File: dgCollisionSphere.cpp

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (398 lines) | stat: -rw-r--r-- 13,750 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
 *
 * This software is provided 'as-is', without any express or implied
 * warranty. In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 *
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 *
 * 3. This notice may not be removed or altered from any source distribution.
 */

#include "dgCollisionSphere.h"
#include "dgBody.h"
#include "dgContact.h"
#include "dgWorld.h"
#include "hpl1/engine/libraries/newton/core/dg.h"


//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

#define EDGE_COUNT 96

dgInt32 dgCollisionSphere::m_shapeRefCount = 0;
dgVector dgCollisionSphere::m_unitSphere[DG_SPHERE_VERTEX_COUNT];
dgConvexSimplexEdge dgCollisionSphere::m_edgeArray[EDGE_COUNT];

dgCollisionSphere::dgCollisionSphere(dgMemoryAllocator *const allocator,
                                     dgUnsigned32 signature, dgFloat32 radii, const dgMatrix &offsetMatrix) : dgCollisionConvex(allocator, signature, offsetMatrix, m_sphereCollision) {
	Init(radii, allocator);
}

dgCollisionSphere::dgCollisionSphere(dgWorld *const world,
                                     dgDeserialize deserialization, void *const userData) : dgCollisionConvex(world, deserialization, userData) {
	dgVector size;
	deserialization(userData, &size, sizeof(dgVector));
	Init(size.m_x, world->GetAllocator());
}

dgCollisionSphere::~dgCollisionSphere() {
	m_shapeRefCount--;
	NEWTON_ASSERT(m_shapeRefCount >= 0);

	dgCollisionConvex::m_simplex = NULL;
	dgCollisionConvex::m_vertex = NULL;
}

void dgCollisionSphere::Init(dgFloat32 radius, dgMemoryAllocator *allocator) {
	m_rtti |= dgCollisionSphere_RTTI;
	m_radius = radius;

	m_edgeCount = EDGE_COUNT;
	m_vertexCount = DG_SPHERE_VERTEX_COUNT;
	dgCollisionConvex::m_vertex = m_vertex;

	if (!m_shapeRefCount) {

		dgInt32 indexList[256];
		dgVector tmpVectex[256];

		dgVector p0(dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f),
		            dgFloat32(0.0f));
		dgVector p1(-dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f),
		            dgFloat32(0.0f));
		dgVector p2(dgFloat32(0.0f), dgFloat32(1.0f), dgFloat32(0.0f),
		            dgFloat32(0.0f));
		dgVector p3(dgFloat32(0.0f), -dgFloat32(1.0f), dgFloat32(0.0f),
		            dgFloat32(0.0f));
		dgVector p4(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f),
		            dgFloat32(0.0f));
		dgVector p5(dgFloat32(0.0f), dgFloat32(0.0f), -dgFloat32(1.0f),
		            dgFloat32(0.0f));

		dgInt32 i = 1;
		dgInt32 count = 0;
		TesselateTriangle(i, p4, p0, p2, count, tmpVectex);
		TesselateTriangle(i, p4, p2, p1, count, tmpVectex);
		TesselateTriangle(i, p4, p1, p3, count, tmpVectex);
		TesselateTriangle(i, p4, p3, p0, count, tmpVectex);
		TesselateTriangle(i, p5, p2, p0, count, tmpVectex);
		TesselateTriangle(i, p5, p1, p2, count, tmpVectex);
		TesselateTriangle(i, p5, p3, p1, count, tmpVectex);
		TesselateTriangle(i, p5, p0, p3, count, tmpVectex);

		//NEWTON_ASSERT (count == EDGE_COUNT);
		dgInt32 vertexCount = dgVertexListToIndexList(&tmpVectex[0].m_x,
		                      sizeof(dgVector), 3 * sizeof(dgFloat32), 0, count, indexList, 0.001f);

