1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/*
* Copyright (C) 2006-2010 - Frictional Games
*
* This file is part of HPL1 Engine.
*/
#ifndef HPL_MATH_H
#define HPL_MATH_H
#include "hpl1/engine/math/BoundingVolume.h"
#include "hpl1/engine/math/MathTypes.h"
#include "hpl1/engine/math/MeshTypes.h"
#include "hpl1/engine/graphics/Color.h"
namespace hpl {
class cMath {
public:
//////////////////////////////////////////////////////
////////// RANDOM GENERATION ////////////////////////
//////////////////////////////////////////////////////
/**
* Generates a random integer from min to max
* \param alMin
* \param alMax
* \return
*/
static int RandRectl(int alMin, int alMax);
/**
* Generates a random float from min to max
* \param alMin
* \param alMax
* \return
*/
static float RandRectf(float alMin, float alMax);
/**
* Generates a random float from min to max
*/
static cVector2f RandRectVector2f(const cVector3f &avMin, const cVector3f &avMax);
/**
* Generates a random float from min to max
*/
static cVector3f RandRectVector3f(const cVector3f &avMin, const cVector3f &avMax);
/**
* Generates a random float from min to max
*/
static cColor RandRectColor(const cColor &aMin, const cColor &aMax);
/**
* Randomize the rand funcs.
* \param alSeed the seed, -1 = random seed.
*/
static void Randomize(int alSeed = -1);
//////////////////////////////////////////////////////
////////// COLLSION //////////////////////////////////
//////////////////////////////////////////////////////
static bool BoxCollision(cRect2l aRect1, cRect2l aRect2);
static bool BoxCollision(cRect2f aRect1, cRect2f aRect2);
static bool PointBoxCollision(cVector2f avPoint, cRect2f aRect);
static bool BoxFit(cRect2l aRectSrc, cRect2l aRectDest);
static bool BoxFit(cRect2f aRectSrc, cRect2f aRectDest);
static float Dist2D(const cVector2f &avPosA, const cVector2f &avPosB);
static float Dist2D(const cVector3f &avPosA, const cVector3f &avPosB);
static float SqrDist2D(const cVector2f &avPosA, const cVector2f &avPosB);
static float SqrDist2D(const cVector3f &avPosA, const cVector3f &avPosB);
static cRect2f &ClipRect(cRect2f &aRectSrc, const cRect2f &aRectDest);
/**
* Checks collison between two bounding volumes.
* \return true if collision, else false.
*/
static bool CheckCollisionBV(cBoundingVolume &aBV1, cBoundingVolume &aBV2);
static bool PointBVCollision(const cVector3f &avPoint, cBoundingVolume &aBV2);
/**
* Creates a clip rect for a bounding volume in screen space.
* \return false if behind near clip.
*/
static bool GetClipRectFromBV(cRect2l &aDestRect, cBoundingVolume &aBV,
const cMatrixf &a_mtxView, const cMatrixf &a_mtxProj,
float afNearClipPlane, const cVector2l &avScreenSize);
static bool CheckSphereInPlanes(const cVector3f &avCenter, float afRadius,
const cPlanef *apPlanes, int alPlaneCount);
//////////////////////////////////////////////////////
////////// FLOAT OPERATIONS ////////////////////////
//////////////////////////////////////////////////////
/**
* Get fraction part of a float
* \param afVal
* \return
*/
static float GetFraction(float afVal);
/**
* Moldus (%) of a float
* \param afDividend
* \param afDivisor
* \return
*/
static float Modulus(float afDividend, float afDivisor);
static float ToRad(float afAngle);
static float ToDeg(float afAngle);
/**
* Get the Log 2 of an int.
*/
static int Log2ToInt(int alX);
/**
* Checks if the number is a power of two.
*/
static bool IsPow2(int alX);
/**
* Wraps a value (afX) between min and max. Example: Wrap(-1, 0,10) returns 9.
* \param afMin The minimum value. Must be lower than max.
