1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/* Copyright (c) <2003-2011> <Julio Jerez, Newton Game Dynamics>
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "dgUpVectorConstraint.h"
#include "dgBody.h"
#include "dgWorld.h"
#include "hpl1/engine/libraries/newton/core/dg.h"
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
dgUpVectorConstraint::dgUpVectorConstraint() : dgBilateralConstraint() {
NEWTON_ASSERT((sizeof(dgUpVectorConstraint) & 15) == 0);
NEWTON_ASSERT((((dgUnsigned64)&m_localMatrix0) & 15) == 0);
// dgUpVectorConstraintArray& array = * world;
// constraint = array.GetElement();
SetStiffness(dgFloat32(0.995f));
m_maxDOF = 2;
m_constId = dgUpVectorConstraintId;
m_callBack = NULL;
}
dgUpVectorConstraint::~dgUpVectorConstraint() {
}
/*
dgUpVectorConstraint* dgUpVectorConstraint::Create(dgWorld* world)
{
dgUpVectorConstraint* constraint;
// constraint = dgUpVectorConstraintArray::GetPool().GetElement();
dgUpVectorConstraintArray& array = * world;
constraint = array.GetElement();
NEWTON_ASSERT ((((dgUnsigned64) &constraint->m_localMatrix0) & 15) == 0);
constraint->Init ();
constraint->SetStiffness (dgFloat32 (0.995f));
constraint->m_maxDOF = 2;
constraint->m_constId = dgUpVectorConstraintId;
constraint->m_callBack = NULL;
return constraint;
}
void dgUpVectorConstraint::Remove(dgWorld* world)
{
dgUpVectorConstraintArray& array = * world;
dgBilateralConstraint::Remove (world);
// dgUpVectorConstraintArray::GetPool().RemoveElement (this);
array.RemoveElement (this);
}
*/
bool dgUpVectorConstraint::IsBilateral() const {
return false;
}
void dgUpVectorConstraint::InitPinDir(const dgVector &pin) {
const dgMatrix &matrix = m_body0->GetMatrix();
dgVector pivot(matrix.m_posit);
SetPivotAndPinDir(pivot, pin);
}
void dgUpVectorConstraint::SetPinDir(const dgVector &pin) {
m_localMatrix1 = dgMatrix(pin);
}
dgVector dgUpVectorConstraint::GetPinDir() const {
return m_localMatrix1.m_front;
}
void dgUpVectorConstraint::SetJointParameterCallBack(
dgUpVectorJointCallBack callback) {
m_callBack = callback;
}
dgUnsigned32 dgUpVectorConstraint::JacobianDerivative(
dgContraintDescritor ¶ms) {
dgInt32 ret;
dgFloat32 mag;
dgFloat32 angle;
dgMatrix matrix0;
dgMatrix matrix1;
CalculateGlobalMatrixAndAngle(matrix0, matrix1);
dgVector lateralDir(matrix0.m_front * matrix1.m_front);
ret = 0;
mag = lateralDir % lateralDir;
if (mag > 1.0e-6f) {
mag = dgSqrt(mag);
lateralDir = lateralDir.Scale(dgFloat32(1.0f) / mag);
angle = dgAsin(mag);
CalculateAngularDerivative(0, params, lateralDir, m_stiffness, angle,
&m_jointForce[0]);
dgVector frontDir(lateralDir * matrix1.m_front);
CalculateAngularDerivative(1, params, frontDir, m_stiffness,
dgFloat32(0.0f), &m_jointForce[1]);
ret = 2;
} else {
CalculateAngularDerivative(0, params, matrix0.m_up, m_stiffness, 0.0,
&m_jointForce[0]);
CalculateAngularDerivative(1, params, matrix0.m_right, m_stiffness,
dgFloat32(0.0f), &m_jointForce[1]);
ret = 2;
}
return dgUnsigned32(ret);
}
|