File: dgMeshEffect3.cpp

package info (click to toggle)
scummvm 2.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 450,580 kB
  • sloc: cpp: 4,299,825; asm: 28,322; python: 12,901; sh: 11,302; java: 9,289; xml: 7,895; perl: 2,639; ansic: 2,465; yacc: 1,670; javascript: 1,020; makefile: 933; lex: 578; awk: 275; objc: 82; sed: 11; php: 1
file content (621 lines) | stat: -rw-r--r-- 22,209 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
 *
 * This software is provided 'as-is', without any express or implied
 * warranty. In no event will the authors be held liable for any damages
 * arising from the use of this software.
 *
 * Permission is granted to anyone to use this software for any purpose,
 * including commercial applications, and to alter it and redistribute it
 * freely, subject to the following restrictions:
 *
 * 1. The origin of this software must not be misrepresented; you must not
 * claim that you wrote the original software. If you use this software
 * in a product, an acknowledgment in the product documentation would be
 * appreciated but is not required.
 *
 * 2. Altered source versions must be plainly marked as such, and must not be
 * misrepresented as being the original software.
 *
 * 3. This notice may not be removed or altered from any source distribution.
 */

#include "dgBody.h"
#include "dgCollisionConvexHull.h"
#include "dgMeshEffect.h"
#include "dgMeshEffectSolidTree.h"
#include "dgWorld.h"
#include "hpl1/engine/libraries/newton/core/dg.h"

// based of the paper Hierarchical Approximate Convex Decomposition by Khaled Mamou
// with his permission to adapt his algorithm so be more efficient.
// available http://sourceforge.net/projects/hacd/
// for the details http://kmamou.blogspot.com/

class dgClusterFace {
public:
	dgClusterFace() {
	}
	~dgClusterFace() {
	}

	dgEdge *m_edge;
	dgFloat64 m_area;
	dgFloat64 m_perimeter;
	dgBigVector m_normal;
};

class dgPairProxi {
public:
	dgPairProxi()
		: m_edgeA(NULL), m_edgeB(NULL), m_area(dgFloat64(0.0f)), m_perimeter(dgFloat64(0.0f)) {
	}

	~dgPairProxi() {
	}

	dgEdge *m_edgeA;
	dgEdge *m_edgeB;
	dgFloat64 m_area;
	dgFloat64 m_perimeter;
};

class dgClusterList : public dgList<dgClusterFace> {
public:
	dgClusterList(dgMemoryAllocator *const allocator)
		: dgList<dgClusterFace>(allocator), m_area(dgFloat32(0.0f)), m_perimeter(dgFloat32(0.0f)) {
	}

	~dgClusterList() {
	}

	dgInt32 AddVertexToPool(const dgMeshEffect &mesh, dgBigVector *const vertexPool, dgInt32 *const vertexMarks, dgInt32 vertexMark) {
		dgInt32 count = 0;

		const dgBigVector *const points = (dgBigVector *)mesh.GetVertexPool();
		for (dgListNode *node = GetFirst(); node; node = node->GetNext()) {
			dgClusterFace &face = node->GetInfo();

			dgEdge *edge = face.m_edge;
			do {
				dgInt32 index = edge->m_incidentVertex;
				if (vertexMarks[index] != vertexMark) {
					vertexMarks[index] = vertexMark;
					vertexPool[count] = points[index];
					count++;
				}
				edge = edge->m_next;
			} while (edge != face.m_edge);
		}
		return count;
	}

	dgFloat64 CalculateTriangleConcavity2(const dgConvexHull3d &convexHull, dgClusterFace &info, dgInt32 i0, dgInt32 i1, dgInt32 i2, const dgBigVector *const points) const {
		dgUnsigned32 head = 1;
		dgUnsigned32 tail = 0;
		dgBigVector pool[1 << 8][3];

		pool[0][0] = points[i0];
		pool[0][1] = points[i1];
		pool[0][2] = points[i2];

		const dgBigVector step(info.m_normal.Scale(dgFloat64(4.0f) * convexHull.GetDiagonal()));

		dgFloat64 concavity = dgFloat32(0.0f);
		dgFloat64 minArea = dgFloat32(0.125f);
		dgFloat64 minArea2 = minArea * minArea * 0.5f;

