1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "dgBody.h"
#include "hpl1/engine/libraries/newton/core/dg.h"
#include "dgBilateralConstraint.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
#define DG_JOINT_STIFFNESS_RANGE (dgFloat32(5.0f))
#define DG_VEL_DAMP (dgFloat32(100.0f))
#define DG_POS_DAMP (dgFloat32(1500.0f))
dgBilateralConstraint::dgBilateralConstraint() : dgConstraint() {
NEWTON_ASSERT((sizeof(dgBilateralConstraint) & 15) == 0);
NEWTON_ASSERT((((dgUnsigned64)&m_localMatrix0) & 15) == 0);
// dgConstraint::Init ();
m_maxDOF = 6;
m_destructor = NULL;
m_localMatrix0 = dgGetIdentityMatrix();
m_localMatrix1 = dgGetIdentityMatrix();
// SetStiffness (90.0f/99.0f);
SetStiffness(dgFloat32(0.9f));
memset(m_jointForce, 0, sizeof(m_jointForce));
memset(m_rowIsMotor, 0, sizeof(m_rowIsMotor));
memset(m_motorAcceleration, 0, sizeof(m_motorAcceleration));
}
dgBilateralConstraint::~dgBilateralConstraint() {
if (m_destructor) {
m_destructor(reinterpret_cast<NewtonJoint *>(this));
}
}
bool dgBilateralConstraint::IsBilateral() const {
return true;
}
dgFloat32 dgBilateralConstraint::GetStiffness() const {
return (DG_JOINT_STIFFNESS_RANGE - m_stiffness) / (DG_JOINT_STIFFNESS_RANGE - dgFloat32(1.0f));
}
void dgBilateralConstraint::SetStiffness(dgFloat32 stiffness) {
stiffness = ClampValue(stiffness, dgFloat32(0.0f), dgFloat32(1.0f));
m_stiffness = DG_JOINT_STIFFNESS_RANGE - stiffness * (DG_JOINT_STIFFNESS_RANGE - dgFloat32(1.0f));
}
void dgBilateralConstraint::SetDestructorCallback(
OnConstraintDestroy destructor) {
m_destructor = destructor;
}
void dgBilateralConstraint::CalculateMatrixOffset(const dgVector &pivot,
const dgVector &dir, dgMatrix &matrix0, dgMatrix &matrix1) {
dgFloat32 length;
NEWTON_ASSERT(m_body0);
NEWTON_ASSERT(m_body1);
const dgMatrix &body0_Matrix = m_body0->GetMatrix();
length = dir % dir;
length = dgSqrt(length);
NEWTON_ASSERT(length > dgFloat32(0.0f));
// matrix0.m_front = body0_Matrix.UnrotateVector (dir.Scale (dgFloat32 (1.0f) / length));
// Create__Basis (matrix0.m_front, matrix0.m_up, matrix0.m_right);
matrix0 = dgMatrix(
body0_Matrix.UnrotateVector(dir.Scale(dgFloat32(1.0f) / length)));
matrix0.m_posit = body0_Matrix.UntransformVector(pivot);
matrix0.m_front.m_w = dgFloat32(0.0f);
matrix0.m_up.m_w = dgFloat32(0.0f);
matrix0.m_right.m_w = dgFloat32(0.0f);
matrix0.m_posit.m_w = dgFloat32(1.0f);
// dgMatrix body1_Matrix (dgGetIdentityMatrix());
// if (m_body1) {
// body1_Matrix = m_body1->GetMatrix();
// }
const dgMatrix &body1_Matrix = m_body1->GetMatrix();
matrix1 = matrix0 * body0_Matrix * body1_Matrix.Inverse();
}
void dgBilateralConstraint::SetPivotAndPinDir(const dgVector &pivot,
const dgVector &pinDirection) {
CalculateMatrixOffset(pivot, pinDirection, m_localMatrix0, m_localMatrix1);
}
void dgBilateralConstraint::SetPivotAndPinDir(const dgVector &pivot,