* \param afMax The maximum value. Must be higher than min and NOT 0.
*/
static float Wrap(float afX, float afMin, float afMax);
/**
* Clamps a value between min and max. Example Clamp(-1, 0,1) return 0.
*/
static float Clamp(float afX, float afMin, float afMax);
inline static float Max(float afX, float afY) {
if (afX > afY)
return afX;
return afY;
}
inline static float Min(float afX, float afY) {
if (afX < afY)
return afX;
return afY;
}
inline static int Max(int alX, int alY) {
if (alX > alY)
return alX;
return alY;
}
inline static int Min(int alX, int alY) {
if (alX < alY)
return alX;
return alY;
}
inline static float Abs(float afX) { return afX < 0 ? -afX : afX; }
inline static int Abs(int alX) { return alX < 0 ? -alX : alX; }
static float GetAngleDistance(float afAngle1, float afAngle2, float afMaxAngle);
static float GetAngleDistanceRad(float afAngle1, float afAngle2);
static float GetAngleDistanceDeg(float afAngle1, float afAngle2);
static float TurnAngle(float afAngle, float afFinalAngle, float afSpeed, float afMaxAngle);
static float TurnAngleRad(float afAngle, float afFinalAngle, float afSpeed);
static float TurnAngleDeg(float afAngle, float afFinalAngle, float afSpeed);
static float InterpolateFloat(float afA, float afB, float afT);
template<typename Vector>
static decltype(Vector::x) & GetVectorX(Vector &v) {
return v.x;
}
template<typename Vector>
static decltype(Vector::y) & GetVectorY(Vector &v) {
return v.y;
}
template<typename Vector>
static decltype(Vector::z) & GetVectorZ(Vector &v) {
return v.z;
}
//////////////////////////////////////////////////////
////////// VECTOR 2D ///////////////////////////////
//////////////////////////////////////////////////////
/**
* Get the angle a vector at aStartPos has to have to look at aGoalPos
* \param &aStartPos
* \param &avGoalPos
* \return
*/
static float GetAngleFromPoints2D(const cVector2f &aStartPos, const cVector2f &avGoalPos);
/**
* Get a vector from an angle and a length
* \param afAngle
* \param afLength
* \return
*/
static cVector2f GetVectorFromAngle2D(float afAngle, float afLength);
/**
* Get angle and length of a vector
* \param &avVec
* \param *apAngle
* \param *apLength
*/
static void GetAngleFromVector(const cVector2f &avVec, float *apAngle, float *apLength);
/**
* Project Src on Dest
* \param &avSrcVec
* \param &avDestVec
* \return
*/
static cVector2f ProjectVector2D(const cVector2f &avSrcVec, const cVector2f &avDestVec);
//////////////////////////////////////////////////////
////////// VECTOR 3D ///////////////////////////////
//////////////////////////////////////////////////////
static inline cVector3f Vector3ToRad(const cVector3f &avVec) {
return cVector3f(ToRad(avVec.x), ToRad(avVec.y), ToRad(avVec.z));
}
static inline cVector3f Vector3ToDeg(const cVector3f &avVec) {
return cVector3f(ToDeg(avVec.x), ToDeg(avVec.y), ToDeg(avVec.z));
}
static inline cVector3f Vector3Normalize(const cVector3f &avVec) {
cVector3f vNorm = avVec;
vNorm.Normalise();
return vNorm;
}
static inline float Vector3DistSqr(const cVector3f &avStartPos, const cVector3f &avEndPos) {
float fDX = avEndPos.x - avStartPos.x;
float fDY = avEndPos.y - avStartPos.y;
float fDZ = avEndPos.z - avStartPos.z;
return fDX * fDX + fDY * fDY + fDZ * fDZ;
}
static inline float Vector3Dist(const cVector3f &avStartPos, const cVector3f &avEndPos) {
return sqrt(Vector3DistSqr(avStartPos, avEndPos));
}
static cVector3f GetAngleFromPoints3D(const cVector3f &avStartPos, const cVector3f &avGoalPos);
/**
* Vector cross product, A x B = R
* \param avVecA
* \param avVecB
* \return
*/
static cVector3f Vector3Cross(const cVector3f &avVecA, const cVector3f &avVecB);
/**
* Vector dot product, A * B = R
* \param avVecA
* \param avVecB
* \return
*/
static float Vector3Dot(const cVector3f &avVecA, const cVector3f &avVecB);
/**
* Project Src on Dest
* \param &avSrcVec, must be normalized
* \param &avDestVec, must be normalized
* \return
*/
static cVector3f ProjectVector3D(const cVector3f &avSrcVec, const cVector3f &avDestVec);
/**
* Calculates the angle between two vectors.