		// weight the area by the area of the face
		// dgBigVector edge10(pool[0][1] - pool[0][0]);
		// dgBigVector edge20(pool[0][2] - pool[0][0]);
		// dgBigVector triangleArea = edge10 * edge20;
		// dgFloat64 triangleArea2 = triangleArea % triangleArea;
		// if ((triangleArea2 / minArea2)> dgFloat32 (64.0f)) {
		// minArea2 = triangleArea2 / dgFloat32 (64.0f);
		//}

		dgInt32 maxCount = 4;
		dgUnsigned32 mask = (sizeof(pool) / (3 * sizeof(pool[0][0]))) - 1;
		while ((tail != head) && (maxCount >= 0)) {
			// stack--;
			maxCount--;
			dgBigVector p0(pool[tail][0]);
			dgBigVector p1(pool[tail][1]);
			dgBigVector p2(pool[tail][2]);
			tail = (tail + 1) & mask;

			dgBigVector q1((p0 + p1 + p2).Scale(dgFloat64(1.0f / 3.0f)));
			dgBigVector q0(q1 + step);

			dgFloat64 param = convexHull.RayCast(q0, q1);
			if (param > dgFloat64(1.0f)) {
				param = dgFloat64(1.0f);
			}
			dgBigVector dq(step.Scale(dgFloat32(1.0f) - param));
			dgFloat64 lenght2 = dq % dq;
			if (lenght2 > concavity) {
				concavity = lenght2;
			}

			if (((head + 1) & mask) != tail) {
				dgBigVector edge10(p1 - p0);
				dgBigVector edge20(p2 - p0);
				dgBigVector n(edge10 * edge20);
				dgFloat64 area2 = n % n;
				if (area2 > minArea2) {
					dgBigVector p01((p0 + p1).Scale(dgFloat64(0.5f)));
					dgBigVector p12((p1 + p2).Scale(dgFloat64(0.5f)));
					dgBigVector p20((p2 + p0).Scale(dgFloat64(0.5f)));

					pool[head][0] = p0;
					pool[head][1] = p01;
					pool[head][2] = p20;
					head = (head + 1) & mask;

					if (((head + 1) & mask) != tail) {
						pool[head][0] = p1;
						pool[head][1] = p12;
						pool[head][2] = p01;
						head = (head + 1) & mask;

						if (((head + 1) & mask) != tail) {
							pool[head][0] = p2;
							pool[head][1] = p20;
							pool[head][2] = p12;
							head = (head + 1) & mask;
						}
					}
				}
			}
		}
		return concavity;
	}

	dgFloat64 CalculateConcavity2(const dgConvexHull3d &convexHull, const dgMeshEffect &mesh) {
		dgFloat64 concavity = dgFloat32(0.0f);

		const dgBigVector *const points = (dgBigVector *)mesh.GetVertexPool();

		for (dgListNode *node = GetFirst(); node; node = node->GetNext()) {
			dgClusterFace &info = node->GetInfo();
			dgInt32 i0 = info.m_edge->m_incidentVertex;
			dgInt32 i1 = info.m_edge->m_next->m_incidentVertex;
			for (dgEdge *edge = info.m_edge->m_next->m_next; edge != info.m_edge; edge = edge->m_next) {
				dgInt32 i2 = edge->m_incidentVertex;
				dgFloat64 val = CalculateTriangleConcavity2(convexHull, info, i0, i1, i2, points);
				if (val > concavity) {
					concavity = val;
				}
				i1 = i2;
			}
		}

		return concavity;
	}

	bool IsClusterCoplanar(const dgBigPlane &plane,
	                       const dgMeshEffect &mesh) const {
		const dgBigVector *const points = (dgBigVector *)mesh.GetVertexPool();
		for (dgListNode *node = GetFirst(); node; node = node->GetNext()) {
			dgClusterFace &info = node->GetInfo();