const dgVector &pinDirection0, const dgVector &pinDirection1) {
NEWTON_ASSERT(m_body0);
NEWTON_ASSERT(m_body1);
const dgMatrix &body0_Matrix = m_body0->GetMatrix();
NEWTON_ASSERT((pinDirection0 % pinDirection0) > dgFloat32(0.0f));
m_localMatrix0.m_front = pinDirection0.Scale(
dgFloat32(1.0f) / dgSqrt(pinDirection0 % pinDirection0));
m_localMatrix0.m_right = m_localMatrix0.m_front * pinDirection1;
m_localMatrix0.m_right =
m_localMatrix0.m_right.Scale(
dgFloat32(
1.0f) /
dgSqrt(m_localMatrix0.m_right % m_localMatrix0.m_right));
m_localMatrix0.m_up = m_localMatrix0.m_right * m_localMatrix0.m_front;
m_localMatrix0.m_posit = pivot;
m_localMatrix0.m_front.m_w = dgFloat32(0.0f);
m_localMatrix0.m_up.m_w = dgFloat32(0.0f);
m_localMatrix0.m_right.m_w = dgFloat32(0.0f);
m_localMatrix0.m_posit.m_w = dgFloat32(1.0f);
// dgMatrix body1_Matrix (dgGetIdentityMatrix());
// if (m_body1) {
// body1_Matrix = m_body1->GetMatrix();
// }
const dgMatrix &body1_Matrix = m_body1->GetMatrix();
m_localMatrix1 = m_localMatrix0 * body1_Matrix.Inverse();
m_localMatrix0 = m_localMatrix0 * body0_Matrix.Inverse();
}
dgVector dgBilateralConstraint::CalculateGlobalMatrixAndAngle(
dgMatrix &globalMatrix0, dgMatrix &globalMatrix1) const {
NEWTON_ASSERT(m_body0);
NEWTON_ASSERT(m_body1);
const dgMatrix &body0Matrix = m_body0->GetMatrix();
const dgMatrix &body1Matrix = m_body1->GetMatrix();
// dgMatrix body1Matrix (dgGetIdentityMatrix());
// if (m_body1) {
// body1Matrix = m_body1->GetMatrix();
// }
globalMatrix0 = m_localMatrix0 * body0Matrix;
globalMatrix1 = m_localMatrix1 * body1Matrix;
dgMatrix relMatrix(globalMatrix1 * globalMatrix0.Inverse());
NEWTON_ASSERT(
dgAbsf(dgFloat32(1.0f) - (relMatrix.m_front % relMatrix.m_front)) < 1.0e-5f);
NEWTON_ASSERT(
dgAbsf(dgFloat32(1.0f) - (relMatrix.m_up % relMatrix.m_up)) < 1.0e-5f);
NEWTON_ASSERT(
dgAbsf(dgFloat32(1.0f) - (relMatrix.m_right % relMatrix.m_right)) < 1.0e-5f);
// NEWTON_ASSERT ((relMatrix.m_posit % relMatrix.m_posit) < 1.0e-3f);
return relMatrix.CalcPitchYawRoll();
}
void dgBilateralConstraint::SetMotorAcceleration(dgInt32 index,
dgFloat32 acceleration, dgContraintDescritor &desc) {
m_rowIsMotor[index] = -1;
m_motorAcceleration[index] = acceleration;
desc.m_isMotor[index] = 1;
desc.m_jointAccel[index] = acceleration;
}
void dgBilateralConstraint::SetJacobianDerivative(dgInt32 index,
dgContraintDescritor &desc, const dgFloat32 *jacobianA,
const dgFloat32 *jacobianB, dgFloat32 *jointForce) {
dgJacobian &jacobian0 = desc.m_jacobian[index].m_jacobian_IM0;
dgJacobian &jacobian1 = desc.m_jacobian[index].m_jacobian_IM1;
jacobian0.m_linear[0] = jacobianA[0];
jacobian0.m_linear[1] = jacobianA[1];
jacobian0.m_linear[2] = jacobianA[2];
jacobian0.m_linear[3] = dgFloat32(0.0f);
jacobian0.m_angular[0] = jacobianA[3];
jacobian0.m_angular[1] = jacobianA[4];
jacobian0.m_angular[2] = jacobianA[5];
jacobian0.m_angular[3] = dgFloat32(0.0f);
