1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#if !defined(AFX_DGBODY_H__C16EDCD6_53C4_4C6F_A70A_591819F7187E__INCLUDED_)
#define AFX_DGBODY_H__C16EDCD6_53C4_4C6F_A70A_591819F7187E__INCLUDED_
#include "dgBodyMasterList.h"
#include "hpl1/engine/libraries/newton/core/dg.h"
class dgLink;
class dgBody;
class dgWorld;
class dgCollision;
class dgBroadPhaseCell;
#define DG_MIN_SPEED_ATT dgFloat32(0.0f)
#define DG_MAX_SPEED_ATT dgFloat32(0.02f)
#define DG_INFINITE_MASS dgFloat32(1.0e15f)
#define DG_FREEZE_MAG dgFloat32(0.1f)
#define DG_FREEZE_MAG2 dgFloat32(DG_FREEZE_MAG *DG_FREEZE_MAG)
#define DG_ErrTolerance (1.0e-2f)
#define DG_ErrTolerance2 (DG_ErrTolerance * DG_ErrTolerance)
DG_MSC_VECTOR_ALIGMENT
struct dgLineBox {
dgVector m_l0;
dgVector m_l1;
dgVector m_boxL0;
dgVector m_boxL1;
} DG_GCC_VECTOR_ALIGMENT;
class dgConvexCastReturnInfo {
public:
dgFloat32 m_point[4]; // collision point in global space
dgFloat32 m_normal[4]; // surface normal at collision point in global space
dgFloat32 m_normalOnHitPoint[4]; // surface normal at the surface of the hit body,
// is the same as the normal calculate by a raycast passing by the hit point in the direction of the cast
dgFloat32 m_penetration; // contact penetration at collision point
dgInt32 m_contaID; // collision ID at contact point
const dgBody *m_hitBody; // body hit at contact point
};
typedef void(dgApi *OnBodyDestroy)(const NewtonBody *const me);
typedef void(dgApi *OnApplyExtForceAndTorque)(NewtonBody *const me, dFloat timestep, int32 threadIndex);
typedef void(dgApi *OnMatrixUpdateCallback)(const NewtonBody *const body, const dFloat *const matrix, int32 threadIndex);
typedef dgUnsigned32(dgApi *OnRayPrecastAction)(const NewtonBody *const body, const NewtonCollision *const collision, void *const userData);
typedef dgFloat32(dgApi *OnRayCastAction)(const NewtonBody *const body, const dFloat *const hitNormal, int collisionID, void *const userData, dFloat intersectParam);
typedef dgUnsigned32(dgApi *GetBuoyancyPlane)(const int32 collisionID, void *const context, const dFloat *const globalSpaceMatrix, dFloat *const globalSpacePlane);
#define OverlapTest(body0, body1) dgOverlapTest((body0)->m_minAABB, (body0)->m_maxAABB, (body1)->m_minAABB, (body1)->m_maxAABB)
//#define OverlapTest_SSE(body0,body1) dgOverlapTest_SSE ((body0)->m_minAABB, (body0)->m_maxAABB, (body1)->m_minAABB, (body1)->m_maxAABB)
class dgBroadPhaseList {
public:
dgBroadPhaseCell *m_cell;
void *m_axisArrayNode[3];
void reset() {
m_cell = NULL;
for (uint i = 0; i < ARRAYSIZE(m_axisArrayNode); i++) m_axisArrayNode[i] = NULL;
}
};
DG_MSC_VECTOR_ALIGMENT
class dgBody {
public:
DG_CLASS_ALLOCATOR(allocator)
dgBody();
~dgBody();
void AddForce(const dgVector &force);
void AddTorque(const dgVector &torque);
void AttachCollision(dgCollision *collision);
void SetGroupID(dgUnsigned32 id);
void SetMatrix(const dgMatrix &matrix);
void SetMatrixIgnoreSleep(const dgMatrix &matrix);
void SetUserData(void *const userData);
void SetForce(const dgVector &force);
void SetTorque(const dgVector &torque);
void SetOmega(const dgVector &omega);
void SetVelocity(const dgVector &velocity);
void SetLinearDamping(dgFloat32 linearDamp);
void SetAngularDamping(const dgVector &angularDamp);
void SetCentreOfMass(const dgVector &com);
void SetAparentMassMatrix(const dgVector &massMatrix);
void SetMassMatrix(dgFloat32 mass, dgFloat32 Ix, dgFloat32 Iy, dgFloat32 Iz);
// void SetGyroscopicTorqueMode (bool mode);
void SetCollisionWithLinkedBodies(bool state);