			dgEdge *ptr = info.m_edge;
			do {
				const dgBigVector &p = points[ptr->m_incidentVertex];
				dgFloat64 dist = fabs(plane.Evalue(p));
				if (dist > dgFloat64(1.0e-5f)) {
					return false;
				}
				ptr = ptr->m_next;
			} while (ptr != info.m_edge);
		}

		return true;
	}

	bool IsEdgeConvex(const dgBigPlane &plane, const dgMeshEffect &mesh,
	                  dgEdge *const edge) const {
		const dgBigVector *const points = (dgBigVector *)mesh.GetVertexPool();
		dgEdge *const edge0 = edge->m_next;
		dgEdge *ptr = edge0->m_twin->m_next;
		do {
			if (ptr->m_twin->m_incidentFace == edge->m_twin->m_incidentFace) {
				NEWTON_ASSERT(edge0->m_incidentVertex == ptr->m_incidentVertex);
				dgBigVector e0(points[edge0->m_twin->m_incidentVertex] - points[edge0->m_incidentVertex]);
				dgBigVector e1(points[ptr->m_twin->m_incidentVertex] - points[edge0->m_incidentVertex]);
				dgBigVector normal(e0 * e1);
				return (normal % plane) > dgFloat64(0.0f);
			}
			ptr = ptr->m_twin->m_next;
		} while (ptr != edge->m_twin);

		NEWTON_ASSERT(0);
		return true;
	}

	// calculate the convex hull of a conched group of faces,
	// and measure the concavity, according to Khaled convexity criteria, which is basically
	// has two components,
	// the first is ratio  between the the perimeter of the group of faces
	// and the second the largest distance from any of the face to the surface of the hull
	// when the faces are are a strip of a convex hull the perimeter ratio components is 1.0 and the distance to the hull is zero
	// this is the ideal concavity.
	// when the face are no part of the hull, then the worse distance to the hull is dominate the the metric
	// this matrix is used to place all possible combination of this cluster with any adjacent cluster into a priority heap and determine
	// which pair of two adjacent cluster is the best selection for combining the into a larger cluster.
	void CalculateNodeCost(dgMeshEffect &mesh, dgInt32 meshMask,
	                       dgBigVector *const vertexPool, dgInt32 *const vertexMarks,
	                       dgInt32 &vertexMark, dgClusterList *const clusters, dgFloat64 diagonalInv,
	                       dgFloat64 aspectRatioCoeficent, dgList<dgPairProxi> &proxyList,
	                       dgUpHeap<dgList<dgPairProxi>::dgListNode *, dgFloat64> &heap) {
		dgInt32 faceIndex = GetFirst()->GetInfo().m_edge->m_incidentFace;

		const dgBigVector *const points = (dgBigVector *)mesh.GetVertexPool();

		bool flatStrip = true;
		dgBigPlane plane(GetFirst()->GetInfo().m_normal, -(points[GetFirst()->GetInfo().m_edge->m_incidentVertex] % GetFirst()->GetInfo().m_normal));
		if (GetCount() > 1) {
			flatStrip = IsClusterCoplanar(plane, mesh);
		}

		vertexMark++;
		dgInt32 vertexCount = AddVertexToPool(mesh, vertexPool, vertexMarks, vertexMark);
		for (dgListNode *node = GetFirst(); node; node = node->GetNext()) {
			// dgClusterFace& clusterFaceA = GetFirst()->GetInfo();
			dgClusterFace &clusterFaceA = node->GetInfo();

			dgEdge *edge = clusterFaceA.m_edge;
			do {
				dgInt32 twinFaceIndex = edge->m_twin->m_incidentFace;
				if ((edge->m_mark != meshMask) && (twinFaceIndex != faceIndex) && (twinFaceIndex > 0)) {

					dgClusterList &clusterListB = clusters[twinFaceIndex];