		NEWTON_ASSERT(vertexCount == DG_SPHERE_VERTEX_COUNT);
		for (dgInt32 j = 0; j < vertexCount; j++) {
			m_unitSphere[j] = tmpVectex[j];
		}
		dgPolyhedra polyhedra(m_allocator);

		polyhedra.BeginFace();
		for (dgInt32 j = 0; j < count; j += 3) {
#ifdef _DEBUG
			dgEdge *const edge = polyhedra.AddFace(indexList[j], indexList[j + 1],
			                                       indexList[j + 2]);
			NEWTON_ASSERT(edge);
#else
			polyhedra.AddFace(indexList[j], indexList[j + 1], indexList[j + 2]);
#endif
		}
		polyhedra.EndFace();

		dgUnsigned64 i1 = 0;
		dgPolyhedra::Iterator iter(polyhedra);
		for (iter.Begin(); iter; iter++) {
			dgEdge *const edge = &(*iter);
			edge->m_userData = i1;
			i1++;
		}

		for (iter.Begin(); iter; iter++) {
			dgEdge *const edge = &(*iter);

			dgConvexSimplexEdge *const ptr = &m_edgeArray[edge->m_userData];

			ptr->m_vertex = edge->m_incidentVertex;
			ptr->m_next = &m_edgeArray[edge->m_next->m_userData];
			ptr->m_prev = &m_edgeArray[edge->m_prev->m_userData];
			ptr->m_twin = &m_edgeArray[edge->m_twin->m_userData];
		}
	}

	for (dgInt32 i = 0; i < DG_SPHERE_VERTEX_COUNT; i++) {
		m_vertex[i] = m_unitSphere[i].Scale(m_radius);
	}

	m_shapeRefCount++;
	dgCollisionConvex::m_simplex = m_edgeArray;

	SetVolumeAndCG();

	dgVector inertia;
	dgVector centerOfMass;
	dgVector crossInertia;
	m_volume.m_w = CalculateMassProperties(inertia, crossInertia, centerOfMass);
}

dgVector dgCollisionSphere::SupportVertexSimd(const dgVector &dir) const {
	NEWTON_ASSERT(dgAbsf(dir % dir - dgFloat32(1.0f)) < dgFloat32(1.0e-3f));
	//  return SupportVertex (dir);
	return dir.Scale(m_radius);
}

dgVector dgCollisionSphere::SupportVertex(const dgVector &dir) const {
	NEWTON_ASSERT(dgAbsf(dir % dir - dgFloat32(1.0f)) < dgFloat32(1.0e-3f));
	return dir.Scale(m_radius);
}

void dgCollisionSphere::TesselateTriangle(dgInt32 level, const dgVector &p0,
        const dgVector &p1, const dgVector &p2, dgInt32 &count,
        dgVector *ouput) const {
	if (level) {
		NEWTON_ASSERT(dgAbsf(p0 % p0 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));
		NEWTON_ASSERT(dgAbsf(p1 % p1 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));
		NEWTON_ASSERT(dgAbsf(p2 % p2 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));
		dgVector p01(p0 + p1);
		dgVector p12(p1 + p2);
		dgVector p20(p2 + p0);

		p01 = p01.Scale(dgFloat32(1.0f) / dgSqrt(p01 % p01));
		p12 = p12.Scale(dgFloat32(1.0f) / dgSqrt(p12 % p12));
		p20 = p20.Scale(dgFloat32(1.0f) / dgSqrt(p20 % p20));

		NEWTON_ASSERT(dgAbsf(p01 % p01 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));
		NEWTON_ASSERT(dgAbsf(p12 % p12 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));
		NEWTON_ASSERT(dgAbsf(p20 % p20 - dgFloat32(1.0f)) < dgFloat32(1.0e-4f));

		TesselateTriangle(level - 1, p0, p01, p20, count, ouput);
		TesselateTriangle(level - 1, p1, p12, p01, count, ouput);
		TesselateTriangle(level - 1, p2, p20, p12, count, ouput);
		TesselateTriangle(level - 1, p01, p12, p20, count, ouput);

	} else {
		ouput[count++] = p0;
		ouput[count++] = p1;
		ouput[count++] = p2;
	}
}

void dgCollisionSphere::SetCollisionBBox(const dgVector &p0__,
        const dgVector &p1__) {
	NEWTON_ASSERT(0);
}

dgInt32 dgCollisionSphere::CalculateSignature() const {
	dgUnsigned32 buffer[2 * sizeof(dgMatrix) / sizeof(dgInt32)];

	memset(buffer, 0, sizeof(buffer));
	buffer[0] = m_sphereCollision;
	buffer[1] = Quantize(m_radius);
	memcpy(&buffer[2], &m_offset, sizeof(dgMatrix));
	return dgInt32(MakeCRC(buffer, sizeof(buffer)));
}