// void SetFreezeTreshhold (dgFloat32 freezeAccel2, dgFloat32 freezeAlpha2, dgFloat32 freezeSpeed2, dgFloat32 freezeOmega2);
void SetContinuesCollisionMode(bool mode);
void SetDestructorCallback(OnBodyDestroy destructor);
void SetMatrixUpdateCallback(OnMatrixUpdateCallback callback);
OnMatrixUpdateCallback GetMatrixUpdateCallback() const;
// void SetAutoactiveNotify (OnActivation activate);
void SetExtForceAndTorqueCallback(OnApplyExtForceAndTorque callback);
OnApplyExtForceAndTorque GetExtForceAndTorqueCallback() const;
dgConstraint *GetFirstJoint() const;
dgConstraint *GetNextJoint(const dgConstraint *joint) const;
dgConstraint *GetFirstContact() const;
dgConstraint *GetNextContact(const dgConstraint *joint) const;
void *GetUserData() const;
dgWorld *GetWorld() const;
const dgVector &GetMass() const;
const dgVector &GetInvMass() const;
const dgVector &GetAparentMass() const;
const dgVector &GetOmega() const;
const dgVector &GetVelocity() const;
const dgVector &GetForce() const;
const dgVector &GetTorque() const;
const dgVector &GetNetForce() const;
const dgVector &GetNetTorque() const;
dgCollision *GetCollision() const;
dgUnsigned32 GetGroupID() const;
const dgMatrix &GetMatrix() const;
const dgVector &GetPosition() const;
const dgQuaternion &GetRotation() const;
dgFloat32 GetLinearDamping() const;
dgVector GetAngularDamping() const;
dgVector GetCentreOfMass() const;
bool IsInEquelibrium() const;
void GetAABB(dgVector &p0, dgVector &p1) const;
bool GetSleepState() const;
bool GetAutoSleep() const;
void SetAutoSleep(bool state);
bool GetFreeze() const;
void SetFreeze(bool state);
void Freeze();
void Unfreeze();
dgInt32 GetUniqueID() const;
bool GetCollisionWithLinkedBodies() const;
bool GetContinuesCollisionMode() const;
void AddBuoyancyForce(dgFloat32 fluidDensity, dgFloat32 fluidLinearViscousity, dgFloat32 fluidAngularViscousity,
const dgVector &gravityVector, GetBuoyancyPlane buoyancyPlane, void *const context);
dgVector CalculateInverseDynamicForce(const dgVector &desiredVeloc, dgFloat32 timestep) const;
// dgFloat32 RayCast (const dgVector& globalP0, const dgVector& globalP1,
dgFloat32 RayCast(const dgLineBox &line,
OnRayCastAction filter, OnRayPrecastAction preFilter, void *const userData, dgFloat32 minT) const;
// dgFloat32 RayCastSimd (const dgVector& globalP0, const dgVector& globalP1,
// OnRayCastAction filter, OnRayPrecastAction preFilter, void* userData, dgFloat32 minT) const;
void CalcInvInertiaMatrix();
void CalcInvInertiaMatrixSimd();
const dgMatrix &GetCollisionMatrix() const;
dgBodyMasterList::dgListNode *GetMasterList() const;
void InvalidateCache();
private:
void SetMatrixOriginAndRotation(const dgMatrix &matrix);
void CalculateContinueVelocity(dgFloat32 timestep, dgVector &veloc, dgVector &omega) const;
void CalculateContinueVelocitySimd(dgFloat32 timestep, dgVector &veloc, dgVector &omega) const;
dgVector GetTrajectory(const dgVector &veloc, const dgVector &omega) const;
void IntegrateVelocity(dgFloat32 timestep);
void UpdateMatrix(dgFloat32 timestep, dgInt32 threadIndex);
void UpdateCollisionMatrix(dgFloat32 timestep, dgInt32 threadIndex);
void UpdateCollisionMatrixSimd(dgFloat32 timestep, dgInt32 threadIndex);
void ApplyExtenalForces(dgFloat32 timestep, dgInt32 threadIndex);
void AddImpulse(const dgVector &pointVeloc, const dgVector &pointPosit);
void ApplyImpulseArray(dgInt32 count, dgInt32 strideInBytes, const dgFloat32 *const impulseArray, const dgFloat32 *const pointArray);
// void AddGyroscopicTorque();