jacobian1.m_linear[0] = jacobianB[0];
jacobian1.m_linear[1] = jacobianB[1];
jacobian1.m_linear[2] = jacobianB[2];
jacobian1.m_linear[3] = dgFloat32(0.0f);
jacobian1.m_angular[0] = jacobianB[3];
jacobian1.m_angular[1] = jacobianB[4];
jacobian1.m_angular[2] = jacobianB[5];
jacobian1.m_angular[3] = dgFloat32(0.0f);
m_rowIsMotor[index] = -1;
m_motorAcceleration[index] = dgFloat32(0.0f);
desc.m_restitution[index] = dgFloat32(0.0f);
desc.m_jointAccel[index] = dgFloat32(0.0f);
desc.m_penetration[index] = dgFloat32(0.0f);
desc.m_penetrationStiffness[index] = dgFloat32(0.0f);
desc.m_jointStiffness[index] = dgFloat32(1.0f);
desc.m_forceBounds[index].m_jointForce = jointForce;
}
dgFloat32 dgBilateralConstraint::CalculateSpringDamperAcceleration(
dgInt32 index, const dgContraintDescritor &desc, dgFloat32 jointAngle,
const dgVector &p0Global, const dgVector &p1Global, dgFloat32 springK,
dgFloat32 springD) {
dgFloat32 relPosit;
dgFloat32 relVeloc;
const dgJacobian &jacobian0 = desc.m_jacobian[index].m_jacobian_IM0;
const dgJacobian &jacobian1 = desc.m_jacobian[index].m_jacobian_IM1;
dgVector veloc0(m_body0->m_veloc);
dgVector omega0(m_body0->m_omega);
dgVector veloc1(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
dgFloat32(0.0f));
dgVector omega1(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
dgFloat32(0.0f));
;
if (m_body1) {
veloc1 = m_body1->m_veloc;
omega1 = m_body1->m_omega;
}
relPosit = (p1Global - p0Global) % jacobian0.m_linear + jointAngle;
relVeloc = -(veloc0 % jacobian0.m_linear + veloc1 % jacobian1.m_linear + omega0 % jacobian0.m_angular + omega1 % jacobian1.m_angular);
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
dgFloat32 dt = desc.m_timestep;
dgFloat32 ks = springK;
dgFloat32 kd = springD;
dgFloat32 ksd = dt * ks;
dgFloat32 num = ks * relPosit + kd * relVeloc + ksd * relVeloc;
dgFloat32 den = dgFloat32(1.0f) + dt * kd + dt * ksd;
return num / den;
}
void dgBilateralConstraint::CalculateAngularDerivative(dgInt32 index,
dgContraintDescritor &desc, const dgVector &dir, dgFloat32 stiffness,
dgFloat32 jointAngle, dgFloat32 *jointForce) {
dgFloat32 alphaError;
dgFloat32 omegaError;
NEWTON_ASSERT(jointForce);
dgVector omega1;
NEWTON_ASSERT(m_body0);
dgVector omega0(m_body0->GetOmega());
dgJacobian &jacobian0 = desc.m_jacobian[index].m_jacobian_IM0;
jacobian0.m_linear[0] = dgFloat32(0.0f);
jacobian0.m_linear[1] = dgFloat32(0.0f);
jacobian0.m_linear[2] = dgFloat32(0.0f);
jacobian0.m_linear[3] = dgFloat32(0.0f);
jacobian0.m_angular[0] = dir.m_x;
jacobian0.m_angular[1] = dir.m_y;
jacobian0.m_angular[2] = dir.m_z;
jacobian0.m_angular[3] = dgFloat32(0.0f);
dgJacobian &jacobian1 = desc.m_jacobian[index].m_jacobian_IM1;
NEWTON_ASSERT(m_body1);
omega1 = m_body1->GetOmega();
jacobian1.m_linear[0] = dgFloat32(0.0f);
jacobian1.m_linear[1] = dgFloat32(0.0f);
jacobian1.m_linear[2] = dgFloat32(0.0f);