* \param avVecA
* \param avVecB
* \return
*/
static float Vector3Angle(const cVector3f &avVecA, const cVector3f &avVecB);
/**
* Unprojects a vector from screen size and coords.
*/
static cVector3f Vector3UnProject(const cVector3f &avVec, const cRect2f &aScreenRect,
cMatrixf a_mtxViewProj);
/**
* Calculates distance from a point to a plane
* \param aPlane The plane must be normalised!
* \param avVec
* \return >0 if in front of plane, 0 if on plane and <0 if behind plane
*/
static float PlaneToPointDist(const cPlanef &aPlane, const cVector3f &avVec);
/**
* Get the line defining the intersection of 2 planes.
* \param aPA
* \param aPB
* \param avDir The direction of the line will be placed here
* \param avPoint A point on the line will be placed here.
*/
static void PlaneIntersectionLine(const cPlanef &aPA, const cPlanef &aPB,
cVector3f &avDir, cVector3f &avPoint);
/**
* Checks intersection with a frustum, an array of alPairNum plane pairs(alPairNum*2 planes), and a line,
*/
static bool CheckFrustumLineIntersection(const cPlanef *apPlanePairs, const cVector3f &avPoint1,
const cVector3f &avPoint2, int alPairNum);
/**
* Checks intersection with a a frustum, an array of alPairNum plane pairs(alPairNum * 2 planes), and a quad mesh.
* \param apPoints the points of the quad mesh, every 4 points is a face.
*/
static bool CheckFrustumQuadMeshIntersection(const cPlanef *apPlanePairs, tVector3fVec *apPoints,
int alPairNum);
//////////////////////////////////////////////////////
////////// QUATERNIONS ///////////////////////////////
//////////////////////////////////////////////////////
/**
* Spherical Linear Interpolation between quaternions A and B
* \param afT The amount in-between the quaternions. 0.0 is A and 1 is B.
* \param abShortestPath Move the the shortest path.
* \return
*/
static cQuaternion QuaternionSlerp(float afT, const cQuaternion &aqA, const cQuaternion &aqB,
bool abShortestPath);
static float QuaternionDot(const cQuaternion &aqA, const cQuaternion &aqB);
//////////////////////////////////////////////////////
////////// MATRIX ////////////////////////////////////
//////////////////////////////////////////////////////
/**
* Spherical Linear Interpolation between matrix A and B
* \param afT The amount in-between the quaternions. 0.0 is A and 1 is B.
* \param abShortestPath Move the the shortest path.
* \return
*/
static cMatrixf MatrixSlerp(float afT, const cMatrixf &a_mtxA, const cMatrixf &a_mtxB,
bool abShortestPath);
/**
* Matrix mulitplication, A * B = R. This means that B is applied BEFORE A.
*/
static cMatrixf MatrixMul(const cMatrixf &a_mtxA, const cMatrixf &a_mtxB);
/**
* Multiply and matrix and a 3d vector
*/
static cVector3f MatrixMul(const cMatrixf &a_mtxA, const cVector3f &avB);
/**
* Multiply and matrix and a 3d vector and divide the result with W.
*/
static cVector3f MatrixMulDivideW(const cMatrixf &a_mtxA, const cVector3f &avB);
/**
* Multiply matrix and a float.
