1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "common/algorithm.h"
#include "m4/graphics/gr_surface.h"
#include "m4/graphics/gr_sprite.h"
namespace M4 {
M4Surface::M4Surface(int sw, int sh) : Buffer() {
this->w = sw;
this->h = sh;
this->stride = sw;
this->encoding = NO_COMPRESS;
this->data = new byte[sw * sh];
Common::fill(this->data, this->data + sw * sh, 0);
_disposeAfterUse = DisposeAfterUse::YES;
}
M4Surface::M4Surface(const byte *src, int sw, int sh) {
this->w = sw;
this->h = sh;
this->stride = sw;
this->encoding = NO_COMPRESS;
this->data = new byte[sw * sh];
Common::fill(this->data, this->data + sw * sh, 0);
_disposeAfterUse = DisposeAfterUse::YES;
rleDraw(src);
}
M4Surface::~M4Surface() {
if (_disposeAfterUse == DisposeAfterUse::YES)
delete[] data;
}
void M4Surface::rleDraw(const byte *src, int x, int y) {
const byte *srcP = src;
byte *destData = data + y * w + x;
byte *destP = destData;
int destWidth = w;
byte count, val;
int line = 0;
assert(x >= 0 && y >= 0 && x < w && y < h);
for (;;) {
count = *srcP++;
if (count) {
// Basic run length
val = *srcP++;
// 0 pixels are transparent, and are skipped. Otherwise, draw pixels
if (val != 0)
Common::fill(destP, destP + count, val);
destP += count;
} else {
count = *srcP++;
if (count >= 3) {
// Block of uncompressed pixels to copy
for (; count > 0; --count, ++destP) {
val = *srcP++;
if (val != 0)
*destP = val;
}
} else if (!(count & 3)) {
// End of line code
++line;
destP = destData + line * destWidth;
} else {
// Stop drawing image. Seems weird that it doesn't handle the X/Y offset
// form for count & 2, but the original explicitly doesn't implement it
break;
}
}
}
assert(destP <= (data + h * stride));
}
void M4Surface::draw(const Buffer &src, int x, int y, bool forwards,
const byte *depthCodes, int srcDepth, const byte *inverseColorTable,
const byte *palette) {
if ((src.encoding & 0x7f) == RLE8) {
// The standard case of RLE sprite drawing onto screen can directly
// use RLE decompression for performance
if (forwards && !depthCodes && !inverseColorTable && x >= 0 && y >= 0 &&
(x + src.w) <= this->w && (y + src.h) <= this->h) {
rleDraw(src.data, x, y);
} else {
// All other RLE drawing first decompresses the sprite, and then does
// the various clipping, reverse, etc. on that
M4Surface tmp(src.data, src.w, src.h);
drawInner(tmp, depthCodes, x, y, forwards, srcDepth, palette, inverseColorTable);
}
} else {
// Uncompressed images get passed to inner drawing
drawInner(src, depthCodes, x, y, forwards, srcDepth, palette, inverseColorTable);
}
}
void M4Surface::drawInner(const Buffer &src, const byte *depthCodes, int x, int y,
bool forwards, int srcDepth, const byte *palette, const byte *inverseColorTable) {
assert((src.encoding & 0x7f) == NO_COMPRESS);
for (int srcY = 0; srcY < src.h; ++srcY, ++y) {
if (y >= h)
// Below bottom of screen
break;
else if (y < 0)
// Above top of screen
continue;
const byte *srcP = forwards ? src.getBasePtr(0, srcY) : src.getBasePtr(src.w - 1, srcY);
byte *destP = getBasePtr(x, y);
const byte *depthP = depthCodes ? depthCodes + y * w + x : nullptr;
int deltaX = forwards ? 1 : -1;
int destX = x;
uint32 adjusted, total;
for (int srcX = 0; srcX < src.w; ++srcX, srcP += deltaX, ++destX) {
if (destX >= w)
// Beyond right of screen
break;
byte v = *srcP;
byte depth = depthP ? *depthP & 0xf : 0;
if (destX >= 0 && v != 0 && (!depthP || depth == 0 || srcDepth < depth)) {
if (inverseColorTable) {
// Handling for shadows
if (v != 128) {
const byte *palP = palette + *destP * 3;
uint rgb = (uint32)palP[0] | ((uint32)palP[1] << 8) |
((uint32)palP[2] << 16);
rgb >>= 2;
// Red component
adjusted = (rgb & 0xff) * v;
adjusted = MIN((uint)(adjusted >> 8), 31U);
total = adjusted << 10;
// Green component
rgb >>= 8;
adjusted = (rgb & 0xff) * v;
adjusted = MIN((uint)(adjusted >> 8), 31U);
total |= (adjusted << 5);
// Blue component
rgb >>= 8;
adjusted = (rgb & 0xff) * v;
adjusted = MIN((uint)(adjusted >> 8), 31U);
total |= adjusted;
// Write out pixel from inverse table
*destP = inverseColorTable[total];
}
} else {
// Normal pixel
*destP = v;
}
}
++destP;
if (depthP)
++depthP;
}
}
}
} // namespace M4
|