void AddDamingAcceleration();
dgMatrix CalculateInertiaMatrix() const;
dgMatrix CalculateInvInertiaMatrix() const;
dgMatrix m_matrix;
dgMatrix m_collisionWorldMatrix;
dgMatrix m_invWorldInertiaMatrix;
dgQuaternion m_rotation;
dgVector m_veloc;
dgVector m_omega;
dgVector m_accel;
dgVector m_alpha;
dgVector m_netForce;
dgVector m_netTorque;
dgVector m_prevExternalForce;
dgVector m_prevExternalTorque;
dgVector m_mass;
dgVector m_invMass;
dgVector m_aparentMass;
dgVector m_localCentreOfMass;
dgVector m_globalCentreOfMass;
dgVector m_minAABB;
dgVector m_maxAABB;
dgVector m_dampCoef;
dgInt32 m_index;
dgInt32 m_uniqueID;
dgInt32 m_bodyGroupId;
dgInt32 m_genericLRUMark;
dgInt32 m_sleepingCounter;
dgUnsigned32 m_dynamicsLru;
dgUnsigned32 m_isInDerstruionArrayLRU;
dgUnsigned32 m_freeze : 1;
dgUnsigned32 m_sleeping : 1;
dgUnsigned32 m_autoSleep : 1;
dgUnsigned32 m_isInWorld : 1;
dgUnsigned32 m_equilibrium : 1;
dgUnsigned32 m_continueCollisionMode : 1;
dgUnsigned32 m_spawnnedFromCallback : 1;
dgUnsigned32 m_collideWithLinkedBodies : 1;
dgUnsigned32 m_solverInContinueCollision : 1;
dgUnsigned32 m_inCallback : 1;
void *m_userData;
dgWorld *m_world;
dgCollision *m_collision;
dgBroadPhaseList m_collisionCell;
dgBodyMasterList::dgListNode *m_masterNode;
OnBodyDestroy m_destructor;
OnMatrixUpdateCallback m_matrixUpdate;
OnApplyExtForceAndTorque m_applyExtForces;
void reset();
friend class dgWorld;
friend class dgContact;
friend class dgCollision;
friend class dgBodyChunk;
friend class dgSortArray;
friend class dgConstraint;
friend class dgContactArray;
friend class dgContactSolver;
friend class dgBroadPhaseCell;
friend class dgCollisionConvex;
friend class dgCollisionEllipse;
friend class dgCollisionCompound;
friend class dgCollisionUserMesh;
friend class dgWorldDynamicUpdate;
friend class dgCollisionConvexHull;
friend class dgCollisionScene;
friend class dgCollisionBVH;
friend class dgBodyMasterList;
friend class dgJacobianMemory;
friend class dgBilateralConstraint;
friend class dgBroadPhaseCollision;
friend class dgSolverWorlkerThreads;
friend class dgCollisionConvexModifier;
friend class dgCollidingPairCollector;
friend class dgAABBOverlapPairList;
friend class dgParallelSolverClear;
friend class dgParallelSolverUpdateForce;
friend class dgParallelSolverUpdateVeloc;
friend class dgParallelSolverBodyInertia;
friend class dgBroadPhaseApplyExternalForce;
friend class dgParallelSolverBuildJacobianRows;
friend class dgParallelSolverBuildJacobianMatrix;
} DG_GCC_VECTOR_ALIGMENT;
// *****************************************************************************
//
// Implementation
//
// *****************************************************************************
inline void dgBody::reset() {
m_matrix = dgGetZeroMatrix();
m_collisionWorldMatrix = dgGetZeroMatrix();
m_invWorldInertiaMatrix = dgGetZeroMatrix();
m_rotation = dgQuaternion(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_veloc = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_omega = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_accel = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_alpha = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_netForce = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_netTorque = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_prevExternalForce = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_prevExternalTorque = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_mass = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_invMass = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_aparentMass = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_localCentreOfMass = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_globalCentreOfMass = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_minAABB = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_maxAABB = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_dampCoef = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_index = 0;