void dgCollisionSphere::CalcAABB(const dgMatrix &matrix, dgVector &p0,
                                 dgVector &p1) const {
	dgFloat32 radius = m_radius + DG_MAX_COLLISION_PADDING;
	p0.m_x = matrix[3][0] - radius;
	p1.m_x = matrix[3][0] + radius;

	p0.m_y = matrix[3][1] - radius;
	p1.m_y = matrix[3][1] + radius;

	p0.m_z = matrix[3][2] - radius;
	p1.m_z = matrix[3][2] + radius;

	p0.m_w = dgFloat32(1.0f);
	p1.m_w = dgFloat32(1.0f);
}

dgInt32 dgCollisionSphere::CalculatePlaneIntersection(const dgVector &normal,
        const dgVector &point, dgVector *const contactsOut) const {
	NEWTON_ASSERT((normal % normal) > dgFloat32(0.999f));
	//  contactsOut[0] = point;
	contactsOut[0] = normal.Scale(normal % point);
	return 1;
}

dgInt32 dgCollisionSphere::CalculatePlaneIntersectionSimd(
    const dgVector &normal, const dgVector &point,
    dgVector *const contactsOut) const {
#ifdef DG_BUILD_SIMD_CODE

	NEWTON_ASSERT((normal % normal) > dgFloat32(0.999f));
	//  contactsOut[0] = point;
	contactsOut[0] = normal.Scale(normal % point);
	return 1;

#else
	return 0;
#endif
}

void dgCollisionSphere::DebugCollision(const dgMatrix &matrixPtr,
                                       OnDebugCollisionMeshCallback callback, void *const userData) const {
	dgInt32 i;
	dgInt32 count;
	dgTriplex pool[1024 * 2];
	dgVector tmpVectex[1024 * 2];

	dgVector p0(dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f),
	            dgFloat32(0.0f));
	dgVector p1(-dgFloat32(1.0f), dgFloat32(0.0f), dgFloat32(0.0f),
	            dgFloat32(0.0f));
	dgVector p2(dgFloat32(0.0f), dgFloat32(1.0f), dgFloat32(0.0f),
	            dgFloat32(0.0f));
	dgVector p3(dgFloat32(0.0f), -dgFloat32(1.0f), dgFloat32(0.0f),
	            dgFloat32(0.0f));
	dgVector p4(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(1.0f),
	            dgFloat32(0.0f));
	dgVector p5(dgFloat32(0.0f), dgFloat32(0.0f), -dgFloat32(1.0f),
	            dgFloat32(0.0f));

	i = 3;
	count = 0;
	TesselateTriangle(i, p4, p0, p2, count, tmpVectex);
	TesselateTriangle(i, p4, p2, p1, count, tmpVectex);
	TesselateTriangle(i, p4, p1, p3, count, tmpVectex);
	TesselateTriangle(i, p4, p3, p0, count, tmpVectex);
	TesselateTriangle(i, p5, p2, p0, count, tmpVectex);
	TesselateTriangle(i, p5, p1, p2, count, tmpVectex);
	TesselateTriangle(i, p5, p3, p1, count, tmpVectex);
	TesselateTriangle(i, p5, p0, p3, count, tmpVectex);

	for (i = 0; i < count; i++) {
		tmpVectex[i] = tmpVectex[i].Scale(m_radius);
	}

	//  const dgMatrix &matrix = myBody.GetCollisionMatrix();
	dgMatrix matrix(GetOffsetMatrix() * matrixPtr);
	matrix.TransformTriplex(&pool[0].m_x, sizeof(dgTriplex), &tmpVectex[0].m_x,
	                        sizeof(dgVector), count);
	for (i = 0; i < count; i += 3) {
		callback(userData, 3, &pool[i].m_x, 0);
	}
}

dgFloat32 dgCollisionPoint::GetVolume() const {
	NEWTON_ASSERT(0);
	return dgFloat32(0.0f);
}

void dgCollisionPoint::CalculateInertia(dgVector &inertia,
                                        dgVector &origin) const {
	NEWTON_ASSERT(0);
	//  matrix = dgGetIdentityMatrix();
	inertia.m_x = dgFloat32(0.0f);
	inertia.m_y = dgFloat32(0.0f);
	inertia.m_z = dgFloat32(0.0f);