					vertexMark++;
					dgInt32 extraCount = clusterListB.AddVertexToPool(mesh, &vertexPool[vertexCount], &vertexMarks[0], vertexMark);

					dgInt32 count = vertexCount + extraCount;
					dgConvexHull3d convexHull(mesh.GetAllocator(), &vertexPool[0].m_x, sizeof(dgBigVector), count, 0.0);

					dgFloat64 concavity = dgFloat64(0.0f);
					if (convexHull.GetVertexCount()) {
						concavity = sqrt(GetMax(CalculateConcavity2(convexHull, mesh), clusterListB.CalculateConcavity2(convexHull, mesh)));
						if (concavity < dgFloat64(1.0e-3f)) {
							concavity = dgFloat64(0.0f);
						}
					}

					if ((concavity == dgFloat64(0.0f)) && flatStrip) {
						if (clusterListB.IsClusterCoplanar(plane, mesh)) {
							bool concaveEdge = !(IsEdgeConvex(plane, mesh, edge) && IsEdgeConvex(plane, mesh, edge->m_twin));
							if (concaveEdge) {
								concavity += 1000.0f;
							}
						}
					}

					dgBigVector p1p0(points[edge->m_twin->m_incidentVertex] - points[edge->m_incidentVertex]);
					dgFloat64 edgeLength = dgFloat64(2.0f) * sqrt(p1p0 % p1p0);

					dgFloat64 area = m_area + clusterListB.m_area;
					dgFloat64 perimeter = m_perimeter + clusterListB.m_perimeter - edgeLength;
					dgFloat64 edgeCost = perimeter * perimeter / (dgFloat64(4.0f * 3.141592f) * area);
					dgFloat64 cost = diagonalInv * (concavity + edgeCost * aspectRatioCoeficent);

					if ((heap.GetCount() + 20) > heap.GetMaxCount()) {
						for (dgInt32 i = heap.GetCount() - 1; i >= 0; i--) {
							dgList<dgPairProxi>::dgListNode *emptyNode = heap[i];
							dgPairProxi &emptyPair = emptyNode->GetInfo();
							if ((emptyPair.m_edgeA == NULL) && (emptyPair.m_edgeB == NULL)) {
								heap.Remove(i);
							}
						}
					}

					dgList<dgPairProxi>::dgListNode *pairNode = proxyList.Append();
					dgPairProxi &pair = pairNode->GetInfo();
					pair.m_edgeA = edge;
					pair.m_edgeB = edge->m_twin;
					pair.m_area = area;
					pair.m_perimeter = perimeter;
					edge->m_userData = dgUnsigned64(pairNode);
					edge->m_twin->m_userData = dgUnsigned64(pairNode);
					heap.Push(pairNode, cost);
				}

				edge->m_mark = meshMask;
				edge->m_twin->m_mark = meshMask;
				edge = edge->m_next;
			} while (edge != clusterFaceA.m_edge);
		}
	}

	dgFloat64 m_area;
	dgFloat64 m_perimeter;
};

dgMeshEffect::dgMeshEffect(const dgMeshEffect &source, dgFloat32 absoluteconcavity, dgInt32 maxCount)
	: dgPolyhedra(source.GetAllocator()) {
	Init(true);

	dgMeshEffect mesh(source);
	dgInt32 faceCount = mesh.GetTotalFaceCount() + 1;
	dgStack<dgClusterList> clusterPool(faceCount);
	dgClusterList *const clusters = &clusterPool[0];

	for (dgInt32 i = 0; i < faceCount; i++) {
		clusters[i] = dgClusterList(mesh.GetAllocator());
	}

	dgInt32 meshMask = mesh.IncLRU();
	const dgBigVector *const points = mesh.m_points;