jacobian1.m_linear[3] = dgFloat32(0.0f);
jacobian1.m_angular[0] = -dir.m_x;
jacobian1.m_angular[1] = -dir.m_y;
jacobian1.m_angular[2] = -dir.m_z;
jacobian1.m_angular[3] = dgFloat32(0.0f);
omegaError = (omega1 - omega0) % dir;
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
dgFloat32 dt = desc.m_timestep;
dgFloat32 ks = DG_POS_DAMP;
dgFloat32 kd = DG_VEL_DAMP;
dgFloat32 ksd = dt * ks;
dgFloat32 num = ks * jointAngle + kd * omegaError + ksd * omegaError;
dgFloat32 den = dgFloat32(1.0f) + dt * kd + dt * ksd;
alphaError = num / den;
m_rowIsMotor[index] = 0;
desc.m_isMotor[index] = 0;
m_motorAcceleration[index] = dgFloat32(0.0f);
//NEWTON_ASSERT (dgAbsf (alphaError - CalculateSpringDamperAcceleration (index, desc, jointAngle, dgVector (0, 0, 0), dgVector (0, 0, 0), ANGULAR_POS_DAMP, ANGULAR_VEL_DAMP)) < 1.0e-2f);
desc.m_penetration[index] = jointAngle;
desc.m_jointAccel[index] = alphaError;
desc.m_restitution[index] = dgFloat32(0.0f);
desc.m_jointStiffness[index] = stiffness;
desc.m_penetrationStiffness[index] = dgFloat32(0.0f);
desc.m_forceBounds[index].m_jointForce = jointForce;
}
void dgBilateralConstraint::CalculatePointDerivative(dgInt32 index,
dgContraintDescritor &desc, const dgVector &dir, const dgPointParam ¶m,
dgFloat32 *jointForce) {
dgFloat32 relPosit;
dgFloat32 relVeloc;
dgFloat32 relCentr;
dgFloat32 accelError;
NEWTON_ASSERT(jointForce);
NEWTON_ASSERT(m_body0);
NEWTON_ASSERT(m_body1);
dgJacobian &jacobian0 = desc.m_jacobian[index].m_jacobian_IM0;
dgVector r0CrossDir(param.m_r0 * dir);
jacobian0.m_linear[0] = dir.m_x;
jacobian0.m_linear[1] = dir.m_y;
jacobian0.m_linear[2] = dir.m_z;
jacobian0.m_linear[3] = dgFloat32(0.0f);
jacobian0.m_angular[0] = r0CrossDir.m_x;
jacobian0.m_angular[1] = r0CrossDir.m_y;
jacobian0.m_angular[2] = r0CrossDir.m_z;
jacobian0.m_angular[3] = dgFloat32(0.0f);
dgJacobian &jacobian1 = desc.m_jacobian[index].m_jacobian_IM1;
dgVector r1CrossDir(dir * param.m_r1);
jacobian1.m_linear[0] = -dir.m_x;
jacobian1.m_linear[1] = -dir.m_y;
jacobian1.m_linear[2] = -dir.m_z;
jacobian1.m_linear[3] = dgFloat32(0.0f);
jacobian1.m_angular[0] = r1CrossDir.m_x;
jacobian1.m_angular[1] = r1CrossDir.m_y;
jacobian1.m_angular[2] = r1CrossDir.m_z;
jacobian1.m_angular[3] = dgFloat32(0.0f);
dgVector velocError(param.m_veloc1 - param.m_veloc0);
dgVector positError(param.m_posit1 - param.m_posit0);
dgVector centrError(param.m_centripetal1 - param.m_centripetal0);
relPosit = positError % dir;
relVeloc = velocError % dir;
relCentr = centrError % dir;
relCentr = ClampValue(relCentr, dgFloat32(-10000.0f), dgFloat32(10000.0f));
// relCentr = 0.0f;
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
dgFloat32 dt = desc.m_timestep;
dgFloat32 ks = DG_POS_DAMP;
dgFloat32 kd = DG_VEL_DAMP;
dgFloat32 ksd = dt * ks;
dgFloat32 num = ks * relPosit + kd * relVeloc + ksd * relVeloc;
dgFloat32 den = dgFloat32(1.0f) + dt * kd + dt * ksd;