	origin.m_x = dgFloat32(0.0f);
	origin.m_y = dgFloat32(0.0f);
	origin.m_z = dgFloat32(0.0f);
}

dgVector dgCollisionPoint::SupportVertex(const dgVector &dir) const {
	return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
	                dgFloat32(0.0f));
}

dgVector dgCollisionPoint::SupportVertexSimd(const dgVector &dir) const {
	NEWTON_ASSERT(0);
	return dgVector(dgFloat32(0.0f), dgFloat32(0.0f), dgFloat32(0.0f),
	                dgFloat32(0.0f));
}

dgFloat32 dgCollisionSphere::RayCast(const dgVector &p0, const dgVector &p1, dgContactPoint &contactOut, OnRayPrecastAction preFilter, const dgBody *const body, void *const userData) const {
	if (PREFILTER_RAYCAST(preFilter, reinterpret_cast<const NewtonBody *>(body), reinterpret_cast<const NewtonCollision *>(this), userData)) {
		return dgFloat32(1.2f);
	}

	dgVector dp(p1 - p0);
	dgFloat32 a = dp % dp;
	dgFloat32 b = dgFloat32(2.0f) * (p0 % dp);
	dgFloat32 c = (p0 % p0) - m_radius * m_radius;

	dgFloat32 t = dgFloat32(1.2f);
	dgFloat32 desc = b * b - dgFloat32(4.0f) * a * c;
	if (desc > dgFloat32(0.0f)) {
		desc = dgSqrt(desc);
		a = dgFloat32(1.0f) / (dgFloat32(2.0f) * a);
		dgFloat32 t1 = GetMin((-b + desc) * a, (-b - desc) * a);
		if (t1 < dgFloat32(0.0f)) {
			t1 = dgFloat32(1.2f);
		}
		if (t1 < dgFloat32(1.0f)) {
			t = t1;
			dgVector contact(p0 + dp.Scale(t));
			contactOut.m_normal = contact.Scale(dgRsqrt(contact % contact));
			contactOut.m_userId = SetUserDataID();
		}
	}
	return t;
}

dgFloat32 dgCollisionSphere::RayCastSimd(const dgVector &p0, const dgVector &p1,
        dgContactPoint &contactOut, OnRayPrecastAction preFilter,
        const dgBody *const body, void *const userData) const {
	return RayCast(p0, p1, contactOut, preFilter, body, userData);
}

dgFloat32 dgCollisionSphere::CalculateMassProperties(dgVector &inertia,
        dgVector &crossInertia, dgVector &centerOfMass) const {
	dgFloat32 volume;
	dgFloat32 inerta;

	// volume = dgCollisionConvex::CalculateMassProperties (inertia, crossInertia, centerOfMass);

	centerOfMass = GetOffsetMatrix().m_posit;
	volume = dgFloat32(4.0f * 3.141592f / 3.0f) * m_radius * m_radius * m_radius;
	inerta = dgFloat32(2.0f / 5.0f) * m_radius * m_radius * volume;

	crossInertia.m_x = -volume * centerOfMass.m_y * centerOfMass.m_z;
	crossInertia.m_y = -volume * centerOfMass.m_z * centerOfMass.m_x;
	crossInertia.m_z = -volume * centerOfMass.m_x * centerOfMass.m_y;

	dgVector central(centerOfMass.CompProduct(centerOfMass));
	inertia.m_x = inerta + volume * (central.m_y + central.m_z);
	inertia.m_y = inerta + volume * (central.m_z + central.m_x);
	inertia.m_z = inerta + volume * (central.m_x + central.m_y);

	centerOfMass = centerOfMass.Scale(volume);
	return volume;
}

void dgCollisionSphere::GetCollisionInfo(dgCollisionInfo *info) const {
	dgCollisionConvex::GetCollisionInfo(info);

	info->m_sphere.m_r0 = m_radius;
	info->m_sphere.m_r1 = m_radius;
	info->m_sphere.m_r2 = m_radius;
	info->m_offsetMatrix = GetOffsetMatrix();
	//  strcpy (info->m_collisionType, "sphere");
	info->m_collisionType = m_collsionId;
}

void dgCollisionSphere::Serialize(dgSerialize callback,
                                  void *const userData) const {
	dgVector size(m_radius, m_radius, m_radius, dgFloat32(0.0f));

	SerializeLow(callback, userData);
	callback(userData, &size, sizeof(dgVector));
}