m_uniqueID = 0;
m_bodyGroupId = 0;
m_genericLRUMark = 0;
m_sleepingCounter = 0;
m_dynamicsLru = 0;
m_isInDerstruionArrayLRU = 0;
m_freeze = 0;
m_sleeping = 0;
m_autoSleep = 0;
m_isInWorld = 0;
m_equilibrium = 0;
m_continueCollisionMode = 0;
m_spawnnedFromCallback = 0;
m_collideWithLinkedBodies = 0;
m_solverInContinueCollision = 0;
m_inCallback = 0;
m_userData = NULL;
m_world = NULL;
m_collision = NULL;
m_collisionCell.reset();
m_masterNode = NULL;
m_destructor = NULL;
m_matrixUpdate = NULL;
m_applyExtForces = NULL;
}
inline void dgBody::SetAutoSleep(bool state) {
m_autoSleep = dgUnsigned32(state);
if (m_autoSleep == 0) {
m_sleeping = false;
}
}
inline bool dgBody::GetAutoSleep() const {
return m_autoSleep;
}
inline bool dgBody::GetSleepState() const {
return m_sleeping;
}
/*
inline bool dgBody::GetActive () const
{
return m_active;
}
*/
inline bool dgBody::GetCollisionWithLinkedBodies() const {
return m_collideWithLinkedBodies;
}
inline void dgBody::SetCollisionWithLinkedBodies(bool state) {
m_collideWithLinkedBodies = dgUnsigned32(state);
}
inline void dgBody::SetUserData(void *const userData) {
m_userData = userData;
}
inline void *dgBody::GetUserData() const {
return m_userData;
}
inline dgWorld *dgBody::GetWorld() const {
return m_world;
}
inline dgUnsigned32 dgBody::GetGroupID() const {
return dgUnsigned32(m_bodyGroupId);
}
inline void dgBody::SetGroupID(dgUnsigned32 id) {
m_bodyGroupId = dgInt32(id);
}
inline void dgBody::SetDestructorCallback(OnBodyDestroy destructor) {
m_destructor = destructor;
}
inline void dgBody::SetExtForceAndTorqueCallback(OnApplyExtForceAndTorque callback) {
m_applyExtForces = callback;
}
inline OnApplyExtForceAndTorque dgBody::GetExtForceAndTorqueCallback() const {
return m_applyExtForces;
}
/*
inline void dgBody::SetAutoactiveNotify (OnActivation activate)
{
m_activation = activate;
if (m_activation) {
m_activation (*this, m_active ? 1 : 0);
}
}
*/
inline void dgBody::SetMatrixUpdateCallback(OnMatrixUpdateCallback callback) {
m_matrixUpdate = callback;
}
inline OnMatrixUpdateCallback dgBody::GetMatrixUpdateCallback() const {
return m_matrixUpdate;
}
/*
inline void dgBody::SetFreezeTreshhold (dgFloat32 freezeAccel2, dgFloat32 freezeAlpha2, dgFloat32 freezeSpeed2, dgFloat32 freezeOmega2)
{
m_freezeAccel2 = GetMax (freezeAccel2, dgFloat32(DG_FREEZE_MAG2));
m_freezeAlpha2 = GetMax (freezeAlpha2, dgFloat32(DG_FREEZE_MAG2));
m_freezeSpeed2 = GetMax (freezeSpeed2, dgFloat32(DG_FREEZE_MAG2));
m_freezeOmega2 = GetMax (freezeOmega2, dgFloat32(DG_FREEZE_MAG2));
}
inline void dgBody::GetFreezeTreshhold (dgFloat32& freezeAccel2, dgFloat32& freezeAlpha2, dgFloat32& freezeSpeed2, dgFloat32& freezeOmega2) const
{
freezeAccel2 = m_freezeAccel2;
freezeAlpha2 = m_freezeAlpha2;
freezeSpeed2 = m_freezeSpeed2;
freezeOmega2 = m_freezeOmega2;
}
*/
inline void dgBody::SetOmega(const dgVector &omega) {
m_omega = omega;
}
inline void dgBody::SetVelocity(const dgVector &velocity) {
m_veloc = velocity;
}
inline void dgBody::SetCentreOfMass(const dgVector &com) {
