v)
: dgTemplateVector<dgFloat64>(v) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
DG_INLINE dgBigVector::dgBigVector(const dgFloat32 *ptr)
: dgTemplateVector<dgFloat64>(ptr[0], ptr[1], ptr[2], dgFloat64(0.0f)) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
#ifndef __USE_DOUBLE_PRECISION__
DG_INLINE dgBigVector::dgBigVector(const dgFloat64 *ptr)
: dgTemplateVector<dgFloat64>(ptr) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
#endif
DG_INLINE dgBigVector::dgBigVector(dgFloat64 x, dgFloat64 y, dgFloat64 z, dgFloat64 w)
: dgTemplateVector<dgFloat64>(x, y, z, w) {
NEWTON_ASSERT(dgCheckVector((*this)));
}
#endif
|