accelError = num / den;
//NEWTON_ASSERT (dgAbsf (accelError - CalculateSpringDamperAcceleration (index, desc, 0.0f, param.m_posit0, param.m_posit1, LINEAR_POS_DAMP, LINEAR_VEL_DAMP)) < 1.0e-2f);
m_rowIsMotor[index] = 0;
desc.m_isMotor[index] = 0;
m_motorAcceleration[index] = dgFloat32(0.0f);
// dgJacobianPair m_jacobian[DG_CONSTRAINT_MAX_ROWS];
// dgBilateralBounds m_forceBounds[DG_CONSTRAINT_MAX_ROWS];
// dgFloat32 m_jointAccel[DG_CONSTRAINT_MAX_ROWS];
// dgFloat32 m_jointStiffness[DG_CONSTRAINT_MAX_ROWS];
// dgFloat32 m_restitution[DG_CONSTRAINT_MAX_ROWS];
// dgFloat32 m_penetration[DG_CONSTRAINT_MAX_ROWS];
// dgFloat32 m_penetrationStiffness[DG_CONSTRAINT_MAX_ROWS];
desc.m_penetration[index] = relPosit;
desc.m_penetrationStiffness[index] = dgFloat32(0.01f / 4.0f);
desc.m_jointStiffness[index] = param.m_stiffness;
desc.m_jointAccel[index] = accelError + relCentr;
// save centripetal acceleration in the restitution member
desc.m_restitution[index] = relCentr;
desc.m_forceBounds[index].m_jointForce = jointForce;
}
void dgBilateralConstraint::JointAccelerationsSimd(
const dgJointAccelerationDecriptor ¶ms) {
#ifdef DG_BUILD_SIMD_CODE
dgFloat32 dt;
const dgJacobianPair *const Jt = params.m_Jt;
const dgVector &bodyVeloc0 = m_body0->m_veloc;
const dgVector &bodyOmega0 = m_body0->m_omega;
const dgVector &bodyVeloc1 = m_body1->m_veloc;
const dgVector &bodyOmega1 = m_body1->m_omega;
#if 1
dgFloat32 kd = DG_VEL_DAMP * dgFloat32(4.0f);
dgFloat32 ks = DG_POS_DAMP * dgFloat32(0.25f);
dt = params.m_timeStep;
for (dgInt32 k = 0; k < params.m_rowsCount; k++) {
if (m_rowIsMotor[k]) {
params.m_coordenateAccel[k] = m_motorAcceleration[k] + params.m_externAccelaration[k];
} else {
dgFloat32 num;
dgFloat32 den;
dgFloat32 ksd;
dgFloat32 vRel;
dgFloat32 aRel;
dgFloat32 aRelErr;
dgFloat32 relPosit;
dgVector relVeloc(Jt[k].m_jacobian_IM0.m_linear.CompProduct(bodyVeloc0));
relVeloc += Jt[k].m_jacobian_IM0.m_angular.CompProduct(bodyOmega0);
relVeloc += Jt[k].m_jacobian_IM1.m_linear.CompProduct(bodyVeloc1);
relVeloc += Jt[k].m_jacobian_IM1.m_angular.CompProduct(bodyOmega1);
vRel = relVeloc.m_x + relVeloc.m_y + relVeloc.m_z;
aRel = params.m_externAccelaration[k];
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
// alphaError = num / den;
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
// dgFloat32 dt = desc.m_timestep;
// dgFloat32 ks = DG_POS_DAMP;
// dgFloat32 kd = DG_VEL_DAMP;
// dgFloat32 ksd = dt * ks;
// dgFloat32 num = ks * relPosit + kd * relVeloc + ksd * relVeloc;
// dgFloat32 den = dgFloat32 (1.0f) + dt * kd + dt * ksd;
// accelError = num / den;
ksd = dt * ks;
// relPosit = params.m_penetration[k];
relPosit = params.m_penetration[k] - vRel * dt * params.m_firstPassCoefFlag;
// if (relPosit > dgFloat32 (1.0f) ) {
// relPosit = dgFloat32 (1.0f);
// } else if (params.m_penetration[k] < dgFloat32 (-1.0f) ) {