m_localCentreOfMass.m_x = com.m_x;
m_localCentreOfMass.m_y = com.m_y;
m_localCentreOfMass.m_z = com.m_z;
m_localCentreOfMass.m_w = dgFloat32(1.0f);
m_globalCentreOfMass = m_matrix.TransformVector(m_localCentreOfMass);
}
inline void dgBody::AddForce(const dgVector &force) {
SetForce(m_accel + force);
}
inline void dgBody::AddTorque(const dgVector &torque) {
SetTorque(torque + m_alpha);
}
inline const dgVector &dgBody::GetMass() const {
return m_mass;
}
inline const dgVector &dgBody::GetAparentMass() const {
return m_aparentMass;
}
inline const dgVector &dgBody::GetInvMass() const {
return m_invMass;
}
inline const dgVector &dgBody::GetOmega() const {
return m_omega;
}
inline const dgVector &dgBody::GetVelocity() const {
return m_veloc;
}
inline const dgVector &dgBody::GetForce() const {
return m_accel;
}
inline const dgVector &dgBody::GetTorque() const {
return m_alpha;
}
inline const dgVector &dgBody::GetNetForce() const {
return m_netForce;
}
inline const dgVector &dgBody::GetNetTorque() const {
return m_netTorque;
}
inline dgCollision *dgBody::GetCollision() const {
return m_collision;
}
inline const dgVector &dgBody::GetPosition() const {
return m_matrix.m_posit;
}
inline const dgQuaternion &dgBody::GetRotation() const {
return m_rotation;
}
inline const dgMatrix &dgBody::GetMatrix() const {
return m_matrix;
}
inline dgVector dgBody::GetCentreOfMass() const {
return m_localCentreOfMass;
}
inline void dgBody::GetAABB(dgVector &p0, dgVector &p1) const {
p0.m_x = m_minAABB.m_x;
p0.m_y = m_minAABB.m_y;
p0.m_z = m_minAABB.m_z;
p1.m_x = m_maxAABB.m_x;
p1.m_y = m_maxAABB.m_y;
p1.m_z = m_maxAABB.m_z;
}
/*
inline void dgBody::SetGyroscopicTorqueMode (bool mode)
{
m_applyGyroscopic = mode;
}
inline bool dgBody::GetGyroscopicTorqueMode () const
{
return m_applyGyroscopic;
}
*/
inline const dgMatrix &dgBody::GetCollisionMatrix() const {
return m_collisionWorldMatrix;
}
inline void dgBody::SetContinuesCollisionMode(bool mode) {
m_continueCollisionMode = dgUnsigned32(mode);
}
inline bool dgBody::GetContinuesCollisionMode() const {
return m_continueCollisionMode;
}
inline void dgBody::ApplyExtenalForces(dgFloat32 timestep, dgInt32 threadIndex) {
m_accel = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
m_alpha = dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f));
if (m_applyExtForces) {
m_applyExtForces(reinterpret_cast<NewtonBody *>(this), timestep, threadIndex);
}
}
inline dgFloat32 dgBody::GetLinearDamping() const {
// return (m_linearDampCoef - DG_MIN_SPEED_ATT) / (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT);
return (m_dampCoef.m_w - DG_MIN_SPEED_ATT) / (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT);
}
inline dgVector dgBody::GetAngularDamping() const {
return dgVector((m_dampCoef.m_x - DG_MIN_SPEED_ATT) / (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT),
(m_dampCoef.m_y - DG_MIN_SPEED_ATT) / (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT),
(m_dampCoef.m_z - DG_MIN_SPEED_ATT) / (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT), dgFloat32(0.0f));
}
inline void dgBody::SetLinearDamping(dgFloat32 linearDamp) {
linearDamp = ClampValue(linearDamp, dgFloat32(0.0f), dgFloat32(1.0f));
m_dampCoef.m_w = DG_MIN_SPEED_ATT + (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT) * linearDamp;
}
inline void dgBody::SetAngularDamping(const dgVector &angularDamp) {
dgFloat32 tmp;
tmp = ClampValue(angularDamp.m_x, dgFloat32(0.0f), dgFloat32(1.0f));
m_dampCoef.m_x = DG_MIN_SPEED_ATT + (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT) * tmp;