	// enumerate all faces, and initialize cluster pool
	dgMeshEffect::Iterator iter(mesh);

	dgInt32 clusterIndex = 1;
	for (iter.Begin(); iter; iter++) {
		dgEdge *const edge = &(*iter);
		edge->m_userData = dgUnsigned64(-1);
		if ((edge->m_mark != meshMask) && (edge->m_incidentFace > 0)) {
			dgFloat64 perimeter = dgFloat64(0.0f);
			dgEdge *ptr = edge;
			do {
				dgBigVector p1p0(points[ptr->m_incidentVertex] - points[ptr->m_prev->m_incidentVertex]);
				perimeter += sqrt(p1p0 % p1p0);
				ptr->m_incidentFace = clusterIndex;

				ptr->m_mark = meshMask;
				ptr = ptr->m_next;
			} while (ptr != edge);

			dgBigVector normal = mesh.FaceNormal(edge, &points[0][0], sizeof(dgBigVector));
			dgFloat64 mag = sqrt(normal % normal);

			dgClusterFace &faceInfo = clusters[clusterIndex].Append()->GetInfo();

			faceInfo.m_edge = edge;
			faceInfo.m_perimeter = perimeter;
			faceInfo.m_area = dgFloat64(0.5f) * mag;
			faceInfo.m_normal = normal.Scale(dgFloat64(1.0f) / mag);

			clusters[clusterIndex].m_perimeter = perimeter;
			clusters[clusterIndex].m_area = faceInfo.m_area;

			clusterIndex++;
		}
	}

	NEWTON_ASSERT(faceCount == clusterIndex);

	// recalculate all edge cost
	dgStack<dgInt32> vertexMarksArray(mesh.GetVertexCount());
	dgStack<dgBigVector> vertexArray(mesh.GetVertexCount() * 2);

	dgBigVector *const vertexPool = &vertexArray[0];
	dgInt32 *const vertexMarks = &vertexMarksArray[0];
	memset(&vertexMarks[0], 0, vertexMarksArray.GetSizeInBytes());

	dgList<dgPairProxi> proxyList(mesh.GetAllocator());
	dgUpHeap<dgList<dgPairProxi>::dgListNode *, dgFloat64> heap(mesh.GetCount() + 1000, mesh.GetAllocator());

	dgInt32 vertexMark = 0;

	dgFloat64 diagonalInv = dgFloat32(1.0f);
	dgFloat64 aspectRatioCoeficent = absoluteconcavity / dgFloat32(10.0f);
	meshMask = mesh.IncLRU();

	// calculate all the initial cost of all clusters, which at this time are all a single faces
	for (dgInt32 faceIndex = 1; faceIndex < faceCount; faceIndex++) {
		vertexMark++;
		dgClusterList &clusterList = clusters[faceIndex];
		NEWTON_ASSERT(clusterList.GetFirst()->GetInfo().m_edge->m_incidentFace == faceIndex);
		clusterList.CalculateNodeCost(mesh, meshMask, &vertexPool[0], &vertexMarks[0], vertexMark, &clusters[0], diagonalInv, aspectRatioCoeficent, proxyList, heap);
	}

	// calculate all essential convex clusters by merging the all possible clusters according
	// which combined concavity es lower that the max absolute concavity
	// select the pair with the smaller concavity and fuse then into a larger cluster
	dgInt32 essencialClustersCount = faceCount - 1;
	while (heap.GetCount() && ((heap.Value() < absoluteconcavity) || (essencialClustersCount > maxCount))) {
		dgList<dgPairProxi>::dgListNode *const pairNode = heap[0];
		heap.Pop();
		dgPairProxi &pair = pairNode->GetInfo();

		NEWTON_ASSERT((pair.m_edgeA && pair.m_edgeA) || (!pair.m_edgeA && !pair.m_edgeA));
		if (pair.m_edgeA && pair.m_edgeB) {

			NEWTON_ASSERT(pair.m_edgeA->m_incidentFace != pair.m_edgeB->m_incidentFace);