// relPosit = dgFloat32 (-1.0f);
// }
params.m_penetration[k] = relPosit;
num = ks * relPosit - kd * vRel - ksd * vRel;
den = dgFloat32(1.0f) + dt * kd + dt * ksd;
aRelErr = num / den;
// centripetal acceleration is stored restitution member
params.m_coordenateAccel[k] = aRelErr + params.m_restitution[k] + aRel;
#else
dgFloat32 vRel;
dgFloat32 aRel;
dgFloat32 penetrationVeloc;
dgFloat32 penetrationCorrection;
dgVector relVeloc(Jt[k].m_jacobian_IM0.m_linear.CompProduct(bodyVeloc0));
relVeloc += Jt[k].m_jacobian_IM0.m_angular.CompProduct(bodyOmega0);
relVeloc += Jt[k].m_jacobian_IM1.m_linear.CompProduct(bodyVeloc1);
relVeloc += Jt[k].m_jacobian_IM1.m_angular.CompProduct(bodyOmega1);
vRel = relVeloc.m_x + relVeloc.m_y + relVeloc.m_z;
penetrationCorrection = vRel * params.m_timeStep * params.m_firstPassCoefFlag;
params.m_penetration[k] = params.m_penetration[k] - penetrationCorrection;
if (params.m_penetration[k] > dgFloat32(1.0f)) {
params.m_penetration[k] = dgFloat32(1.0f);
} else if (params.m_penetration[k] < dgFloat32(-1.0f)) {
params.m_penetration[k] = dgFloat32(-1.0f);
}
penetrationVeloc = -(params.m_penetration[k] * params.m_penetrationStiffness[k] * params.m_invTimeStep);
vRel += penetrationVeloc;
// centripetal acceleration is stored restitution member
aRel = params.m_externAccelaration[k] + params.m_restitution[k];
params.m_coordenateAccel[k] = (aRel - vRel * params.m_invTimeStep);
#endif
}
}
#endif
}
void dgBilateralConstraint::JointAccelerations(
const dgJointAccelerationDecriptor ¶ms) {
dgFloat32 dt;
const dgJacobianPair *const Jt = params.m_Jt;
const dgVector &bodyVeloc0 = m_body0->m_veloc;
const dgVector &bodyOmega0 = m_body0->m_omega;
const dgVector &bodyVeloc1 = m_body1->m_veloc;
const dgVector &bodyOmega1 = m_body1->m_omega;
#if 1
dgFloat32 kd = DG_VEL_DAMP * dgFloat32(4.0f);
dgFloat32 ks = DG_POS_DAMP * dgFloat32(0.25f);
dt = params.m_timeStep;
for (dgInt32 k = 0; k < params.m_rowsCount; k++) {
if (m_rowIsMotor[k]) {
params.m_coordenateAccel[k] = m_motorAcceleration[k] + params.m_externAccelaration[k];
} else {
dgFloat32 num;
dgFloat32 den;
dgFloat32 ksd;
dgFloat32 vRel;
dgFloat32 aRel;
dgFloat32 aRelErr;
dgFloat32 relPosit;
dgVector relVeloc(Jt[k].m_jacobian_IM0.m_linear.CompProduct(bodyVeloc0));
relVeloc += Jt[k].m_jacobian_IM0.m_angular.CompProduct(bodyOmega0);
relVeloc += Jt[k].m_jacobian_IM1.m_linear.CompProduct(bodyVeloc1);
relVeloc += Jt[k].m_jacobian_IM1.m_angular.CompProduct(bodyOmega1);
vRel = relVeloc.m_x + relVeloc.m_y + relVeloc.m_z;
aRel = params.m_externAccelaration[k];
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
// alphaError = num / den;
// at = [- ks (x2 - x1) - kd * (v2 - v1) - dt * ks * (v2 - v1)] / [1 + dt * kd + dt * dt * ks]
// dgFloat32 dt = desc.m_timestep;
// dgFloat32 ks = DG_POS_DAMP;
// dgFloat32 kd = DG_VEL_DAMP;
// dgFloat32 ksd = dt * ks;