*/
static cMatrixf MatrixMulScalar(const cMatrixf &a_mtxA, float afB);
/**
* Creates a rotation matrix along all axes according to order.
*/
static cMatrixf MatrixRotate(cVector3f avRot, eEulerRotationOrder aOrder);
/**
* Create a rotation matrix around the X-axis according to the right hand rule
*/
static cMatrixf MatrixRotateX(float afAngle);
/**
* Create a rotation matrix around the Y-axis according to the right hand rule
*/
static cMatrixf MatrixRotateY(float afAngle);
/**
* Create a rotation matrix around the Z-axis according to the right hand rule
*/
static cMatrixf MatrixRotateZ(float afAngle);
static cMatrixf MatrixScale(cVector3f avScale);
static cMatrixf MatrixTranslate(cVector3f avTrans);
/**
* Creates a matrix from a quaternion.
* \return
*/
static cMatrixf MatrixQuaternion(const cQuaternion &aqRot);
/**
* Get the minor of a matrix.
*/
static inline float MatrixMinor(const cMatrixf &a_mtxA,
const size_t r0, const size_t r1, const size_t r2,
const size_t c0, const size_t c1, const size_t c2);
/**
* Get the adjoint of a matrix.
*/
static inline cMatrixf MatrixAdjoint(const cMatrixf &a_mtxA);
/**
* Get the determinant of a matrix.
*/
static inline float MatrixDeterminant(const cMatrixf &a_mtxA);
/**
* Gets the inverse of a matrix.
*/
static cMatrixf MatrixInverse(const cMatrixf &a_mtxA);
/**
* Converts the matrix into Euler angles, XYZ only supported at the moment.
* \param &a_mtxA
* \param aOrder
*/
static cVector3f MatrixToEulerAngles(const cMatrixf &a_mtxA, eEulerRotationOrder aOrder);
/**
* Create a char string from the matrix
*/
static const char *MatrixToChar(const cMatrixf &a_mtxA);
//////////////////////////////////////////////////////
////////// POLYGONS //////////////////////////////////
//////////////////////////////////////////////////////
/**
* Creates an array with 4d tangent vectors for triangles. alIndexNum % 3 must be 0.
* \param apDestArray The destination array, must be 4 * number of vertices large
* \param apIndexArray The indices
* \param alIndexNum Number of indices
* \param apVertexArray Vertices indexed by the indices
* \param apTexArray The texture coords
* \param apNormalArray The normals
* \param alVertexNum Number of vertex, normals and texcoords.
* \return true if success, else false
*/
static bool CreateTriTangentVectors(float *apDestArray,
const unsigned int *apIndexArray, int alIndexNum,
const float *apVertexArray, int alVtxStride,
const float *apTexArray,
const float *apNormalArray, int alVertexNum);
/**
* Creates triangle data for a triangle mesh. alIndexNum % 3 must be 0.
* \param avTriangles Where the data will be stored. If empty, this function resizes it.
* \param apIndexArray The indices
* \param alIndexNum Number of indices
* \param apVertexArray Vertices indexed by the indices
* \param alVertexNum Number of vertices
* \return true if success, else false
*/
static bool CreateTriangleData(tTriangleDataVec &avTriangles,
const unsigned int *apIndexArray, int alIndexNum,
const float *apVertexArray, int alVtxStride, int alVertexNum);
/**
* Creates edges for a triangle mesh. alIndexNum % 3 must be 0.
* \param avEdges An empty edge vector, this is where the edges will be stored.
* \param apIndexArray The indices
* \param alIndexNum Number of indices
* \param apVertexArray Vertices indexed by the indices
* \param alVertexNum Number of vertices
* \return true if success, else false
*/
static bool CreateEdges(tTriEdgeVec &avEdges,
const unsigned int *apIndexArray, int alIndexNum,
const float *apVertexArray, int alVtxStride, int alVertexNum,
bool *apIsDoubleSided);
};
} // namespace hpl
#endif // HPL_MATH_H
|