			// merge two clusters
			dgInt32 faceIndexA = pair.m_edgeA->m_incidentFace;
			dgInt32 faceIndexB = pair.m_edgeB->m_incidentFace;
			dgClusterList *listA = &clusters[faceIndexA];
			dgClusterList *listB = &clusters[faceIndexB];
			if (pair.m_edgeA->m_incidentFace > pair.m_edgeB->m_incidentFace) {
				Swap(faceIndexA, faceIndexB);
				Swap(listA, listB);
			}

			while (listB->GetFirst()) {
				dgClusterList::dgListNode *const nodeB = listB->GetFirst();
				listB->Unlink(nodeB);
				dgClusterFace &faceB = nodeB->GetInfo();

				dgEdge *ptr = faceB.m_edge;
				do {
					ptr->m_incidentFace = faceIndexA;
					ptr = ptr->m_next;
				} while (ptr != faceB.m_edge);
				listA->Append(nodeB);
			}
			essencialClustersCount--;

			listB->m_area = dgFloat32(0.0f);
			listB->m_perimeter = dgFloat32(0.0f);
			listA->m_area = pair.m_area;
			listA->m_perimeter = pair.m_perimeter;

			// recalculated the new metric for the new cluster, and tag the used cluster as invalid, so that
			// other potential selection do not try merge with this this one, producing convex that re use a face more than once
			dgInt32 mark = mesh.IncLRU();
			for (dgClusterList::dgListNode *node = listA->GetFirst(); node; node = node->GetNext()) {
				dgClusterFace &face = node->GetInfo();
				dgEdge *ptr = face.m_edge;
				do {
					if (ptr->m_userData != dgUnsigned64(-1)) {
						dgList<dgPairProxi>::dgListNode *const pairNodeT = (dgList<dgPairProxi>::dgListNode *)ptr->m_userData;
						dgPairProxi &pairProxy = pairNodeT->GetInfo();
						pairProxy.m_edgeA = NULL;
						pairProxy.m_edgeB = NULL;
					}
					ptr->m_userData = dgUnsigned64(-1);
					ptr->m_twin->m_userData = dgUnsigned64(-1);

					if ((ptr->m_twin->m_incidentFace == faceIndexA) || (ptr->m_twin->m_incidentFace < 0)) {
						ptr->m_mark = mark;
						ptr->m_twin->m_mark = mark;
					}

					if (ptr->m_mark != mark) {
						dgClusterList &adjacentList = clusters[ptr->m_twin->m_incidentFace];
						for (dgClusterList::dgListNode *adjacentNode = adjacentList.GetFirst(); adjacentNode; adjacentNode = adjacentNode->GetNext()) {
							dgClusterFace &adjacentFace = adjacentNode->GetInfo();
							dgEdge *adjacentEdge = adjacentFace.m_edge;
							do {
								if (adjacentEdge->m_twin->m_incidentFace == faceIndexA) {
									adjacentEdge->m_twin->m_mark = mark;
								}
								adjacentEdge = adjacentEdge->m_next;
							} while (adjacentEdge != adjacentFace.m_edge);
						}
						ptr->m_mark = mark - 1;
					}
					ptr = ptr->m_next;
				} while (ptr != face.m_edge);
			}

			// re generated the cost of merging this new all its adjacent clusters, that are still alive.
			vertexMark++;
			listA->CalculateNodeCost(mesh, mark, &vertexPool[0], &vertexMarks[0], vertexMark, &clusters[0], diagonalInv, aspectRatioCoeficent, proxyList, heap);
		}

		proxyList.Remove(pairNode);
	}

	// if the essential convex cluster count is larger than the the maximum specified by the user
	// then resuming the cluster again to the heap and start merging then by the the worse merging criteria
	// also at this time add the distance heuristic to combine disjoint cluster as well.
	// this is where I disagree with Khaled Mamore, he uses a brute force approach by adding extra points.
	// I do this to the first partition and then connect disjoint face only on the perimeter
	/*
	maxCount = 1;
	    while (essencialClustersCount > maxCount) {

	        heap.Flush();
	        meshMask = mesh.IncLRU();