// dgFloat32 num = ks * relPosit + kd * relVeloc + ksd * relVeloc;
// dgFloat32 den = dgFloat32 (1.0f) + dt * kd + dt * ksd;
// accelError = num / den;
ksd = dt * ks;
// relPosit = params.m_penetration[k];
relPosit = params.m_penetration[k] - vRel * dt * params.m_firstPassCoefFlag;
// if (relPosit > dgFloat32 (1.0f) ) {
// relPosit = dgFloat32 (1.0f);
// } else if (params.m_penetration[k] < dgFloat32 (-1.0f) ) {
// relPosit = dgFloat32 (-1.0f);
// }
params.m_penetration[k] = relPosit;
num = ks * relPosit - kd * vRel - ksd * vRel;
den = dgFloat32(1.0f) + dt * kd + dt * ksd;
aRelErr = num / den;
// centripetal acceleration is stored restitution member
params.m_coordenateAccel[k] = aRelErr + params.m_restitution[k] + aRel;
#else
dgFloat32 vRel;
dgFloat32 aRel;
dgFloat32 penetrationVeloc;
dgFloat32 penetrationCorrection;
dgVector relVeloc(Jt[k].m_jacobian_IM0.m_linear.CompProduct(bodyVeloc0));
relVeloc += Jt[k].m_jacobian_IM0.m_angular.CompProduct(bodyOmega0);
relVeloc += Jt[k].m_jacobian_IM1.m_linear.CompProduct(bodyVeloc1);
relVeloc += Jt[k].m_jacobian_IM1.m_angular.CompProduct(bodyOmega1);
vRel = relVeloc.m_x + relVeloc.m_y + relVeloc.m_z;
penetrationCorrection = vRel * params.m_timeStep * params.m_firstPassCoefFlag;
params.m_penetration[k] = params.m_penetration[k] - penetrationCorrection;
if (params.m_penetration[k] > dgFloat32(1.0f)) {
params.m_penetration[k] = dgFloat32(1.0f);
} else if (params.m_penetration[k] < dgFloat32(-1.0f)) {
params.m_penetration[k] = dgFloat32(-1.0f);
}
penetrationVeloc = -(params.m_penetration[k] * params.m_penetrationStiffness[k] * params.m_invTimeStep);
vRel += penetrationVeloc;
// centripetal acceleration is stored restitution member
aRel = params.m_externAccelaration[k] + params.m_restitution[k];
params.m_coordenateAccel[k] = (aRel - vRel * params.m_invTimeStep);
#endif
}
}
}
void dgBilateralConstraint::JointVelocityCorrection(
const dgJointAccelerationDecriptor ¶ms) {
/*
const dgJacobianPair* const Jt = params.m_Jt;
const dgVector& bodyVeloc0 = params.m_body0->m_correctionVeloc;
const dgVector& bodyOmega0 = params.m_body0->m_correctionOmega;
const dgVector& bodyVeloc1 = params.m_body1->m_correctionVeloc;
const dgVector& bodyOmega1 = params.m_body1->m_correctionOmega;
for (dgInt32 k = 0; k < params.m_rowsCount; k ++) {
dgFloat32 vRel;
dgFloat32 penetrationCorrection;
dgVector relVeloc (Jt[k].m_jacobian_IM0.m_linear.CompProduct(bodyVeloc0));
relVeloc += Jt[k].m_jacobian_IM0.m_angular.CompProduct(bodyOmega0);
relVeloc += Jt[k].m_jacobian_IM1.m_linear.CompProduct(bodyVeloc1);
relVeloc += Jt[k].m_jacobian_IM1.m_angular.CompProduct(bodyOmega1);
vRel = relVeloc.m_x + relVeloc.m_y + relVeloc.m_z;
penetrationCorrection = vRel * params.m_timeStep;
params.m_penetration[k] -= penetrationCorrection;
params.m_coordenateAccel[k] = - vRel + params.m_penetration[k] * params.m_invTimeStep * 0.25f;
}
*/
}
|