tmp = ClampValue(angularDamp.m_y, dgFloat32(0.0f), dgFloat32(1.0f));
m_dampCoef.m_y = DG_MIN_SPEED_ATT + (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT) * tmp;
tmp = ClampValue(angularDamp.m_z, dgFloat32(0.0f), dgFloat32(1.0f));
m_dampCoef.m_z = DG_MIN_SPEED_ATT + (DG_MAX_SPEED_ATT - DG_MIN_SPEED_ATT) * tmp;
}
inline void dgBody::AddDamingAcceleration() {
m_veloc -= m_veloc.Scale(m_dampCoef.m_w);
dgVector omega(m_matrix.UnrotateVector(m_omega));
omega -= omega.CompProduct(m_dampCoef);
m_omega = m_matrix.RotateVector(omega);
}
/*
inline void dgBody::AddGyroscopicTorque()
{
NEWTON_ASSERT (0);
if (m_applyGyroscopic) {
const dgVector inertia = m_mass;
dgVector omega (m_matrix.UnrotateVector (m_omega));
m_alpha -= m_matrix.RotateVector(omega.CompProduct(inertia) * omega);
}
}
*/
inline void dgBody::SetForce(const dgVector &force) {
dgFloat32 errMag2;
dgVector error;
m_accel = force;
error = m_accel - m_prevExternalForce;
errMag2 = (error % error) * m_invMass[3] * m_invMass[3];
if (errMag2 > DG_ErrTolerance2) {
m_sleepingCounter = 0;
}
}
inline void dgBody::SetTorque(const dgVector &torque) {
dgFloat32 errMag2;
dgVector error;
m_alpha = torque;
error = m_alpha - m_prevExternalTorque;
errMag2 = (error % error) * m_invMass[3] * m_invMass[3];
if (errMag2 > DG_ErrTolerance2) {
m_sleepingCounter = 0;
}
}
// inline int dgBody::GetApplicationFreezeState() const
//{
// return m_aplycationFreeze ? 1 : 0;
// }
// inline void dgBody::SetApplicationFreezeState(dgInt32 state)
//{
// m_aplycationFreeze = state ? true : false;
// }
inline dgBodyMasterList::dgListNode *dgBody::GetMasterList() const {
return m_masterNode;
}
inline bool dgBody::GetFreeze() const {
return m_freeze;
}
inline dgInt32 dgBody::GetUniqueID() const {
return m_uniqueID;
}
inline bool dgBody::IsInEquelibrium() const {
dgFloat32 invMassMag2 = m_invMass[3] * m_invMass[3];
if (m_equilibrium) {
dgVector error(m_accel - m_prevExternalForce);
dgFloat32 errMag2 = (error % error) * invMassMag2;
if (errMag2 < DG_ErrTolerance2) {
error = m_alpha - m_prevExternalTorque;
errMag2 = (error % error) * invMassMag2;
if (errMag2 < DG_ErrTolerance2) {
errMag2 = (m_netForce % m_netForce) * invMassMag2;
if (errMag2 < DG_ErrTolerance2) {
errMag2 = (m_netTorque % m_netTorque) * invMassMag2;
if (errMag2 < DG_ErrTolerance2) {
errMag2 = m_veloc % m_veloc;
if (errMag2 < DG_ErrTolerance2) {
errMag2 = m_omega % m_omega;
if (errMag2 < DG_ErrTolerance2) {
return true;
}
}
}
}
}
}
}
return false;
}
inline void dgBody::SetMatrixOriginAndRotation(const dgMatrix &matrix) {
m_matrix = matrix;
#ifdef _DEBUG
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
NEWTON_ASSERT(dgCheckFloat(m_matrix[i][j]));
}
}
int j0 = 1;
int j1 = 2;
for (dgInt32 i = 0; i < 3; i++) {
dgFloat32 val;
NEWTON_ASSERT(m_matrix[i][3] == 0.0f);
val = m_matrix[i] % m_matrix[i];
NEWTON_ASSERT(dgAbsf(val - 1.0f) < 1.0e-5f);
dgVector tmp(m_matrix[j0] * m_matrix[j1]);
val = tmp % m_matrix[i];
NEWTON_ASSERT(dgAbsf(val - 1.0f) < 1.0e-5f);
j0 = j1;
j1 = i;
}
#endif
m_rotation = dgQuaternion(m_matrix);
m_globalCentreOfMass = m_matrix.TransformVector(m_localCentreOfMass);
// matrix.m_front = matrix.m_front.Scale (dgRsqrt (matrix.m_front % matrix.m_front));
// matrix.m_right = matrix.m_front * matrix.m_up;
// matrix.m_right = matrix.m_right.Scale (dgRsqrt (matrix.m_right % matrix.m_right));
// matrix.m_up = matrix.m_right * matrix.m_front;
}
#endif // !defined(AFX_DGBODY_H__C16EDCD6_53C4_4C6F_A70A_591819F7187E__INCLUDED_)
|