	        // color code each face on each cluster with it cluster index
	        for (dgInt32 faceIndex = 0; faceIndex < faceCount; faceIndex++) {
	            dgClusterList& clusterList = clusters[faceIndex];
	            if (clusterList.GetCount()) {
	                for (dgClusterList::dgListNode* node = clusterList.GetFirst(); node; node = node->GetNext()) {
	                    dgClusterFace& face = node->GetInfo();
	                    dgEdge* ptr = face.m_edge;
	                    do {
	                        ptr->m_incidentFace = faceIndex;
	                        ptr = ptr->m_next;
	                    } while (ptr != face.m_edge);
	                }
	            }
	        }

	        for (dgInt32 faceIndex = 0; faceIndex < faceCount; faceIndex++) {
	            dgClusterList& clusterList = clusters[faceIndex];

	            // note: add the disjoint cluster criteria here, but for now just ignore

	            // calculate the cost again
	            if (clusterList.GetCount()) {

	                // note: something is wrong with my color coding that is not marking the perimeter corrently

	                vertexMark++;
	                clusterList.CalculateNodeCost(mesh, meshMask, &vertexPool[0], &vertexMarks[0], vertexMark, &clusters[0], diagonalInv, aspectRatioCoeficent, proxyList, heap);
	            }

	        }
	    }
	*/

	BeginPolygon();
	dgFloat32 layer = dgFloat32(0.0f);

	dgVertexAtribute polygon[256];
	for (uint i = 0; i < ARRAYSIZE(polygon); i++) polygon[i].clear();
	dgArray<dgBigVector> convexVertexBuffer(1024, GetAllocator());
	for (dgInt32 i = 0; i < faceCount; i++) {
		dgClusterList &clusterList = clusters[i];

		if (clusterList.GetCount()) {
			dgInt32 count = 0;
			for (dgClusterList::dgListNode *node = clusterList.GetFirst(); node; node = node->GetNext()) {
				dgClusterFace &face = node->GetInfo();
				dgEdge *edge = face.m_edge;

				dgEdge *sourceEdge = source.FindEdge(edge->m_incidentVertex, edge->m_twin->m_incidentVertex);
				do {
					dgInt32 index = edge->m_incidentVertex;
					convexVertexBuffer[count] = points[index];

					count++;
					sourceEdge = sourceEdge->m_next;
					edge = edge->m_next;
				} while (edge != face.m_edge);
			}

			dgConvexHull3d convexHull(mesh.GetAllocator(), &convexVertexBuffer[0].m_x, sizeof(dgBigVector), count, 0.0);

			if (convexHull.GetCount()) {
				const dgBigVector *const vertex = convexHull.GetVertexPool();
				for (dgConvexHull3d::dgListNode *node = convexHull.GetFirst(); node; node = node->GetNext()) {
					const dgConvexHull3DFace *const face = &node->GetInfo();

					dgInt32 i0 = face->m_index[0];
					dgInt32 i1 = face->m_index[1];
					dgInt32 i2 = face->m_index[2];

					polygon[0].m_vertex = vertex[i0];
					polygon[0].m_vertex.m_w = layer;

					polygon[1].m_vertex = vertex[i1];
					polygon[1].m_vertex.m_w = layer;

					polygon[2].m_vertex = vertex[i2];
					polygon[2].m_vertex.m_w = layer;

					AddPolygon(3, &polygon[0].m_vertex.m_x, sizeof(dgVertexAtribute), 0);
				}

				layer += dgFloat32(1.0f);
				// break;
			}
		}
	}
	EndPolygon(1.0e-5f);

	for (dgInt32 i = 0; i < faceCount; i++) {
		clusters[i].RemoveAll();
	}
}

dgMeshEffect *dgMeshEffect::CreateConvexApproximation(dgFloat32 maxConcavity, dgInt32 maxCount) const {
	dgMeshEffect triangleMesh(*this);
	if (maxCount <= 1) {
		maxCount = 1;
	}
	if (maxConcavity <= dgFloat32(1.0e-5f)) {
		maxConcavity = dgFloat32(1.0e-5f);
	}
	dgMeshEffect *const convexPartion = new (GetAllocator()) dgMeshEffect(triangleMesh, maxConcavity, maxCount);
	return convexPartion;
}